
 

HLA v2.0 Intermediate Code Design Documentation

 

This document describes the internal format of HLA v2.0s intermediate code that the code genera-
tor uses.  This document assumes that the reader is familiar with compiler theory and terminology.
This document also assumes that the reader is comfortable with the HLA language and 80x86
assembly language in general.  

Note: this document is provided strictly as an idea of where HLA v2.0 is headed. In the year since
I ve written this document, I ve completely changed how the internal representation will work. And
I m sure it will change again before HLA v2.0 is complete. But this document does give a small pre-
view of how HLA v2.0 will handle code generation, even if all the details are incorrect -RLH.

 

Purpose of the Intermediate Code

 

HLA v1.x directly emitted assembly language code within the semantic actions of the productions associated
with the grammar.  While this form of code generation is simple and easy, it is also quite limiting.  Furthermore,
attempting to emit code for a different assembler (or directly generate object code) is extremely difficult because one
has to modify so many different code emission statements throughout the compiler.  Although HLA v1.x was modi-
fied to emit TASM as well as MASM output, the effort to do this was quite large (especially considering the similarity
of the two assemblers).  An attempt to generate Gas code was abandoned when it became clear that the effort would
be too great and the effort would be put to better use in the development of HLA v2.0.

One lesson learned from the development of HLA v1.x is that the compiler itself should not attempt to generate
target machine code.  Instead, like many HLL compilers, HLA v2.0 generates an intermediate code that a code gener-
ator can then translate into the final output.  This scheme has several advantages;  but the two primary advantages are
that the lexer and parser can work with a single output format that is independent of the final code emission;  the sec-
ond advantage is that this scheme allows one to easily write a multiple back ends to the compiler that emit different
assembly and object code formats.  Since most of the real work is done by the parser, the back ends are very easy to
write.  Indeed, a third-party could easily supply a code generator for HLA.

To understand how to write a code generator, it s a good idea to first look at the HLA v2.0 s structure:



 

As you can see in this diagram, the lexer/parser  reads the HLA source code and generates an intermediate
code.  Most traditional assemblers (and, to a certain extent, HLA v1.x) consist of this component and nothing more;
though traditional assemblers typically emit object code directly rather than an intermediate code.  Some, more pow-
erful, assemblers (e.g., MASM and TASM) also support the Optimizer II  phase, which we ll discuss in a moment.

The second stage of the HLA compiler is an optimizer that reads the intermediate code emitted by the parser and
applies transformations that make the intermediate code representation shorter, faster, or both.  Note that this phase is
optional in the compiler and may not be present or may be disabled by the programmer (this is a feature intended for
HLA v3.0, so it may never be present at all in HLA v2.0, except as a stub;  HLA, however, assumes that there is a
module present that does optimization, even if that module does a null optimization).  This is called the Optimizer I
phase because HLAs architecture supports two different optimization phases.

The third stage in the HLA compiler is the code generator.  In general, this phase is responsible for translating the
intermediate code into 80x86 machine code;  as an alternative, the code generator can generate assembly language for
an assembler such as MASM, TASM, or Gas that provide an Optimizer II  phase (see the description in the next
paragraph).

The  fourth stage in the HLA compiler is the Optimizer II  phase.  This phase operates on 80x86 machine code
(instead of the intermediate code that the Optimizer I  phase works with).  This phase attempts to reduce all dis-
placements in the object code to their minimum size.  The Code Generator  phase always generates displacements
using their maximum size (i.e., typically four bytes).  Many instructions support shorter displacements or immediate
fields;  the Optimizer II  phase makes multiple passes over the raw machine code in order to reduce the size of these
displacements and immediate data fields as much as possible (multiple passes may be necessary because shortening a
set of displacements might reduce the distance betwee a jump and its target sufficiently to allow that jump to be opti-
mized as well;  shortening that jump on a second pass may make the distance between some other jump and its target
short enough to use a smaller displacement, ..., etc.).

The last stage in the HLA compiler is the Code Emitter  phase.  This stage takes the raw 80x86 machine code
produced by the Optimizer II  phase and generates an object code file suitable for use by a linker program.  Alter-
nately, this stage could emit assembly code for an assembler that doesn t automatically reduce displacement sizes in
x86 instructions.
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These stages in the HLA compiler all all relatively independent of one another.  The only communication
between these stages of the compiler is via in-memory data structures — HLAs intermediate code representation and
the symbol table.  An enterprising software engineer could replace (or write) any one of these modules.  For example,
someone who wants to create their own assembler with their own particular syntax could replace the lexer/parser
module (often called the front end ) and not have to worry about optimization or code generation/emission.  Simi-
larly, if someone needed an assembler that produces a certain object file format, and no such assembler exists, then
they could write a new Code Emitter  module  and any assembler (including HLA) that uses this module could pro-
duce the object code format that person requires.

The key interface between each of the stages in the HLA compiler is the Intermediate Code/Raw 80x86
Machine Code  data structure (note that Intermediate Code  and Raw 80x86 Machine Code  are not two different
formats, HLAs intermediate code format includes both meta-data and raw machine code;  various stages of the com-
piler refine the pure intermediate code to pure machine code).  This document defines the format for HLAs interme-
diate code so that other programmers can work, independently, on the various modules in the HLA (or other
assembler) compiler.

 

Interface Between Stages

 

Although HLA v2.0 is written in HLA (assembly language), the interface between the modules was carefully
designed to allow the use of almost any programming language.  Indeed, with a little bit of effort, one could easily
modify the system so that each of the stages is a different program and the information is passed between the stages in
a file (this is not the default interface because it is very inefficient, but were this necessary, it could be done).  For effi-
ciency reasons, HLA v2.0 assumes that each stage is implemented via a procedure call and that all the stages (proce-
dures) are statically linked together to form the compiler;  HLA v2.0 assumes that it is possible to pass a pointer to a
memory structure from one stage to the next.  There is no reason you couldn t use dynamically linked library modules
or any other technology as long as the modules can share a common memory space.  If it is not possible to share the
same memory space between the stages, then it would be very easy to add a stage between the lexer/parser and the
Optimizer I stages that writes the data to a memory-mapped file (which you can share between different processes).
Currently, however, HLA v2.0 simply assumes that it can pass a pointer to the start of a list from one stage to the next.

Except for the lexer/parser stage,  the calling sequence to each of the phases in the compiler is the following:

 

procedure phase( IntCode:ptrToIntCode_t ); @cdecl;  // HLA Declaration
void phase( IntCode_t *IntCode );                   // C Declaration

 

Any language (e.g., C++, Delphi, etc.) that allows you to write a procedure that can be called from C with a single
pointer (four-byte double word pointer), leaving that pointer on the stack to be cleaned up by the caller, should be rea-
sonable for writing one of  the stages.  Here is the calling conventions the HLA compiler assumes:

¥ Caller passes the four-byte pointer on the stack.
¥ The caller removes the four-byte pointer from the stack upon return.
¥ The procedure need only preserve ESP and EBP.
¥ The procedure makes no assumptions about initialization prior to the call (e.g., standard library or run-time sys-

tem initialization).  Remember, each stage could be written in a different language and there s no guarantee that 
the main program (the lexer/parser stage) called the run-time initialization code required by a given module.

¥ Once a stage completes, it is never again called (during the same compilation).
¥ Except for the intermediate code data structure, and any previous data on the stack, the module completely cleans 

up after itself before it returns.  It closes any open files, frees any allocated memory, etc.
¥ One module may only communicate information to another module via the intermediate format.  No other 

shared, global, data structures are present, nor do two stages communicate information via a file or database.



 

The Intermediate Code Data Exchange Format

 

The HLA interrmediate code format uses the following data structures:

 

type
intCode_t:

record

Next :pointer to intCode;
LineNum :int32;
SourceLine :pointer to char;
Offset :dword;
Size :uns32;
TypePrefix :word;

endrecord;

 

The 

 

intCode_t

 

 type is an abstract record definition that defines the fields that are common to all intermediate
code records.  The HLA compiler doesn t actually declare any objects of this type;  instead, other intermediate code
record simply inherit this data type.

The 

 

Next

 

 field forms a linked list of intermediate code records.  At the highest level, this field links together the
sequence of instructions and/or data records appearing within a segment/section.  For example, the code (text) seg-
ment consists of a list of all the instructions appearing in the source file.  The 

 

Next

 

 field links the statements and data
definitions appearing in the code segment into a linear list.  The code generator emits the instructions in the order they
appear in this list.  For data segments, the 

 

Next

 

 field links together the declarations for the particular segment (static,
readonly, storage, or user-defined) so the code generator may emit the data definitions in a contiguous manner to the
object file.

The  

 

LineNum

 

 field contains the line number in the source file associated with this instruction or data declara-
tion.  Note that for M

 

ACRO

 

 invocations and T

 

EXT

 

 expansions,  this is the line number in the original source file where
the expansion began (i.e., the line number of the statement containing the M

 

ACRO

 

 or T

 

EXT

 

 identifier).

The 

 

SourceLine

 

 field contains a pointer to the start of the source line associated with this code/data record.  For
M

 

ACRO

 

 expansions, this pointer actually points into the M

 

ACRO

 

 definition (unlike the 

 

LineNum

 

 field above).  The
code generator/emitter primarily uses this field for producing assembly listings.

The 

 

Offset

 

 field contains the numeric offset of this instruction/data value within its segment.

The 

 

Size

 

 field specifies the size of this instruction or data record, in bytes.  Note that machine instructions are
always 15 bytes or less, but data records can be any (practical) size.

The 

 

TypePrefix

 

 field serves two purposes: (1) it defines the type of the record data immediately following the

 

TypePrefix

 

 field, and (2) for instructions this field specifies any prefix bytes appearing before the instruction opcode.
This field takes the following format:



 

The low-order four bytes define the record type.  Values zero through three specify a machine instruction type
with zero, one, two, or three operands.  If these bits contain one of these values, then they specify one of the

 

intInstr0_t, intInstr1_t, intInstr2_t,

 

 or 

 

intInstr3_t

 

 types (respectively, see the definitions below).   

If the type field (low-order four bits) contains one of the values zero through three, then bits five through four-
teen also specify any instruction prefix bytes appearing before the opcode.  Note that prefixes sharing the same color
above are mutually exclusive.

If the type field (low-order four bits) contains a value in the range four through six, then the intermediate code
record defines a data record using one of the types  

 

RelocData_t

 

 (type=4), 

 

RawData_t

 

 (type=5), or 

 

RepeatData_t

 

(type=6).  

 

RelocData_t

 

 records handle data records that specify a relocatable address as the operand(s).  This inter-
mediate code record type handles double-word data declarations containing expressions like &symbol , &sym-
bol[n] , and &symbol1[n] - &symbol2[m] .   

 

RawData_t

 

 intermediate code records handle the emission of raw
bytes to the object file;  this is the most common data record.  

 

RepeatData_t

 

 intermediate code records handle
repeated data (in a recusive fashion, so you can repeat a data sequence that contains repetition).  Note that the prefix
bits must all be zero for the data defining intermediate code records.

If the type field (low-order four bits) contains %1111 then this intermediate code record is a directive that the
HLA parser emits to provide some sort of hint to the optimizers and the code generator.  These directives do things
such as turn code optimization on or off, deliniate procedures, parameters, data structures, and other objects, pass
parameters to the linker, and so on.  See the section on intermediate code directives for more details.

 

operand_t:
record

BaseSymbol :symNodePtr_t;
MinusSymbol :symNodePtr_t;
PlusDisp :dword;
BaseReg :byte;
ScaledIndex :byte;

Prefix Bitmap Format and Record Type

address

operand

015 8 7

Lock
Rep/Repe/Repz
Repne/Repnz

cs
ds
es
fs
gs
ss

Type

Types:
0000: Instruction(0)
0001: Instruction(1)
0010: Instruction(2)
0011: Instruction(3)
0100: Reloc Data
0101: Raw Data
0110: Repeat Data
1111: Directive



 

AdrsMode :byte;
Size :byte;

endrecord;

 

The HLA intermediate code format uses the 

 

operand_t

 

 data type to represent operands of an x86 machine
instruction.  The following paragraphs provide the definitions for each of these fields.

 

BaseSymbol

 

:  This field contains NULL or a pointer to an HLA symbol table entry.  If this field is non-NULL,
it indicates that the operand is either a memory address involving some sort of  variable (V

 

AR

 

, S

 

TATIC

 

, R

 

EAD

 

O

 

NLY

 

,
S

 

TORAGE

 

, or S

 

EGMENT

 

) along with an optional base and/or index register, or the addressing mode is immediate and
the expression takes the form &staticVar  or &staticVar1-&staticVar2  (with optional constant indicies on each
identifier).  The 

 

BaseSymbol

 

 field points at the symbol table entry for the memory variable s identifier (

 

staticVar1

 

in the latter case) associated with this operand.

 

MinusSymbol

 

: This field contains a pointer to the symbol table entry for the second identifier in immediate
expressions of the form &staticVar1-&staticVar2 .  This field contains NULL if the expression does not take this
form.

 

PlusDisp

 

: This field contains the numeric displacement (exclusive of any symbolic variable names) associated
with this operand;  this field also holds the (non-relocatable) immediate constant data for the immediate addressing
mode.  E.g.,  for the operand [ebx+5]  the 

 

PlusDisp

 

 field contains five.  For an operand of the form &staticVar[4]
the 

 

PlusDisp

 

 field contains four (the 

 

BaseSymbol

 

 field handles the actual offset of the 

 

staticVar

 

 symbol).  An oper-
and of the form &staticVar1[8] - &staticVar2[2]  has a 

 

PlusDisp

 

 value of six since HLA computes the displacement
as 8-2   (since we must subtract the offset into 

 

staticVar2

 

 from the offset into 

 

staticVar

 

).

 

BaseReg

 

:  This field serves two purposes.  For register operands, this field specifies which register to use.  For
memory operands that use a base register, this field specifies the base register to use.  Note that the 

 

AdrsMode

 

 field
specifies whether this field is a register, base register, or is unused.  This field uses the following values:

 

Table 1: BaseReg Values

 

BaseReg Register

0 AL

1 CL

2 DL

3 BL

4 AH

5 CH

6 DH

7 BH

8 AX

9 CX

A DX

B BX

C SP



 

D BP

E SI

F DI

10 EAX

11 ECX

12 EDX

13 EBX

14 ESP

15 EBP

16 ESI

17 EDI

18 ST0

19 ST1

1A ST2

1B ST3

1C ST4

1D ST5

1E ST6

1F ST7

20 MM0

21 MM1

22 MM2

23 MM3

24 MM4

25 MM5

26 MM6

27 MM7

28 XMM0

29 XMM1

2A XMM2

 

Table 1: BaseReg Values

 

BaseReg Register



 

Note that if the 

 

AdrsMode

 

 byte specifies a memory address using a base register, then the only legal values in
the 

 

BaseReg

 

 field are the values for the 32-bit general purpose registers (EAX..EDI).

 

ScaledIndex

 

: This field specifies an index register and a scaling factor.  This field is only meaningful if the 

 

Adr-
sMode

 

 byte specifies a scaled indexed addressing mode.  This field uses the following format:

2B XMM3

2C XMM4

2D XMM5

2E XMM6

2F XMM7

30 DR0

31 DR1

32 DR2

33 DR3

34 DR4

35 DR5

36 DR6

37 DR7

38 N/A (TR0)

39 N/A (TR1)

3A N/A (TR2)

3B TR3

3C TR4

3D TR5

3E TR6

3F TR7

40 CR0

41 CR1

42 CR2

43 CR3

 

Table 1: BaseReg Values

 

BaseReg Register



 

intInstr0_t:
record inherits( intCode )

SIB :byte;
ModRegRM :byte;

Instruction :
union

InstrTkn :dword
bytes :byte[3];
record

prefix :byte;
opcode :byte;
ORreg :byte;

endrecord;
endunion;

endrecord;

intInstr1_t:
record inherits( intInstr0_t )

Operand1 :operand_t;

endrecord;

intInstr2_t:
record inherits( intInstr1_t )

Operand2 :operand_t;

endrecord;

intInstr3_t:
record inherits( intInstr2_t )

Operand3 :operand_t;

endrecord;

RelocData_t:
record inherits( intCode_t )

BaseSymbol :symNodePtr_t;
MinusSymbol :symNodePtr_t;
PlusDisp :dword;

endrecord;

RawData_t:
record inherits( intCode_ t )

data :byte[1];  // Actually Size bytes long.



 

endrecord;

RepeatData_t:
record inherits( intCode_t )

RepeatCnt :uns32;
PtrToData :pointer to intCode_t;

endrecord;

intDirective_t:
record inherits( intCode )

DirVal :word;
symbol :symNodePtr_t;

endrecord;

Operand Format

07

Base/Reg Index Reg Symbol Pointer Displacement/
ImmediateMode Byte

Mode [0:3]
0000 - immediate
0001 - register
0010 - [disp]
0011 - Mem
0100 - [reg]
0101 - [reg + disp]
0110 - [reg + reg*scale]
0111 - [reg + reg*scale + disp]
1000 - Mem [reg]
1101 - Mem [reg + disp]
1110 - Mem [reg + reg*scale]
1111 - Mem [reg + reg*scale + disp]

Mode [4:5]
00 - scale = 1
01 - scale = 2
10 - scale = 4
11 - scale = 8

Mode [6]-
Reserved

Mode [7]-
0- Ignore Operand
1- L.O. 6 bits describe operand



Raw x86 Instruction Format

Lock, rep, repe/z, or repne/z prefix (zero if none)

Address prefix or zero

Operand prefix or zero

Segment prefix or zero

Opcode

mod-reg-r/m byte

sib

displacement

immediate

Instruction length

Instruction offset

symbol constant offset

symbol symbol constant


