

HLABasic Implementation

Implementation of HLABasic

Warning: This program was written for fun. Work on it was suspended when other projects
started entering "crisis mode." There are still a few features missing and the code has not been
tested. Use this code at your own risk. The source listings are available, so feel free to fix any
problems you find.

This document provides a brief roadmap to the internal operation of the HLABasic interpreter. If you are
interested in modifying HLABasic for any reason, you will probably want to read this document before attempt-
ing such modifications.

HLABasic is written in assembly language using the High Level Assembler (HLA) which is, in fact, the
source of HLABasic’s name. This document assumes that you are already familiar with HLA syntax and are
comfortable using the HLA compiler. If you need information about HLA, please consult the appropriate docu-
mentation at http://webster.cs.ucr.edu.

The HLABasic interpreter can be grossly divided into five modules: the command interpreter, the token-
izer/parser, the detokenizer, the compiler, and the run-time interpreter. This document is organized along these
lines, discussing each of these major parts of the interpreter in separate sections.

The HLABasic interpreter was written to be an example of a fair sized program written in HLA. The code
was written to be easy to understand and modify, not as an example of the fastest interpreter one could possibly
write. Nor was any attempt made to make the code as short as possible. Those looking for a very efficient inter-
preter should probably look elsewhere (or be prepared to spend some time optimizing this code). This is not to
suggest that HLABasic is particularly slow or large. HLABasic uses good algorithms in the interpreter, so it is
not slow by any means; it does quite well against other interpreters written for the 80x86. The interpreter’s EXE
file is about 76K on the disk (including lots of data, this isn’t all just code). At run-time, the interpreter consumes
a bit more memory to hold the BASIC program and any variables it uses. So although it’s not tiny, it’s not a com-
plete bloat either. With a bit of work, one could easily double the speed of the interpreter and probably cut the
size of the interpreter in half. However, that task is left to someone who is interested in the challenge of doing so.
Most people who have 256 MBytes of RAM on their machine don’t really care if the interpreter is 50K or 80K.
As for possible speed improvements, someone who really wants a faster interpreter should consider using a com-
piler like Visual BASIC is performance is paramount.

HLABasic is public domain. So feel free to do whatever you want to do with this code. One possible use for
this interpreter is to embed it in other products to help create a BASIC-like scripting language for that product.
Whatever, feel free to do as you wish with this code. As noted above, this code has not been tested, so you must
take full responsibility for all use, abuse, and mis-use of this code.

HLABasic is a traditional console-based version of the language. Don’t expect fancy graphics facilities or a
GUI rapid application development tool like Visual BASIC. Although it’s relatively easy to add new features to
HLABasic, you shouldn’t attempt to turn it into VB (Visual BASIC). That would be far too much work given the
availability of languages like VB, Delphi, and Java.

1.1 HLABasic Organization and Overview

As noted earlier, HLABasic can be divided into about five main sections (plus some change). This section
will quickly list all the procedures in HLABasic and point out the section to whom those procedures belong.
This will provide an overview of the whole system.

Table 1

Procedure Section Description

FreeVars Interpreter Garbage collection routine. Used to free up storage used by a vari-
able whenever the program assigns a new value to that variable.
Released to the Public Domain by Randall Hyde Page 1

HLABasic Implementation

GetLineNum Command Verifies that an input line number is correct.

AtLineNumber Interpreter Used to print the line number whenever a run-time error occurs.

AllocCons Command Used to initialize the standard I/O file handles whenever the pro-
gram executes.

RedimWindow Command Used to create a new console window for output.

WinEdit Command Initializes the console display (colors, etc.)

CLS Interpreter Clears the console window.

InitP Interpreter Called by the interpreter to initialize the GOSUB and FOR stacks.

FindLine All Locates a specific line in the source file by line number.

Compile Compiler Makes a couple of passes over the source code when the user
issues the RUN command to patch up addresses and other optimi-
zation-oriented features.

DoDebug Interpreter Prints the line number for each statement at run time if the trace
mode is turned on.

RealToStr Interpreter Converts a real number to a string using exponential or decimal
form, depending on the size of the value (used by STR and PRINT,
for example)

StrToNumber Interpreter Converts a string to an integer or real number.

NumberToStr Interpreter Converts a string to an integer or a floating point value, depending
upon the number’s format.

MakeInt Interpreter Tries to coerce its parameter to an integer.

Expr Interpreter
(this is the
expression
evaluator)

Evaluates an arithmetic expression.

MakeCompatible Interpreter /
ExprEval

Attempts to coerce two operands so that they are the same type.

Factor Interpreter /
ExprEval

Handles IDs, constants, parenthetical expressions, functions, and
unary operators in an arithmetic expression.

MULx Interpreter /
ExprEval

Handles the *, /, and % operators in an arithmetic expression.

ADDx Interpreter /
ExprEval

Handles the + and - operators in an arithmetic expression.

RELx Interpreter /
ExprEval

Handles the relational operators (<, <=, =, <>, >=, and >) in arith-
metic expressions.

ANDx Interpreter /
ExprEval

Handles logical expressions involving the AND operator.

Table 1

Procedure Section Description
Page 2 Version: 6/15/01 Written by Randall Hyde

HLABasic Implementation

ORx Interpreter /
ExprEval

Handles logical expressions involving the OR operator.

Deallocate Interpreter Deallocates storage held by a variable at run-time.

ProcessIndex Interpreter Processes array indexes of the form "[expr]" after an array vari-
able.

RunProc Interpreter Handles the RUN command - starts the execution of the program.
This procedure contains the code for the actual interpreter portion
of HLABasic.

Detokenize Detokenizer Converts the tokenized source format to text in response to the
LIST command.

ListProc Command Handles the HLABasic LIST command.

ParseLine Tokenizer Converts a textual source line to its tokenized form. Also reports
any syntax errors on the line.

PutToken Tokenizer Emits an HLABasic token to the tokenized source array in mem-
ory.

Expression Tokenizer Tokenizes an arithmetic expression.

SkipSpcs Tokenizer Skips over any whitespace on the input line during tokenization.

matchNeg Tokenizer Handles the unary minus sign encountered while tokenizing an
expression.

matchNot Tokenizer Handles the NOT operator while tokenizing an expression.

GetParenExpr Tokenizer Matches and tokenizes an expression surrounded by parentheses.

GetBracketExpr Tokenizer Matches and tokenizes an expressions surrounded by brackets.

matchID Tokenizer Matches an identifier or function name encountered in an expres-
sion.

MatchIntConst Tokenizer Matches and tokenizes a literal integer constant encountered in an
expression.

matchFltConst Tokenizer Matches and tokenizes a literal real constant encountered in an
expression.

matchTerm Tokenizer Matches IDs, constants, function calls, and parenthetical expres-
sions in an expression.

ParseID Tokenizer Matches and tokenizes identifiers appearing in source code.

ParseStmt Tokenizer This is the main tokenizer routine. It accepts a line of text, parses
it (checks for correctness), and converts that text to a string of
tokens in the source file array.

DumpProc Command This procedure handles the DUMP command.

EditProc Command Handles the EDIT command.

MiniBasic Command Main program and command processor.

Table 1

Procedure Section Description
Released to the Public Domain by Randall Hyde Page 3

HLABasic Implementation

1.2 The Command Processor (MiniBasic - Main Program)

When HLABasic first begins execution, it initializes a bunch of variables that the interpreter uses. See the
source code for details on this. One important initialization, however, is storing a copy of the ESP register in the
Sstack variable. The reason for doing this is so that the system can reset the stack pointer if some sort of excep-
tion or other situation causes the interpreter to restart after some sequence of operations that can leave the stack
in an indeterminate state. Then the program enters a (really big) infinite loop that processes commands. At the
bottom of this loop, the interpreter restores ESP from the Sstack variable in case some premature command abort
left some junk on the stack.

Just inside this big infinite loop is a TRY..ENDTRY statement. Many abnormal operations (like a run-time
error or a command syntax error) raise an exception that returns control back to the main processing loop. This,
effectively, halts whatever operation was in progress (including an executing program) and returns control back
to the main command interpreter (e.g., stopping a running program that had a run-time error). See the EXCEP-
TION clauses in this TRY..ENDTRY statement for details on the types of exceptions the interpreter generates.

Once inside the TRY..ENDTRY statement, the interpreter prompts the user for a command and then reads a
line of text from the user. The command processor uses the HLA Standard Library pattern matching facilities
(i.e., that pat.match function) to determine which command the user has entered. If the command begins with a
decimal integer, then the command interpreter checks to see if it should delete a line of text, edit an existing line
of text, or insert a new line of text into the source file. Other patterns check for the DUMP command, the LIST
command, the EDIT command, the RUN command, the NEW command, the DEBUG command, the LOAD
command, the SAVE command, or the QUIT command. If the user enters anything else, then the command pro-
cessor complains about an illegal command.

If you want to add a new command to the language, then you will probably want to add a pat.alternate clause
to the main pat.match..pat.endmatch statement in the main program. If you are unfamiliar with how the HLA
Standard Library pattern matching module works, you’ll probably want to read up on this very interesting mod-
ule in the HLA Standard Library documentation. You can also use the code for a similar command as a template
for any new commands you add to the interpreter.

The LOAD and SAVE commands are probably the most interesting of the bunch. The SAVE command
opens a text file (with the user-specified file name), redirects the standard output to this file, and then executes the
LIST command in order to dump a text listing of the program to the specified text file. The LOAD command
does the converse - it redirects the standard input from a user-specified file and then tokenizes each input line
read from the file, exactly as though the user were typing these lines in at the keyboard.

Although the HLA pattern matching library is not blazing fast, do not be concerned about its performance
for the command processor. This is not a time-critical component of the program, so the fact that faster ways to
parse a command may exist is really irrelevant here; most commands execute instantaneously as far as the user is
concerned, so investing effort in making this code run faster is a waste of time.

1.3 The Tokenizer

When the user enters a statement that begins with a line number, it is the job of the Tokenizer code to take
this input line, in text form, verify its correctness, convert it to the equivalent token sequence, and insert these
tokens into the source file at the appropriate place. The ParseStmt procedure handles this operation. So if you
want to add a new statement to the HLABasic language, the ParseStmt procedure is the first procedure you need
to modify (there are others, we’ll get to those in a little bit).

To add a new statement to the tokenizer, you must add a pat.alternate section to the pat.match..pat.endmatch
statement in the ParseStmt function. This pattern matching code must check the syntax of the statement. If the
syntax is correct, the code should emit a sequence of byte tokens to the LineBuffer array at the offset specified by
the index variable (updating index to point beyond any tokens you add to the LineBuffer array). If you’re creating
a brand new statement with its own keyword(s), then you’ll need to add the symbol for the keyword’s token to the
ReservedWords enumerated data type at the beginning of the source file. The easiest way to add a new statement
to HLABasic’s tokenizer code is to find some other statement whose syntax is similar to the statement you wish
to create and use the code for that other statement as a template for your new statement.
Page 4 Version: 6/15/01 Written by Randall Hyde

HLABasic Implementation

The ParseStmt tokenizer code calls a couple of helper functions to parse items appearing within a statement.
The best examples are the Expression procedure and the ParseID procedures. These two procedures parse and
tokenize arithmetic expressions and HLABasic identifiers. So, for example, if you want to add new operators to
HLABasic, you’d modify the Expression procedure.

The ParseStmt code is not time critical. This procedure executes immediately after the user presses the
enter key after entering a new statement. On most modern machines, the parsing and tokenization occur so rap-
idly that the system comes back nearly instantaneously. Hence, there is no need to try to write optimized code.

1.4 The Detokenizer

The Tokenize procedure is responsible for taking HLABasic statements as input from the user, verifying the
syntax of these statements, and translating them to a tokenized form in memory. The Detokenize procedure has
the converse responsibility - it’s job is to convert the tokenized statement in memory back to a string. HLABasic
uses this facility for two operations: listing the source file and saving the source file to disk. Therefore, the sec-
ond step you must do when adding a new statement to the HLABasic language is to modify the Detokenize pro-
cedure so that it can detokenize your new statements after Tokenize has converted them to tokens.

The Detokenize procedure is probably the easiest to modify. It’s really little more than a giant loop that
moves through a statement, picks off a byte, and uses that byte to select a CASE in a SWITCH statement. Each
CASE in this SWITCH statement appends a corresponding string to the deststr variable. Note that the cases
don’t have to worry about the structure of a whole statement – they’ve only got to deal with a single token at one
time. This is what makes the Detokenize procedure so easy to modify. Typically, when you add a new statement
to HLABasic, you’ve only got to add one CASE to the SWITCH statement that translates your new token to the
corresponding keyword for your new statement.

The Detokenizer procedure is not particularly time critical. Only the LIST and SAVE commands use this
code. For the LIST operation, speed is irrelevant since the computer converts the tokenized code to text data
many orders of magnitude faster than you can read it. For the SAVE command, the speed of the Detokenize pro-
cedure can have a negative impact whenever the user is saving really large BASIC files to disk. However, the
Detokenize code isn’t particularly slow, so the SAVE operation is virtually instantaneous for most files.

1.5 The RunProc Procedure

The RunProc procedure handles the run-time interpreter portion of the program. This is the one section of
the interpreter that must be fast since any inefficiencies in this code will result in a slower executing BASIC pro-
gram. This is not to suggest that RunProc is highly optimized (it is not), it’s just a gentle warning to be careful
about the code you write or modify in this procedure (and related procedures) since it can affect the run-time per-
formance of your BASIC code.

The run-time code is broken down into two components: a "compiler" phase and an interpreter phase.
Whenever you issue the RUN command, HLABasic first makes a couple of quick passes over the source file and
related tables. First, the code scans through the source file to find statement labels. For each statement label it
finds, it copies the address of that source line into the symbol table entry for that statement label. By doing this,
the interpreter doesn’t have to scan through the file looking for labels at execution time. This is a huge perfor-
mance optimization, especially for larger programs.

One last step that the compiler does is to make another pass through the source file and discover where the
"context free" statements begin and end. HLABasic currently supports two context-free statements:
IF..ELSEIF..ELSE..ENDIF and FOR..NEXT. During this phase, the compiler procedure locates the correspond-
ing ending statements for the IF and FOR statements (e.g., ELSEIF, ELSE, and ENDIF for IF and NEXT for
FOR). The compiler stores the address of the terminating statement in a special token field of the IF or FOR
statement. That way, if the IF expression evaluates false or the FOR loop control variable is out of range, control
can transfer directly to the ending clause for that statement. Again, this is an optimization that saves considerable
time during interpretation.
Released to the Public Domain by Randall Hyde Page 5

HLABasic Implementation

After the compile phase patches up the destination addresses, the interpreter begins running. Note that the
compile phase is very quick. Few users will ever notice a delay between the point they type RUN and the pro-
gram begins execution, even for larger BASIC programs.

The interpreter itself (RunProc) is basically a giant SWITCH statement that fetches tokens from the source
file and transfers control to a CASE that executes the statement associated with that token. If you’re adding a
new statement to the language, the last step you must do (after fixing ParseStmt and Detokenize) is to add an
appropriate CASE to RunProc to actually execute the statement.

Within the SWITCH statement in RunProc, the EBX register always points at the beginning of the current
line that is executing. The ECX register points at the current token within the line that the interpreter is execut-
ing. Each CASE adjusts ECX, as appropriate, after executing the code for the current token, so that ECX points
at the next token to process. Again, the easiest way to add a new statement to the language is by finding a state-
ment with similar syntax and semantics and copying the code for that statement.

The expression evaluator in the interpreter is, perhaps, the weakest component of the HLABasic interpreter.
The expression evaluator uses a traditional "top-down recursive descent" parsing algorithm to evaluate expres-
sions. This scheme is not very high performance. A better solution would be to modify the ParseStmt code to
store the tokens in a reverse-polish format. This would speed up the evaluation of expressions at run-time by
leaps and bounds (it would make detokenizing the code a bit more difficult, but it would still be worth it). This is
definitely a change that needs to be made to the interpreter at one point or another. Although there are no profile
tests to prove this, it is probably the case that expression evaluation is the slowest part of the interpreter and prob-
ably has a very negative impact on the overall performance of the interpreter.

Probably one of the most common extensions that will occur to HLABasic is the addition of new functions
to the language. Adding a new function is really quite easy. Just add a keyword to the ReservedWords table, add
the syntax for the function call to the ParseStmt/matchID/Expression code, make a simple addition to Detoken-
ize, and then add the code for your new function to the Factor function in the run-time expression evaluator code.

1.6 Wrapping it Up

HLABasic, while larger than many assembly language programs at slightly more than 10,000 lines, isn’t a
tremendously huge program (compare this, for example, with the HLA compiler that is in excess of 100,000
lines of code). Furthermore, the code is structured reasonably well and contains a decent amount of comments.
Therefore, the next thing for the adventuresome explorer of HLABasic is to just sit down and start reading the
code. After playing around with the code, you’ll begin to see how it works.

One word of caution - the only truly non-intuitive stuff in the interpreter is how errors are handled. Remem-
ber, there’s a big TRY..ENDTRY block around the main program. Anytime the interpreter (or some other part of
the system) has a run-time exception, the program raises an exception that transfers control back to the main pro-
gram (from wherever and however deep the exception occurred). Once you get past this, and manage to master
the HLA Standard Library’s pattern matching modules, the rest of the code is fairly easy to figure out by some-
one who’s had a little compiler theory.

Good Luck.
Page 6 Version: 6/15/01 Written by Randall Hyde

	Implementation of HLABasic
	1.1 HLABasic Organization and Overview
	1.2 The Command Processor (MiniBasic - Main Program)
	1.3 The Tokenizer
	1.4 The Detokenizer
	1.5 The RunProc Procedure
	1.6 Wrapping it Up

