HLA v2.0 Declarations Parser Design Documentation

This document describes the internal operation of HLA v2.0's declarations parser. This document
assumes that the reader is familiar with compiler theory and terminology. This document also
assumes that the reader is comfortable with the HLA language and 80x86 assembly language in
general.

The parseDcls.hla source module in the HLA v2.0 source tree is responsible for processing declaration sections
found in units, programs, procedures, iterators, namespaces, classes, records, unions, and methods. This document
describes the code found in this module.

pgmDcls - Parsing Program Declarations

The main compiler unit calls the pgmDcls procedure to handle the processing of all the declarations between the
pr ogr amstatement and the correspondbggi n statement. Consider the following production that describes an
HLA program:

HLAPgm -
program identifier’;’
pgmDcls
begin identifier’;’
statements
end identifier’;’

The pgnDcl s procedure handles the expansion of ggeDcls non-terminal in this production. Here’s the expan-
sion of the pgmDcls production:

pgmDcls - (pDclsy

pDcls - var Variables
| uDcls

That is, a program declaration section may consist of zero orvaore nanespace, const, val, type,

static, storage, readonly, segnent, procedure, iterator, ormethod declarations. The
expansion of the non-terminals following each of the terminal symbols in this production is the subject of much of the
rest of this document.

Implementation of th@Dcls production is rather simple. Basically, thgnDcl s function (which implements
both thepgmDcls andpDcls productions above) checks to see if therevaa keyword and callpar seVar to han-
dle thevar section declarations. If the current keyword isvat , thenpgnDcl s calls theuDcl s (unit declara-
tions) procedure to handle everything else. This is possible because units and programs share the same set of
declarations except for the fact that units don’t suppegradeclaration section.

pgnDcl s begins by calling eset TknQto clean out HLAs “attribute queue” that keeps track of attributes
from past symbols it has scanned. BecgqugeeDe! s is only called once when compiling an HLA program, this call
tor eset TknQisn't strictly necessary (basically, only the tokensgoogr am the identifier, and a semicolon will
be in the queue at this point), but it's always a good idea to call this whenever you begin parsing a new production and
you don't need any inherited attributes from previous productions (as is certainly the case here).

The next thing thgbgnDcl s does is set the current lex level (curLexLevel) to one, as this is the lexical level for
all declarations in a main HLA program. After setting the lex level to one, pgmDcls enters a loop that processes zero
or more occurences of the various declaration sections. For each iteration of the loop, this procedure calls the lexical
analyzer to get the next symbol from the source file. It checks the symbol to seevifiit'seserved word and calls
par seVar if this is the case. Otherwise it cali®cl s to handle the other declaration sections. pheseVar
procedure returns whenever it finishes processing @éinedeclaration section and comes across a reserved word it
doesn’t know how to handleDcl s returns when it finds something it cannot process -- eitlver akeyword, a
begi n keyword, or an error.



unitDcls - Parsing Unit Declarations

Theuni t Dcl s procedure is very similar to thipggnDc| s procedure, except instead of processiag sections
(which are not legal in ani t ), this procedure reports an error if it comes acrossrakeyword.

uDcls - Parsing the declarations within a UNIT

TheuDcl s procedure is responsible for parsing the actual declaration sections that can be faumdtinTehe
production corresponding to these declarations is

uDcls - nhamespace parseNamespace optionalSemicolon
| label labels
| segment SegmentVars
| nsDcls

This takes the same “layered” approach pgiad| s uses. That is, it processes all the productions that are unique
to unit (and program) declarations, and then italdc| s to handle the parsing that is common to programs, units,
and namespaces.

parseNamespace - Parsing a Namespace Declaration

The parseNamespace procedure handles the processingaakapace declaration. Beyond processing the
actual “namespace name;” and “end name;” clauses of this declaration, this parsing operation is very similar to pro-
cessing @r ogr amexcept that you can’t have nested namespace declarations and namespaces don't\wapport a
declaration section.

parseNamespace identifer ;' ( nsDcls j end identifier ;

The par seNanespace procedure actually does a lot of work in addition to simply callrsdcl s.
Namespaces require their own local symbol table, so it is pprteeNanmespace to create this new symbol table
and activate it while processing all the namespace declarations (all the declarations betwaeedpace and
end keywords wind up in the namespace’s local symbol table; see the documentation on HLA's symbol table format
for more details on local symbol tables). After creating the symbol table entry for the namespace identifier and attach-
ing the local symbol table to it, the parseNamespace procedure processes all the declaration sections that are legal in
a namespace. Afterwards, it checks the validity of the end clause (i.e., the identifier must match the one used in the
namespace declaration, cleans up after itself, and then reactivates the original symbol table (the one in use prior to
activating the namespace’s local symbol table).

nsDcls - Parsing the Declarations in a Namespace

The nsDcl s procedure handles the processing of the declarations that actually appear between the
nanmespace and the correspondirand statements. Here are the productions fongls non-terminal:

nsDcls - const Constants

val Values

type Types

static StaticVars
storage StorageVars
readonly ReadonlyVars
procedure procStuff
iterator procStuff
method procStuff



Note that upon entry to thesDcl s procedure, the lexer must have already have been called and EAX/EBX/
ECX should contain the values returned lex. This function returns with the carry flag clear if it matches one of the
productions above or it didn’t match anything; it returns with the carry flag set if there was an error when matching
one of the above productions or if it encountesegnent or nanmespace reserved word (which are illegal in a
nanespace). var declarations are also illegal in namespaces, but whomevens&id s must explicitly check
for this, if it is to be disallowed, because other (non-namespace related procedures also wind ups Eallisg.

Note that on return, whomever callesiDcl s must call lex to read the next token from the source file.

parseType - Parsing a TYPE Declaration Section

Thepar seType function handles the parsing of the HLA type declaration section. Here’s the grammar for the
declarations following theype reserved word:

Types— ( typeDcls §
typeDcls - 7
| tID"’tDcls
tDcls - typelD optionalbounds ’;
| enum’{idList’} '}
|  pointer toTypelD '}
| forward’(fID’) '}
|  record recStuff '’y
|  union recStuff '’}
| classclassStuff ;)
I

procedure optionalParms ;" protoOptions

dimList - constExpr (’, constExpr)

optionalBounds — [ dimList'T
| ¢

protoOptions - ¢
| @returns’( constExpr’)’ ’;’ protoOptions
| @pascal ’;’ protoOptions
| @stdcall ;' protoOptions
| @cdecl ;" protoOptions

typelD - identifier
- builtinTypes

builtinTypes —» thunk
| constBITypes

constBITypes> boolean
| uns8
| unslé
| uns32
| unst4
| unsl28
| byte
| word
| dword



gword
tbyte
Iword
int8
int16
int32
int64
int128
char
xchar
unicode
real32
real64
real80
real128
string
ustring
cset
Xcset
text

par seType reads a lexeme from the source input stream and decides what to do based on the token. If it's a
semicolon,par seType just eats the semicolon and loops back to read another token from the source file. If the
input symbol is a locally defined symbol, thear seType reports a “duplicate defined symbol” error and then
treats the symbol as though it were undefined (by callingke@Undef | D procedure, which adjusts the token’s
values and attributes as appropriate for an undefined symbol. If the input symbol is a global identifiar, skeen
Type “converts” it to an undefined identifier token. If the symbol is an undefined identifier (or was converted to an
undefined identifer), thepar seType stores the pointer to the token in a local variable and it stores pointers to the
identifier’s true name and lower case name intd theeNane andl cNane local variables. Thé Dcl s procedure
(described in a moment) will refer to the values in these local variables when processing the actual type declaration.

After processing the undefined identifier, e seType procedure checks to see if there is a colon following
the identifier (type declarations consist of an identifier followed by a colon and the type info). After matching the
token, thepar seType procedure calls Dcl s to extract the type information and process the specific type declara-
tion. On return fromt Dcl s, par seType loops back and repeats the process for each type declaratiort ypthe
section.

Thepar seType procedure declares the following local variables:

typeSym :synmNodePtr _t;
typeToken :tokenPtr _t;

f wdNane :string;

t rueNane :string;

| cNane :string;

di mensions :dinPtr_t;
arrayType :synmNodePtr _t;
nanmeConst rattr_t;

As it turns out, parseType only directly usggpeSym trueNanme, andt ypeToken. The remaining vari-
ables are actually for use by thBcl s procedure. One technique you'll see used often throughout the HLA source
code is that procedures that are nested inside other procedurédXlike is nested ipar seType) are usually
declared with the@of r ame procedure option. Such procedures, tik&| s, cannot have their own local variables
(as there is no stack frame in which to put them). This allows the local proceduré Qelgs,) to easily access
“intermediate variables (variables global to that procedure, but local to some enclosing procedure) by simply using
the “ebp: : ” prefix in front of the intermediate variable’s name. In any case, the extra variables tajppeSym



fwdNanme, dinensions, arrayType, andnaneConst) are actually local variables to thé&cl s proce-
dure. However, they wind up getting declaregar seType becauseé Dcl s doesn’t have a stack frame.

tDcls - Parsing the Type Information in a TYPE Declaration

Thet Dcl s procedure handles the job of determining the actual type for a type declaration and entering the type
into the symbol table. Upon entry into this procedui®;| s assumes that thgar seType procedure has already
processed the identifier at the beginning of the line and the colon that immediately follows. This procedure also
assumes that thie ueName andl cName variables point at the appropriate strings for the identifier and yhpse-

Token contains a pointer to the token (returned by lex) for this identifier.

Thet Dcl s procedure handles the following productions in the HLA grammar:

tDcls - typelD optionalbounds '}
enum '{idList’} 'y
pointer to TypelD '}
forward’(fID’) '}
record recStuff '’y

union recStuff ’;’
class classStuff '’}

procedure optionalParms ;" protoOptions

The first production, “tDcls- typelD optionalbounds ’;” handles type isomorphisms (renaming types) and
array type declarations. Here are a couple of examples:

type
integer :int32; //A sinple type isonorphism
intArray :int32[4];
array2D : byte[ 4, 4];

t Dcl s begins by callingget Typel Dto see if the next token (after the ‘') is a type identifier §geTypel D
procedure, by the way, is found in the hlautils.hla source k) Typel D returns with the carry clear if the next
token is a type identifier, it returns with the carry set if the next token is not a type identifier. Alfeaufypel D
calls the lexer to fetch the next token, if it's not a type identdiet,Typel D pushes the token back onto the input
stream, so whomever caliet Typel D must call ex again to read the next token if it was not a type identifier.

If get Typel D determines that the next item in the source file is one of the built-in types, then it will create a
fake attribute for the type declaration. If the next item is a bonafide identifiergeteny pel D will determine its
base type and return that. This function returns a pointer to the symbol table entry for that base type (or one of the
symbol table entries created for the built-in types) in the EAX register.

Back int Dcl s, if get Typel Dreturns with the carry flag clear (meaning it has found a type identifier), then it
processes the declaration. Fitshcl s callscr eat eTypeSymto create a new symbol table entry for the symbol
scanned at the beginning of the statement (i.e., the symbglaehaeType processed). Next,Dcl s checks to see
if there are any array bounds following the type name (meaning that we're declaring a new array type) by calling
opt i onal Bounds (described later in this document). Topt i onal Bounds procedure returns NULL in the
EAX register if there were no array bounds, otherwise it returns a pointetitoemsi ons_t object in EAX (a
di mensi ons_t object is an integer containing the number of dimensions followed by that many integers specify-
ing the bounds for each array dimension).

If array bounds are present and the array declaration specifies more than a single dimension, then the tDcls pro-
cedure needs to build a series of symbol table entries, one for each dimension of the array except the first. This is
because the HLA symbol table format only allows single dimension array declarations; multi-dimensional arrays are

handled by creating “arrays of arraysThe document on the symbol table describes the exact format for array
dimension types in the symbol table; please see that document for more details on the exact nature of this structure.
Note that for each of the intermediate types, the tDcls procedure creates a single-dimension type declaration with an



identifier like “@array000” (substituting a unique integer value for “000"). For the first (or only) array dimension,
tDcls places the array bounds information directly in the symbol table entry it creates for the type declaration (i.e., by
storing the bounds for that dimension in thevEl enent s field of the symbol table entry and setting tig ect -

Si ze field accordingly).

If there are no optional array bounds following the type identifier, then we've got a type isomorphism and the
t Dcl s procedure simply copies the base type information provided by the typelD into the symbol table entry of the
new type that we're creating.

If the first lexeme following the colon in the type declaration is not an identifier ens checks to see if it is
one of the reserved wordsnum forward, pointer, record, union, class, orprocedure. The
following paragraphs describe havibcl s handles each of this possibile tokens that may legally appear in a type
declaration.

tDcls - enum {idList’}

If the reserved word enum appears immediately after the colon, then the user is creating an enumerated type.
t Dcl s callscr eat eTypeSymto create the symbol table entry for the new type and thenbeallsdEnunType
(described later in this document) to process the enumeration list. On returhurdrdEnunilype, the symbol
table will not only contain a symbol table entry for the new type, but it will contain symbol table entries for each of
the constants appearing in the enumeration list. See the discuskianl @fEnunilype, later, for more details.

tDcls - pointer to TypelD ’;

If the two lexemes “pointer” and “to” follow the “id:” at the beginning of a declarationt e s creates a
pointer type. Following the “to” keyword must be a single identifier (or one of the predefined type reserved words). If
the identifier is a type identifier (local, global, or built-in type) th&cl s enters the new symbol into the symbol
table as a pointer object whose base type is set to the symbol table d@itpedD parsed in the production above.
If the symbol is undefined, then tDcls adds the symbol to a “forward declarations” list to check to see if the symbol is
defined before the current program unit (program/unit/procedure/method/iterator) is finished. If the symbol is defined,
but is not a type declaration, then HLA reports an error.

Point of contention: what happens if the symbol is a global symbol but not a type ID. HLA reports

an error. In fact, it could be a local type ID that hasn't been defined yet. How to handle this? Per-
haps the code should treat global symbols as undefined and report the class error (“not a type decla-
ration”) at the end of the program unit?

tDcls - forward'(fID’) 7

A f or war d declaration isn’t an actual type declaration. In fact, it®oast text declaration. Each declaration
section, including type declarations, provides a forward declaration to allow the use of macros when processing dec-
larations. A declaration like the following:

sonmel D :forward( fID);

is really equivalent to the following:
?fID :text := “sonelD’;

1. Note that HLA v1.x’'s symbol table format allowed multi-dimensional arrays to be declared in a single symbol table
entry. Experience with HLA v1.x, however, shows that the “array of arrays” approach is more generic and easier to
maintain.



The purpose of theor war d declaration is to allow you to create a macro that defers the declaration for a given
symbol while you insert some other declarations. What the forward declaration allows you to do is grab the identifier
name appearing at the beginning of a type declaration and temporarily save it while you insert some other declara-
tions within thet ype declaration section. Consider the following macro:

#macro nyType( theType ):thel D, |Dtenp;
forward( thelD ); // Capture ID at beginning of declaration
?thelD := @tring( @ext( (@tring( IDtenp ))));
@ext( thelD + “_t”) : theType;
?@ext( thelD + “_size” ) := @ize( theType );
?lDtenp :text :=thelD + “_t”
#endnmacr o

Consider the following type declaration:

type
i myType( int32);

This results in the following declarations:
type

i _t : int32;

?i _size := 4,

?i text =

Notice how each of these declarations use the name appearing in the original type declaration.

To process a forward declaration thBcl s procedure first matches ther war d reserved word and an open-
ing parenthesis. Then it calls thex procedure to fetch (what better be) an identifier. The identifer must either be
undefined, a global symbol, o~val object if it's a local symbol; otherwigeDcl s reports a duplicate symbol error.

If the symbol was previously undefined in the local scopet, d s code creates @onst class text constant and
initializes it with the string found in ther ueNan®e variable. If the symbol is defined in the local scope (meaning it’s
aval class object), thenDcl s callsset Val to changes its value to the string specified byeNamne.

An important thing to note about the code that processes forward declarations is that it must free the storage asso-
ciated withl cNanme. When the lexical analyzer originally scanned this identifier, it allocated storage on the heap for
both thet r ueNanme andl cNane strings. In a normal declaration, the symbol table would retain pointers to both of
those strings (for type neutrality checking). However, in the case of a forward declaratiooiNéme string does
not get used, so theDcl s procedure frees this storage to reclaim the memorlydhlane string uses.

tDcls - record recStuff’;’

tDcls — union recStuff ’;

Fromt Dcl s’ point of view, records and unions are quite easy to handldddf s sees the record or union
reserved word, it creates a symbol table entry for the type name (at the beginning of the statement) and then calls
par seRecord or parseUni on (respectively) to do the real work (which is not easy). A discussion of
par seRecor d andpar seUni on appears later in this document.

tDcls - classclassStuff ;

At the time this document was being written, classes had yet to be implemented.t\Dithim, however, the
code is pretty much the same as records and unions.

tDcls — procedure optionalParms ’; protoOptions



If t Dcl s sees the procedure reserved word, it calls the parseProcType to handle the actual processing of the pro-
cedure type. See the discussion of parseProcType elsewhere in this document.

parseConst - Parsing a CONST Declaration Section

The par seConst procedure handles the parsing of the Ht@nst declaration section. This section begins
with theconst keyword and supports the following grammar:

Constants- ( constDcls §
constDcls - '/
| identifier cDcls

Note that identifr must be an undefined identifier or a global ID.

Like the other parse* routines in the parse declarations moduleatiseConst procedure contains a loop that
processes all of the declarations in the curcemtst section. Each iteration of this loop begins by resetting the token
gueue (which maintains attributes for each of the tokens parsed on the line), then it calls the lexer, expecting to find an
identifier or a semicolon.

If parseConst encounters an identifier, it checks to see if it's a globally-defined ID. If so, it converts it to an
“undefined” identifier for local use. If the identifier is a local ID, tpam seConst reports a duplicate symbol error
(and converts it to an undefined ID just to ease further error recovapgy. $feConst encounters an undefined 1D
(or converts a defined ID to an undefined ID), it then goes about the business of creating a new constant declaration in
the local symbol table. It begins by copying the string pointers for the identifier intoise | D andconst | cl D
local variables¢onst | D holds the actual identifer stringpnst | cl D holds the lower-case version of the identi-
fier's name). It also sets up tbenst Type andconst Token local variables. TheDcl s procedure (described in
a moment) uses the values placed into these local variables. After setting up these locals, parseConst calls the cDcls
procedure to handle the remainder of the constant declaration (see the productions above).

On return fromcDcl s, the par seConst procedure checks the constant it found to see if it matches the
declared type (if there was one) and enters the constant into the symbol table if everything is coaBct. 3 heu-
tine will create a dummy constant (and type) to help prevent some indeterminate resultPalhemeturns. After
processing the symbol (or reporting a type mismatch error), the looppattseConst procedure repeats, calling
the lexer to fetch another symbol from the input stream.

When the parseConst procedure scans a symbol that is not a semicolon or an identifier, it pushes the token back
onto the input stream and returns. Note that this is not an error condition. When parseConst encounters something it
doesn’t know how to deal with, it simply returns to whomever called it and lets them deal with that token.

cDcls - Parsing the Type and Value Portions of a Constant Declaration

The cDcls procedure handles everything to the right of the identifier in a constant declaration. The relative pro-
ductions for the cDcls procedure are

cDcls - "ForC "/
| = constExpr’;

The For C non-terminal (and the corresponding procedure) handle constant declarations that have an explicit
type specification or use one of the special constant declarations (see the discismidhinthe next section). The
other production thatDcl s handles is a straight assignment without an explicit type.

Upon entry, theDcl s procedure call§ ex to fetch the next token from the input stream. It checks this token
against a colon or an assignment operator. If it is neither of these,Dbés reports a syntax error and dummies up
areturn result. If it encounters a colon (*") then it callskbe C procedure to handle the remainder of the declaration
up to the semicolon and checks for the presence of the semicolon upon return.



If the cDcls procedure encounters an assignment operation, it calls constExpr to process the expression which
follows the assignment operator. As there has been no explicit type declaration, the cDcls procedure sets the return
type to whatever type constExpr returns for the expression.

In either case (whether encountering a ‘" or the assignment operator, “:=§Pthes procedure scans for a
semicolon at the end of the declaration to complete the parsing of a single constant declaratiorc ¢fnesithiex pr
or For Cfails, either call will stick a dummy value into the returned attribute (typically the boolean value ‘false’) to
prevent cascading errors and indeterminate results later.

ForC - Parsing Special Constant Declarations and Those With Explicit Types

The For C procedure handles the components of a constant declaration following the colon. This is either an
explicitly typed constant declaration or one of three special constant declarations. Here are the productions for the
For C non-terminal:

ForC - typelD optionalbounds "=’ constExpr
| enum’{idList’} ’:=" constExpr
| pointer to ptrTypelD ’:=' constExpr
| forward’'(fID’)

typelD must be a predefined identifier that specifies some data type or it must be one of the predefined HLA data type
reserved words. ptypelD must be a predefined type identifier or an undefined symbol; if it is undefined, you must
define it as a type object before the end of the current progranpuogi(am unit, procedure, itera-

tor, ormet hod).

For Cbegins by checking for a type identifier in the input stream. If it finds one, then it checks for an optional set
of array bounds surrounded by square brackes (e.g., “[2,3,4]"). If the array bounds are present, and the bounds specify
more than a single dimension, théor C builds a set of anonymous array types for each of the dimensions but the
first. This process is identical to that used D¢l s; please see the discussion appearing earlier far@Dbes pro-
cedure. After the array bounds (or if the bounds are not preBenty; scans for an assignment operator (:=’) and
reports an error if it is not present. If the assignment operator is preserfipth@oallsconst Expr to evaluate the
constant expression immediately following. Note tRat C does not check to see if the type of the expression
matches the defined type. Instead, it simply stores the defined type iotntheTy pe variable and leaves it up to
thepar seConst procedure to check the types once control returns there.

If ForC does not encounter a type identifer in the input stream, it scans for a token and checks to see if it's a
poi nter, enum orforwar dtoken. Forward declarations are completely identical to those trythe section;
please see the discussion in the sectionsl s for more information about the forward constant declaration.

If a bare enum declaration appears in a const se€&@mC will create an anonymous type for the enumerated
type, create a symbol table entry for each of the enumerated constants, and then initialize the constant declaration
with the specified enumerated constant value. E.g.,

const
eConst : enun{ a, b, ¢} :=b;

Defines four constants and an anonymous type in the symbol table. The aymma@onstant given the value zdvo,

is given the value one, amdis given the value two. This declaration (of course) also creates an entf@ofos t
having the value one. This declaration also enteérngpe symbol table entry of the form “@enum000” (where 000
represents some unique integer value). The other four symbols have this type.

At the time this was being written, pointer constants were not implemented yet. This document will be updated
when pointer constant parsing is added to the HLA v2.0 source code.



parseVal - Parsing the VAL declaration Section

Thepar seVal procedure and operation is virtually identicaptar seConst . It handles theal declaration
section. The only difference is thaar seVal doesn't require symbols to be unique - you may redefine a symbol
declared in th@al section. Here are the productions forta section thapar seVal handles:

Values— ( valDcls §
valDcls -
| identifier vDcls

vDcls - "ForVv'’y
| = constExpr’;
| ’+="constExpr'y
| ’-="constExpr’;

ForVv - typelD optionalbounds optAssign
| enum {idList’} optAssign
| pointer to ptrTypelD optAssign
| forward’(fID’)

Another difference you will notice between thal productions and theonst productions is the theal pro-
ductions allow the C-like “+=" and “-=" operators (which wouldn’t make sense indlnst section, since the sym-
bol must be undefined incanst declaration and these operators require a predefined value).

The other major difference betwepar seConst andpar seVal , of course, is thgtar seVal callsset -
Val to change the value of a symbol table entry rather ¢imrer Const to enter a new constant into the symbol
table. See the discussionpgdr seConst for more details.

parseVar - Parsing the VAR Declaration Section
(still to be written)

parseStatic - Parsing the STATIC Declaration Section
(still to be written)

parseStorage - Parsing the STORAGE Declaration Section
(still to be written)

parseReadOnly - Parsing the READONLY Declaration Section
(still to be written)

parseSegment - Parsing the SEGMENT declaration Section
(still to be written)

parseProc - Parsing a Procedure declaration
(still to be written)

parseMethod - Parsing a Method declaration
(still to be written)

parselterator - Parsing an Iterator Declaration
(still to be written)



parseRecord & parseUnion - Parsing record/union declarations

Record and union parsing are relatively complex because of the various options and facilities such as anonymous
unions and records. Here are the productions for record and union declarations (note gtatititeor uni on key-
word has already be parsed by a higher-level declaration section; the following productions start with the first token
beyond the ecor d oruni on keyword):

recordDcl - recOptions recunVars privateRecVarslrecord
unionDcl - recunVargendunion

recOptions - €
| inherits '(’ identifier ')’
| setRecOffset
|  recAlignment

recunvars - ruvars (ruvars’)
setRecOffset. ‘:=' constExpr *;’
recAlignment- ‘[* maxAlign constExpr 7" *;’

maxAlign - €
|  constExpr‘;

privateRecVars - ¢
| private”’ recunVars

ruvars - align'( constExpr ")’}
|  record recunVarendrecord ’;’
|  union recunVarendunion ’;’
| orID "’ ruDcls

ruDcls - forward '(’ constExpr )’

record recordDcl '}’

union unionDcl ’;’

procedure optionalParms protoOptions ;'
pointer totypelD '}’

typelD optionalBounds’;’

orlD - identifier
| overrideidentifier

Record provide three options that thecOpt i ons procedure handles. These options let you specify a set of
fields to inherit from some other record, a starting offset for the record, or an alignment value for record fields (note
that these options are mutually exclusive - you cannot specify both a starting offset and an inherited set of fields or an
alignment value for the same record). Here are some examples of declarations that demonstrate these options:
type

ancestor : record
anscestor_field: dword;
endrecord;



descendent : record inherits( ancestor );
descendant _fi el d: dwor d;
endrecord;

HasCOf fset : record : = 4;
of fset | s4: dwor d;
endr ecord;

HasAlign : record [4];
of f set 0: byt e;
of f set 4: wor d;
of f set 8: dwor d;
endr ecor d;

HasAlign2 : record [4, 2];
of f set 0: byt e;
of f set 2: wor d;
of f set 4: dwor d;

endr ecor d;

Ther ecOpt i ons procedure checks for these three record options immediately after the record keyword in a record
declaration. This procedure begins be resetting the token queue and then calling the lexical analyzer to fetch the next
token from the input stream. If this token is for theheri t s keyword, thenr ecOpt i ons processes the inherits

option, if it's the assignment operationecOpt i ons processes the offset option, if it's an opening bracket,
recQOpt i ons processes the alignment option. If it is none of these tokensy 8=@pt i ons pushes the token

back onto the input stream and returns, letting whomever cadle@pt i ons handle that token.

If recOpti ons encounters thenheri t s keyword, then it calls the lexical analyer to fetch an opening right
parenthesis, an identifier, and a closing right parenthesis. The identifier must be defined and it must be a type ID that
defines a record; otherwisecOpt i ons reports an error. If the identifier is a record type ID, then for each of the
non-private classes in that recoré,cOpt i ons copies the field definitions into the new record type being created.

For type compatibility reasonsecOpt i ons only copies the actual field defintions from the inherited type to the
descendant type. Records may also contain certain other type and placeholder fields (for example, if you have a mul-
tidimensional array HLA will emit some anonymous type declaratiore}Opt i ons does not copy these fields
because typechecking in HLA is done by comparing the pointers to the symbol table entries (if the pointers are the
same, then the types are equal). By copying only the field definitien§pt i ons ensures that the fields that refer-

ence these anonymous types have the same type as the ancestor fields.

While copying the (non-private) fields from the ancestor to the descendant record tyge, @i ons proce-
dure also computes the starting offset of the first field of the descendant record. The starting offset of the first new
field is the offset of the last field in the ancestor record plus the size of that last field’s type. Note that we cannot sim-
ply use the size of the inherited record as the starting offset of the first (non-inherited) field of the new record because
the ancestor field could have had a non-zero starting offset (using the “:=” record option).

If the recOpt i ons procedure encounters the assignment operator token (“:=") immediately after the record
keyword, it verifies that the following is a 32-bit (or smaller) numeric constant expression and sets the starting offset
of the record to this value.

There are two forms of the alignment option that Opt i ons processes. One form expects a single constant
expression. This value specifies a field alignment for the record’s fields and the parser will add padding bytes to the
record to ensure that each fields starts at an offset that is an even multiple of this value. The second form expects two
expressions: the first is a maximum alignment, the second is a minimum alignment. When aligning fields, all data
types whose size is less than the minimum alignment will be aligned to an offset in the record that is a multiple of the
minimum alignment. All fields whose size is greater than the maximum alignment will be aligned to an offset that is



an even multiple of the maximum alignment value. All fields whose size lies between the minimum and maximum
sizes will be aligned to an offset that is a multiple of the object’s size.

recunVars Procedure

Ther ecunVar s procedure handles the chore of processing all the field declarations that occur in a record or a
union. It runs in a loop callinguVar s to process each field of the record or union until it encounters something that
is not a record/union field. TheecunVar s procedure also has the responsibility of updating the size of the record
or union after processing each field. To compute the size of a reeamdnVar s adds the size of each field to a run-
ning sum. To compute the size of a unibacunVar s computes the maximum size of all the fields in the union.

ruVars Procedure

Ther uVar s procedure handles a single (legal) declaration inside a record or union. Here’s the grammar produc-
tions for the text thatuVar s recognizes:

ruvars — align’( constExpr )"’y
| record recunVarendrecord ’;’
|  union recunVarsendunion ’;’
| orlD " ruDcls

orlD - identifier
| override identifier

If ruVar s encounters aal i gn keyword, it fetches an opening parenthesis, a constant expression, a closing
parenthesis and a semicolon. If the constant expression is not a 32-bit (or smaller) integeuValug,reports an
error. If the token sequence is syntactically and semantically correct, then ruVars takes the current offset into the
record and adds a sufficient value to make the offset an even multiple of the value specified by the constant expres-
sion.

If ruVar s encounters a record keyword (without the usual “id:” prefix indicating a standard nested record dec-
laration), then the user is creating an anonymous record declaration within a record or union. In thisvease,
emits a specigddnonRec_pt type record to the current record to mark the start of the anonymous record and then it
recursively callsr ecunVars to process the fields of that record. Upon return, it checks for the matching
endr ecor d token and enters éndAnonRec_pt type symbol (*@endAnonRecXXX” into the symbol table to
mark the end of anonymous record. Note that for anonymous records, a local symbol table is not created. Instead,
r uVar s enters the fields of the anonymous record directly into the current record’s or union’s symbol table.

If ruVar s encounters a union keyword, then it creates an anonymous union. The process is almost identical to
that for creating an anonymous record except the “bracketing fields” are of AtypeUni on_pt and
EndAnonUni on_pt .

The only remaining thing theuVar s handles is a bonafide record declaration. This takes one of two forms:
identifier: type definition;
- or -
override identifer : type definition;

Theoverri de keyword is used to reuse a fieldname present in an inherited recordoiféhe i de prefix is
present, themuVar s will lookup the existing symbol in the record or union (copied from the ancestor object) and
redefine its type fields according to whatevebcl s finds after the colon. If the symbol does not already exist as an
inherited field, them uVar s reports an error. Technically, the override prefix does not require the symbol to have
been defined in the ancestor record - it can also override a symbol in the existing record or union. However, override
is generally used to override inherited fields (there probably is no reason for applying it to fields existing in the cur-
rent record or union, but this is allowed as a generalization).

If the current declaration is a straight record/union field declarationy thear s first checks to see if the sym-
bol is a globally or locally defined identifier. Local symbols must have an override prefix or we've got a duplicate



symbol error. If ruVars encounters an undefined identifier (or forces a global or local symbol to “undefined” after
reporting an error or other correction), then it calls ruDcls to handle the remainder of the field’s declaration.

ruDcls Procedure

rubDcl s has the task of actually processing a record or union field declaratiom.uDoé s procedure gets
called aftemr uVar s processes an identifier and a colon. Here’s the grammar for the statements that this procedure
handles:

ruDcls - forward '(’ constExpr’)’

record recordDcl 'y

union unionDcl *;’

procedure optionalParms protoOptions '}’
pointer to typelD '}’

typelD optionalBounds’;’

Forward declarations inr@ecor d or uni on have the same purpose as inomst ort ype declaration. They
are also handled exactly the same way bibcl s. Please see the discussion of forward declarations in the earlier
discussion of the Dcl s procedure for more details.

The ruDcl s encounters the ecor d keyword in a declaration, then we've got a nested record declaration
inside the current record or union. If this is the case, thé| s first creates an anonymous symbol table entry for
a record type and then cafiar seRecor d (possibly recursively) in order to process the record declaration associ-
ated with the current field.

Ther uDcl s encounters thani on keyword in a declaration, then we've got a nested union declaration inside
the current record or union. If this is the case, thelDc| s first creates an anonymous symbol table entry for a union
type and then callsar seUni on (possibly recursively) in order to process the union declaration associated with the
current field.

If ruDcl s encounters the procedure reserved word, then the field is a procedure pointer dedlaiatibs.
callspar sePr ocType to handle the actual parsing of the procedure declaration and then sets the field’s size to four
bytes (procedure pointers are always four bytes and adjusts

If rubDcl s encounters the two token sequence “pointer to” after the “identifier:” sequence in the current declara-
tion, thenr uDcl s creates a new symbol table entry holding an anonymous pointer type and then sets the current
field’s type to this anonymous pointer type. As for type declarations, the identifier following the “pointer to” token
sequence must either be a defined type identifier or an undefined symbol. If the symbol is currently undBfined,
cl s callsaddFwdPt r to add it to the list of forward referenced pointer variables and the program must define that
symbol prior to leaving the current lex level.

Last, but certainly not least, comes a standard field declaration consisting of a type identifier and an optional set
of array dimension bounds. ifuDcl s comes across an identifier, it first verifies that it is a type ID and then calls
get Basel soType to produce the base type. After getting the base level type, ruDcls checks for the optional array
bounds, generating any anonymous type symbol table entries, as necessary, to handle two or more dimensional
arrays. Finallyy uDcl s enters the original symbol into the symbol table, using the address of the typelD as the
field’s type.

Utility Routines
makeLabel
optionalBounds
buildEnumType
parseProcType



