

HLA v2.0 Declarations Parser Design Documentation

This document describes the internal operation of HLA v2.0’s declarations parser. This document
assumes that the reader is familiar with compiler theory and terminology. This document also
assumes that the reader is comfortable with the HLA language and 80x86 assembly language in
general.

The parseDcls.hla source module in the HLA v2.0 source tree is responsible for processing declaration sections
found in units, programs, procedures, iterators, namespaces, classes, records, unions, and methods. This document
describes the code found in this module.

pgmDcls - Parsing Program Declarations

The main compiler unit calls the pgmDcls procedure to handle the processing of all the declarations between the

program

 statement and the corresponding

begin

 statement. Consider the following production that describes an
HLA program:

HLAPgm

→

program

 identifier ’;’
pgmDcls

begin

 identifier ’;’
statements

end

 identifier ’;’

The

pgmDcls

 procedure handles the expansion of the

pgmDcls

 non-terminal in this production. Here’s the expan-
sion of the pgmDcls production:

pgmDcls

→

 (pDcls)

*

pDcls

→

var

 Variables
| uDcls

That is, a program declaration section may consist of zero or more

var, namespace, const, val, type,
static, storage, readonly, segment, procedure, iterator,

 or

method

 declarations. The
expansion of the non-terminals following each of the terminal symbols in this production is the subject of much of the
rest of this document.

Implementation of the

pDcls

 production is rather simple. Basically, the

pgmDcls

 function (which implements
both the

pgmDcls

 and

pDcls

 productions above) checks to see if there is a

var

 keyword and calls

parseVar

 to han-
dle the

var

 section declarations. If the current keyword is not

var

, then

pgmDcls

 calls the

uDcls

 (unit declara-
tions) procedure to handle everything else. This is possible because units and programs share the same set of
declarations except for the fact that units don’t support a

var

 declaration section.

pgmDcls

 begins by calling

resetTknQ

 to clean out HLA’s “attribute queue” that keeps track of attributes
from past symbols it has scanned. Because

pgmDcls

 is only called once when compiling an HLA program, this call
to

resetTknQ

 isn’t strictly necessary (basically, only the tokens for

program

, the identifier, and a semicolon will
be in the queue at this point), but it’s always a good idea to call this whenever you begin parsing a new production and
you don’t need any inherited attributes from previous productions (as is certainly the case here).

The next thing that

pgmDcls

 does is set the current lex level (curLexLevel) to one, as this is the lexical level for
all declarations in a main HLA program. After setting the lex level to one, pgmDcls enters a loop that processes zero
or more occurences of the various declaration sections. For each iteration of the loop, this procedure calls the lexical
analyzer to get the next symbol from the source file. It checks the symbol to see if it’s a

var

 reserved word and calls

parseVar

 if this is the case. Otherwise it calls

uDcls

 to handle the other declaration sections. The

parseVar

procedure returns whenever it finishes processing the

var

 declaration section and comes across a reserved word it
doesn’t know how to handle.

uDcls

 returns when it finds something it cannot process -- either a

var

 keyword, a

begin

 keyword, or an error.

unitDcls - Parsing Unit Declarations

The

unitDcls

 procedure is very similar to the

pgmDcls

 procedure, except instead of processing

var

 sections
(which are not legal in a

unit

), this procedure reports an error if it comes across a

var

 keyword.

uDcls - Parsing the declarations within a UNIT

The

uDcls

 procedure is responsible for parsing the actual declaration sections that can be found in a

unit

. The
production corresponding to these declarations is

uDcls

→

namespace

 parseNamespace optionalSemicolon
|

label

 labels
|

segment

 SegmentVars
| nsDcls

This takes the same “layered” approach that

pDcls

 uses. That is, it processes all the productions that are unique
to unit (and program) declarations, and then it call

nsDcls

 to handle the parsing that is common to programs, units,
and namespaces.

parseNamespace - Parsing a Namespace Declaration

The parseNamespace procedure handles the processing of a

namespace

 declaration. Beyond processing the
actual “namespace name;” and “end name;” clauses of this declaration, this parsing operation is very similar to pro-
cessing a

program

 except that you can’t have nested namespace declarations and namespaces don’t support a

var

declaration section.

parseNamespace

→

 identifer ‘;’ (nsDcls)

*

end

 identifier ‘;’

The

parseNamespace

 procedure actually does a lot of work in addition to simply calling

nsDcls

.
Namespaces require their own local symbol table, so it is up to

parseNamespace

 to create this new symbol table
and activate it while processing all the namespace declarations (all the declarations between the

namespace

 and

end

 keywords wind up in the namespace’s local symbol table; see the documentation on HLA’s symbol table format
for more details on local symbol tables). After creating the symbol table entry for the namespace identifier and attach-
ing the local symbol table to it, the parseNamespace procedure processes all the declaration sections that are legal in
a namespace. Afterwards, it checks the validity of the end clause (i.e., the identifier must match the one used in the
namespace declaration, cleans up after itself, and then reactivates the original symbol table (the one in use prior to
activating the namespace’s local symbol table).

nsDcls - Parsing the Declarations in a Namespace

The

nsDcls

 procedure handles the processing of the declarations that actually appear between the

namespace

 and the corresponding

end

 statements. Here are the productions for the

nsDcls

 non-terminal:

nsDcls

→

const

 Constants
|

val

 Values
|

type

 Types
|

static

 StaticVars
|

storage

 StorageVars
|

readonly

 ReadonlyVars
|

procedure

 procStuff
|

iterator

 procStuff
|

method

 procStuff

Note that upon entry to the

nsDcls

 procedure, the lexer must have already have been called and EAX/EBX/
ECX should contain the values returned by

lex

. This function returns with the carry flag clear if it matches one of the
productions above or it didn’t match anything; it returns with the carry flag set if there was an error when matching
one of the above productions or if it encounters a

segment

 or

namespace

 reserved word (which are illegal in a
namespace). var declarations are also illegal in namespaces, but whomever calls nsDcls must explicitly check
for this, if it is to be disallowed, because other (non-namespace related procedures also wind up calling nsDcls).
Note that on return, whomever called nsDcls must call lex to read the next token from the source file.

parseType - Parsing a TYPE Declaration Section
The parseType function handles the parsing of the HLA type declaration section. Here’s the grammar for the

declarations following the type reserved word:

Types → (typeDcls)*

typeDcls → ’;’
| tID ’:’ tDcls

tDcls → typeID optionalbounds ’;’
| enum ’{’ idList ’} ’;’
| pointer to TypeID ’;’
| forward ’(’ fID ’)’ ’;’
| record recStuff ’;’
| union recStuff ’;’
| class classStuff ’;’
| procedure optionalParms ’;’ protoOptions

dimList → constExpr (’,’ constExpr)*

optionalBounds → ’[’ dimList ’]’
| ε

protoOptions → ε
| @returns ’(’ constExpr ’)’ ’;’ protoOptions
| @pascal ’;’ protoOptions
| @stdcall ’;’ protoOptions
| @cdecl ’;’ protoOptions

typeID → identifier
→ builtInTypes

builtInTypes → thunk
| constBITypes

constBITypes→ boolean
| uns8
| uns16
| uns32
| uns64
| uns128
| byte
| word
| dword

| qword
| tbyte
| lword
| int8
| int16
| int32
| int64
| int128
| char
| xchar
| unicode
| real32
| real64
| real80
| real128
| string
| ustring
| cset
| xcset
| text

parseType reads a lexeme from the source input stream and decides what to do based on the token. If it’s a
semicolon, parseType just eats the semicolon and loops back to read another token from the source file. If the
input symbol is a locally defined symbol, then parseType reports a “duplicate defined symbol” error and then
treats the symbol as though it were undefined (by calling the makeUndefID procedure, which adjusts the token’s
values and attributes as appropriate for an undefined symbol. If the input symbol is a global identifier, then parse-
Type “converts” it to an undefined identifier token. If the symbol is an undefined identifier (or was converted to an
undefined identifer), then parseType stores the pointer to the token in a local variable and it stores pointers to the
identifier’s true name and lower case name into the trueName and lcName local variables. The tDcls procedure
(described in a moment) will refer to the values in these local variables when processing the actual type declaration.

After processing the undefined identifier, the parseType procedure checks to see if there is a colon following
the identifier (type declarations consist of an identifier followed by a colon and the type info). After matching the
token, the parseType procedure calls tDcls to extract the type information and process the specific type declara-
tion. On return from tDcls, parseType loops back and repeats the process for each type declaration in the type
section.

The parseType procedure declares the following local variables:

typeSym :symNodePtr_t;
typeToken :tokenPtr_t;
fwdName :string;
trueName :string;
lcName :string;
dimensions :dimPtr_t;
arrayType :symNodePtr_t;
nameConst :attr_t;

As it turns out, parseType only directly uses typeSym, trueName, and typeToken. The remaining vari-
ables are actually for use by the tDcls procedure. One technique you’ll see used often throughout the HLA source
code is that procedures that are nested inside other procedures (like tDcls is nested in parseType) are usually
declared with the @noframe procedure option. Such procedures, like tDcls, cannot have their own local variables
(as there is no stack frame in which to put them). This allows the local procedure (e.g., tDcls) to easily access
“intermediate variables (variables global to that procedure, but local to some enclosing procedure) by simply using
the “ebp::” prefix in front of the intermediate variable’s name. In any case, the extra variables above (typeSym,

fwdName, dimensions, arrayType, and nameConst) are actually local variables to the tDcls proce-
dure. However, they wind up getting declared in parseType because tDcls doesn’t have a stack frame.

tDcls - Parsing the Type Information in a TYPE Declaration
The tDcls procedure handles the job of determining the actual type for a type declaration and entering the type

into the symbol table. Upon entry into this procedure, tDcls assumes that the parseType procedure has already
processed the identifier at the beginning of the line and the colon that immediately follows. This procedure also
assumes that the trueName and lcName variables point at the appropriate strings for the identifier and that type-
Token contains a pointer to the token (returned by lex) for this identifier.

The tDcls procedure handles the following productions in the HLA grammar:

tDcls → typeID optionalbounds ’;’
| enum ’{’ idList ’} ’;’
| pointer to TypeID ’;’
| forward ’(’ fID ’)’ ’;’
| record recStuff ’;’
| union recStuff ’;’
| class classStuff ’;’
| procedure optionalParms ’;’ protoOptions

The first production, “tDcls → typeID optionalbounds ’;’” handles type isomorphisms (renaming types) and
array type declarations. Here are a couple of examples:

type
integer :int32; //A simple type isomorphism
intArray :int32[4];
array2D :byte[4,4];

tDcls begins by calling getTypeID to see if the next token (after the ‘:’) is a type identifier (the getTypeID
procedure, by the way, is found in the hlautils.hla source file). getTypeID returns with the carry clear if the next
token is a type identifier, it returns with the carry set if the next token is not a type identifier. Although getTypeID
calls the lexer to fetch the next token, if it’s not a type identifier, getTypeID pushes the token back onto the input
stream, so whomever calls getTypeID must call lex again to read the next token if it was not a type identifier.

If getTypeID determines that the next item in the source file is one of the built-in types, then it will create a
fake attribute for the type declaration. If the next item is a bonafide identifier, then getTypeID will determine its
base type and return that. This function returns a pointer to the symbol table entry for that base type (or one of the
symbol table entries created for the built-in types) in the EAX register.

Back in tDcls, if getTypeID returns with the carry flag clear (meaning it has found a type identifier), then it
processes the declaration. First, tDcls calls createTypeSym to create a new symbol table entry for the symbol
scanned at the beginning of the statement (i.e., the symbol that parseType processed). Next, tDcls checks to see
if there are any array bounds following the type name (meaning that we’re declaring a new array type) by calling
optionalBounds (described later in this document). The optionalBounds procedure returns NULL in the
EAX register if there were no array bounds, otherwise it returns a pointer to a dimensions_t object in EAX (a
dimensions_t object is an integer containing the number of dimensions followed by that many integers specify-
ing the bounds for each array dimension).

If array bounds are present and the array declaration specifies more than a single dimension, then the tDcls pro-
cedure needs to build a series of symbol table entries, one for each dimension of the array except the first. This is
because the HLA symbol table format only allows single dimension array declarations; multi-dimensional arrays are

handled by creating “arrays of arrays”1. The document on the symbol table describes the exact format for array
dimension types in the symbol table; please see that document for more details on the exact nature of this structure.
Note that for each of the intermediate types, the tDcls procedure creates a single-dimension type declaration with an

identifier like “@array000” (substituting a unique integer value for “000”). For the first (or only) array dimension,
tDcls places the array bounds information directly in the symbol table entry it creates for the type declaration (i.e., by
storing the bounds for that dimension in the numElements field of the symbol table entry and setting the object-
Size field accordingly).

If there are no optional array bounds following the type identifier, then we’ve got a type isomorphism and the
tDcls procedure simply copies the base type information provided by the typeID into the symbol table entry of the
new type that we’re creating.

If the first lexeme following the colon in the type declaration is not an identifier, then tDcls checks to see if it is
one of the reserved words: enum, forward, pointer, record, union, class, or procedure. The
following paragraphs describe how tDcls handles each of this possibile tokens that may legally appear in a type
declaration.

tDcls → enum ’{’ idList ’} ’;’

If the reserved word enum appears immediately after the colon, then the user is creating an enumerated type.
tDcls calls createTypeSym to create the symbol table entry for the new type and then calls buildEnumType
(described later in this document) to process the enumeration list. On return from buildEnumType, the symbol
table will not only contain a symbol table entry for the new type, but it will contain symbol table entries for each of
the constants appearing in the enumeration list. See the discussion of buildEnumType, later, for more details.

tDcls → pointer to TypeID ’;’

If the two lexemes “pointer” and “to” follow the “id:” at the beginning of a declaration, the tDcls creates a
pointer type. Following the “to” keyword must be a single identifier (or one of the predefined type reserved words). If
the identifier is a type identifier (local, global, or built-in type) then tDcls enters the new symbol into the symbol
table as a pointer object whose base type is set to the symbol table entry of TypeID parsed in the production above.
If the symbol is undefined, then tDcls adds the symbol to a “forward declarations” list to check to see if the symbol is
defined before the current program unit (program/unit/procedure/method/iterator) is finished. If the symbol is defined,
but is not a type declaration, then HLA reports an error.

Point of contention: what happens if the symbol is a global symbol but not a type ID. HLA reports
an error. In fact, it could be a local type ID that hasn’t been defined yet. How to handle this? Per-
haps the code should treat global symbols as undefined and report the class error (“not a type decla-
ration”) at the end of the program unit?

tDcls → forward ’(’ fID ’)’ ’;’

A forward declaration isn’t an actual type declaration. In fact, it’s a const text declaration. Each declaration
section, including type declarations, provides a forward declaration to allow the use of macros when processing dec-
larations. A declaration like the following:

someID :forward(fID);

is really equivalent to the following:

?fID :text := “someID”;

1. Note that HLA v1.x’s symbol table format allowed multi-dimensional arrays to be declared in a single symbol table
entry. Experience with HLA v1.x, however, shows that the “array of arrays” approach is more generic and easier to
maintain.

The purpose of the forward declaration is to allow you to create a macro that defers the declaration for a given
symbol while you insert some other declarations. What the forward declaration allows you to do is grab the identifier
name appearing at the beginning of a type declaration and temporarily save it while you insert some other declara-
tions within the type declaration section. Consider the following macro:

#macro myType(theType):theID, IDtemp;
forward(theID); // Capture ID at beginning of declaration
?theID := @string(@text((@string(IDtemp))));
@text(theID + “_t”) : theType;
?@text(theID + “_size”) := @size(theType);
?IDtemp :text := theID + “_t”

#endmacro

Consider the following type declaration:

type
i :myType(int32);

This results in the following declarations:

type
i_t : int32;
?i_size := 4;
?i :text := “i_t”;

Notice how each of these declarations use the name appearing in the original type declaration.

To process a forward declaration the tDcls procedure first matches the forward reserved word and an open-
ing parenthesis. Then it calls the lex procedure to fetch (what better be) an identifier. The identifer must either be
undefined, a global symbol, or a val object if it’s a local symbol; otherwise tDcls reports a duplicate symbol error.
If the symbol was previously undefined in the local scope, the tDcls code creates a const class text constant and
initializes it with the string found in the trueName variable. If the symbol is defined in the local scope (meaning it’s
a val class object), then tDcls calls setVal to changes its value to the string specified by trueName.

An important thing to note about the code that processes forward declarations is that it must free the storage asso-
ciated with lcName. When the lexical analyzer originally scanned this identifier, it allocated storage on the heap for
both the trueName and lcName strings. In a normal declaration, the symbol table would retain pointers to both of
those strings (for type neutrality checking). However, in the case of a forward declaration, the lcName string does
not get used, so the tDcls procedure frees this storage to reclaim the memory the lcName string uses.

tDcls → record recStuff’;’
tDcls → union recStuff ’;’

From tDcls’ point of view, records and unions are quite easy to handle. If tDcls sees the record or union
reserved word, it creates a symbol table entry for the type name (at the beginning of the statement) and then calls
parseRecord or parseUnion (respectively) to do the real work (which is not easy). A discussion of
parseRecord and parseUnion appears later in this document.

tDcls → class classStuff ’;’

At the time this document was being written, classes had yet to be implemented. Within tDcls, however, the
code is pretty much the same as records and unions.

tDcls → procedure optionalParms ’;’ protoOptions

If tDcls sees the procedure reserved word, it calls the parseProcType to handle the actual processing of the pro-
cedure type. See the discussion of parseProcType elsewhere in this document.

parseConst - Parsing a CONST Declaration Section
The parseConst procedure handles the parsing of the HLA const declaration section. This section begins

with the const keyword and supports the following grammar:

Constants → (constDcls) *

constDcls → ’;’
| identifier cDcls

Note that identifier must be an undefined identifier or a global ID.

Like the other parse* routines in the parse declarations module, the parseConst procedure contains a loop that
processes all of the declarations in the current const section. Each iteration of this loop begins by resetting the token
queue (which maintains attributes for each of the tokens parsed on the line), then it calls the lexer, expecting to find an
identifier or a semicolon.

If parseConst encounters an identifier, it checks to see if it’s a globally-defined ID. If so, it converts it to an
“undefined” identifier for local use. If the identifier is a local ID, then parseConst reports a duplicate symbol error
(and converts it to an undefined ID just to ease further error recovery). If parseConst encounters an undefined ID
(or converts a defined ID to an undefined ID), it then goes about the business of creating a new constant declaration in
the local symbol table. It begins by copying the string pointers for the identifier into the constID and constlcID
local variables (constID holds the actual identifer string, constlcID holds the lower-case version of the identi-
fier’s name). It also sets up the constType and constToken local variables. The cDcls procedure (described in
a moment) uses the values placed into these local variables. After setting up these locals, parseConst calls the cDcls
procedure to handle the remainder of the constant declaration (see the productions above).

On return from cDcls, the parseConst procedure checks the constant it found to see if it matches the
declared type (if there was one) and enters the constant into the symbol table if everything is correct. The cDcls rou-
tine will create a dummy constant (and type) to help prevent some indeterminate results when cDcls returns. After
processing the symbol (or reporting a type mismatch error), the loop in the parseConst procedure repeats, calling
the lexer to fetch another symbol from the input stream.

When the parseConst procedure scans a symbol that is not a semicolon or an identifier, it pushes the token back
onto the input stream and returns. Note that this is not an error condition. When parseConst encounters something it
doesn’t know how to deal with, it simply returns to whomever called it and lets them deal with that token.

cDcls - Parsing the Type and Value Portions of a Constant Declaration
The cDcls procedure handles everything to the right of the identifier in a constant declaration. The relative pro-

ductions for the cDcls procedure are

cDcls → ’:’ ForC ’;’
| ’:=’ constExpr ’;’

The ForC non-terminal (and the corresponding procedure) handle constant declarations that have an explicit
type specification or use one of the special constant declarations (see the discussion of ForC in the next section). The
other production that cDcls handles is a straight assignment without an explicit type.

Upon entry, the cDcls procedure calls lex to fetch the next token from the input stream. It checks this token
against a colon or an assignment operator. If it is neither of these, then cDcls reports a syntax error and dummies up
a return result. If it encounters a colon (‘:’) then it calls the ForC procedure to handle the remainder of the declaration
up to the semicolon and checks for the presence of the semicolon upon return.

If the cDcls procedure encounters an assignment operation, it calls constExpr to process the expression which
follows the assignment operator. As there has been no explicit type declaration, the cDcls procedure sets the return
type to whatever type constExpr returns for the expression.

In either case (whether encountering a ‘:’ or the assignment operator, ‘:=’), the cDcls procedure scans for a
semicolon at the end of the declaration to complete the parsing of a single constant declaration. If either constExpr
or ForC fails, either call will stick a dummy value into the returned attribute (typically the boolean value ‘false’) to
prevent cascading errors and indeterminate results later.

ForC - Parsing Special Constant Declarations and Those With Explicit Types
The ForC procedure handles the components of a constant declaration following the colon. This is either an

explicitly typed constant declaration or one of three special constant declarations. Here are the productions for the
ForC non-terminal:

ForC → typeID optionalbounds ’:=’ constExpr
| enum ’{’ idList ’}’ ’:=’ constExpr
| pointer to ptrTypeID ’:=’ constExpr
| forward ’(’ fID ’)’

typeID must be a predefined identifier that specifies some data type or it must be one of the predefined HLA data type
reserved words. ptrTypeID must be a predefined type identifier or an undefined symbol; if it is undefined, you must
define it as a type object before the end of the current program unit (program, unit, procedure, itera-
tor, or method).

ForC begins by checking for a type identifier in the input stream. If it finds one, then it checks for an optional set
of array bounds surrounded by square brackes (e.g., “[2,3,4]”). If the array bounds are present, and the bounds specify
more than a single dimension, then ForC builds a set of anonymous array types for each of the dimensions but the
first. This process is identical to that used by tDcls; please see the discussion appearing earlier for the tDcls pro-
cedure. After the array bounds (or if the bounds are not present), ForC scans for an assignment operator (‘:=’) and
reports an error if it is not present. If the assignment operator is present, then ForC calls constExpr to evaluate the
constant expression immediately following. Note that ForC does not check to see if the type of the expression
matches the defined type. Instead, it simply stores the defined type into the constType variable and leaves it up to
the parseConst procedure to check the types once control returns there.

If ForC does not encounter a type identifer in the input stream, it scans for a token and checks to see if it’s a
pointer, enum, or forward token. Forward declarations are completely identical to those in the type section;
please see the discussion in the section on tDcls for more information about the forward constant declaration.

If a bare enum declaration appears in a const section, ForC will create an anonymous type for the enumerated
type, create a symbol table entry for each of the enumerated constants, and then initialize the constant declaration
with the specified enumerated constant value. E.g.,

const
eConst : enum{ a, b, c } := b;

Defines four constants and an anonymous type in the symbol table. The symbol a is a constant given the value zero, b
is given the value one, and c is given the value two. This declaration (of course) also creates an entry for eConst
having the value one. This declaration also enters a type symbol table entry of the form “@enum000” (where 000
represents some unique integer value). The other four symbols have this type.

At the time this was being written, pointer constants were not implemented yet. This document will be updated
when pointer constant parsing is added to the HLA v2.0 source code.

parseVal - Parsing the VAL declaration Section
The parseVal procedure and operation is virtually identical to parseConst. It handles the val declaration

section. The only difference is that parseVal doesn’t require symbols to be unique - you may redefine a symbol
declared in the val section. Here are the productions for the val section that parseVal handles:

Values → (valDcls)*

valDcls → ’;’
| identifier vDcls

vDcls → ’:’ ForV ’;’
| ’:=’ constExpr ’;’
| ’+=’ constExpr ’;’
| ’-=’ constExpr ’;’

ForV → typeID optionalbounds optAssign
| enum ’{’ idList ’}’ optAssign
| pointer to ptrTypeID optAssign
| forward ’(’ fID ’)’

Another difference you will notice between the val productions and the const productions is the the val pro-
ductions allow the C-like “+=” and “-=” operators (which wouldn’t make sense in the const section, since the sym-
bol must be undefined in a const declaration and these operators require a predefined value).

The other major difference between parseConst and parseVal, of course, is that parseVal calls set-
Val to change the value of a symbol table entry rather than enterConst to enter a new constant into the symbol
table. See the discussion of parseConst for more details.

parseVar - Parsing the VAR Declaration Section
(still to be written)

parseStatic - Parsing the STATIC Declaration Section
(still to be written)

parseStorage - Parsing the STORAGE Declaration Section
(still to be written)

parseReadOnly - Parsing the READONLY Declaration Section
(still to be written)

parseSegment - Parsing the SEGMENT declaration Section
(still to be written)

parseProc - Parsing a Procedure declaration
(still to be written)

parseMethod - Parsing a Method declaration
(still to be written)

parseIterator - Parsing an Iterator Declaration
(still to be written)

parseRecord & parseUnion - Parsing record/union declarations
Record and union parsing are relatively complex because of the various options and facilities such as anonymous

unions and records. Here are the productions for record and union declarations (note that the record or union key-
word has already be parsed by a higher-level declaration section; the following productions start with the first token
beyond the record or union keyword):

recordDcl → recOptions recunVars privateRecVars endrecord

unionDcl → recunVars endunion

recOptions → ε
| inherits ’(’ identifier ’)’
| setRecOffset
| recAlignment

recunVars → ruVars (ruVars)*

setRecOffset→ ‘:=’ constExpr ‘;’

recAlignment→ ‘[‘ maxAlign constExpr ‘]’ ‘;’

maxAlign → ε
| constExpr ‘,’

privateRecVars → ε
| private ’:’ recunVars

ruVars → align ’(’ constExpr ’)’ ’;’
| record recunVars endrecord ’;’
| union recunVars endunion ’;’
| orID ’:’ ruDcls

ruDcls → forward ’(’ constExpr ’)’
| record recordDcl ’;’
| union unionDcl ’;’
| procedure optionalParms protoOptions ’;’
| pointer to typeID ’;’
| typeID optionalBounds’;’

orID → identifier
| override identifier

Record provide three options that the recOptions procedure handles. These options let you specify a set of
fields to inherit from some other record, a starting offset for the record, or an alignment value for record fields (note
that these options are mutually exclusive - you cannot specify both a starting offset and an inherited set of fields or an
alignment value for the same record). Here are some examples of declarations that demonstrate these options:

type
ancestor : record

anscestor_field:dword;
endrecord;

descendent : record inherits(ancestor);
descendant_field:dword;

endrecord;

HasOffset : record := 4;
offsetIs4:dword;

endrecord;

HasAlign : record [4];
offset0:byte;
offset4:word;
offset8:dword;

endrecord;

HasAlign2 : record [4, 2];
offset0:byte;
offset2:word;
offset4:dword;

endrecord;

The recOptions procedure checks for these three record options immediately after the record keyword in a record
declaration. This procedure begins be resetting the token queue and then calling the lexical analyzer to fetch the next
token from the input stream. If this token is for the inherits keyword, then recOptions processes the inherits
option, if it’s the assignment operation, recOptions processes the offset option, if it’s an opening bracket,
recOptions processes the alignment option. If it is none of these tokens, then recOptions pushes the token
back onto the input stream and returns, letting whomever called recOptions handle that token.

If recOptions encounters the inherits keyword, then it calls the lexical analyer to fetch an opening right
parenthesis, an identifier, and a closing right parenthesis. The identifier must be defined and it must be a type ID that
defines a record; otherwise recOptions reports an error. If the identifier is a record type ID, then for each of the
non-private classes in that record, recOptions copies the field definitions into the new record type being created.
For type compatibility reasons, recOptions only copies the actual field defintions from the inherited type to the
descendant type. Records may also contain certain other type and placeholder fields (for example, if you have a mul-
tidimensional array HLA will emit some anonymous type declarations); recOptions does not copy these fields
because typechecking in HLA is done by comparing the pointers to the symbol table entries (if the pointers are the
same, then the types are equal). By copying only the field definitions, recOptions ensures that the fields that refer-
ence these anonymous types have the same type as the ancestor fields.

While copying the (non-private) fields from the ancestor to the descendant record type, the recOptions proce-
dure also computes the starting offset of the first field of the descendant record. The starting offset of the first new
field is the offset of the last field in the ancestor record plus the size of that last field’s type. Note that we cannot sim-
ply use the size of the inherited record as the starting offset of the first (non-inherited) field of the new record because
the ancestor field could have had a non-zero starting offset (using the “:=” record option).

If the recOptions procedure encounters the assignment operator token (“:=”) immediately after the record
keyword, it verifies that the following is a 32-bit (or smaller) numeric constant expression and sets the starting offset
of the record to this value.

There are two forms of the alignment option that recOptions processes. One form expects a single constant
expression. This value specifies a field alignment for the record’s fields and the parser will add padding bytes to the
record to ensure that each fields starts at an offset that is an even multiple of this value. The second form expects two
expressions: the first is a maximum alignment, the second is a minimum alignment. When aligning fields, all data
types whose size is less than the minimum alignment will be aligned to an offset in the record that is a multiple of the
minimum alignment. All fields whose size is greater than the maximum alignment will be aligned to an offset that is

an even multiple of the maximum alignment value. All fields whose size lies between the minimum and maximum
sizes will be aligned to an offset that is a multiple of the object’s size.

recunVars Procedure
The recunVars procedure handles the chore of processing all the field declarations that occur in a record or a

union. It runs in a loop calling ruVars to process each field of the record or union until it encounters something that
is not a record/union field. The recunVars procedure also has the responsibility of updating the size of the record
or union after processing each field. To compute the size of a record, recunVars adds the size of each field to a run-
ning sum. To compute the size of a union, recunVars computes the maximum size of all the fields in the union.

ruVars Procedure
The ruVars procedure handles a single (legal) declaration inside a record or union. Here’s the grammar produc-

tions for the text that ruVars recognizes:

ruVars → align ’(’ constExpr ’)’ ’;’
| record recunVars endrecord ’;’
| union recunVars endunion ’;’
| orID ’:’ ruDcls

orID → identifier
| override identifier

If ruVars encounters an align keyword, it fetches an opening parenthesis, a constant expression, a closing
parenthesis and a semicolon. If the constant expression is not a 32-bit (or smaller) integer value, ruVars reports an
error. If the token sequence is syntactically and semantically correct, then ruVars takes the current offset into the
record and adds a sufficient value to make the offset an even multiple of the value specified by the constant expres-
sion.

If ruVars encounters a record keyword (without the usual “id:” prefix indicating a standard nested record dec-
laration), then the user is creating an anonymous record declaration within a record or union. In this case, ruVars
emits a special AnonRec_pt type record to the current record to mark the start of the anonymous record and then it
recursively calls recunVars to process the fields of that record. Upon return, it checks for the matching
endrecord token and enters an EndAnonRec_pt type symbol (“@endAnonRecXXX” into the symbol table to
mark the end of anonymous record. Note that for anonymous records, a local symbol table is not created. Instead,
ruVars enters the fields of the anonymous record directly into the current record’s or union’s symbol table.

If ruVars encounters a union keyword, then it creates an anonymous union. The process is almost identical to
that for creating an anonymous record except the “bracketing fields” are of type AnonUnion_pt and
EndAnonUnion_pt.

The only remaining thing the ruVars handles is a bonafide record declaration. This takes one of two forms:

identifier: type definition;
-or-

override identifer : type definition;

The override keyword is used to reuse a fieldname present in an inherited record. If the override prefix is
present, then ruVars will lookup the existing symbol in the record or union (copied from the ancestor object) and
redefine its type fields according to whatever ruDcls finds after the colon. If the symbol does not already exist as an
inherited field, then ruVars reports an error. Technically, the override prefix does not require the symbol to have
been defined in the ancestor record - it can also override a symbol in the existing record or union. However, override
is generally used to override inherited fields (there probably is no reason for applying it to fields existing in the cur-
rent record or union, but this is allowed as a generalization).

If the current declaration is a straight record/union field declaration, then ruVars first checks to see if the sym-
bol is a globally or locally defined identifier. Local symbols must have an override prefix or we’ve got a duplicate

symbol error. If ruVars encounters an undefined identifier (or forces a global or local symbol to “undefined” after
reporting an error or other correction), then it calls ruDcls to handle the remainder of the field’s declaration.

ruDcls Procedure
ruDcls has the task of actually processing a record or union field declaration. The ruDcls procedure gets

called after ruVars processes an identifier and a colon. Here’s the grammar for the statements that this procedure
handles:

ruDcls → forward ’(’ constExpr ’)’
| record recordDcl ’;’
| union unionDcl ’;’
| procedure optionalParms protoOptions ’;’
| pointer to typeID ’;’
| typeID optionalBounds’;’

Forward declarations in a record or union have the same purpose as in a const or type declaration. They
are also handled exactly the same way by ruDcls. Please see the discussion of forward declarations in the earlier
discussion of the tDcls procedure for more details.

The ruDcls encounters the record keyword in a declaration, then we’ve got a nested record declaration
inside the current record or union. If this is the case, then ruDcls first creates an anonymous symbol table entry for
a record type and then calls parseRecord (possibly recursively) in order to process the record declaration associ-
ated with the current field.

The ruDcls encounters the union keyword in a declaration, then we’ve got a nested union declaration inside
the current record or union. If this is the case, then ruDcls first creates an anonymous symbol table entry for a union
type and then calls parseUnion (possibly recursively) in order to process the union declaration associated with the
current field.

If ruDcls encounters the procedure reserved word, then the field is a procedure pointer declaration. ruDcls
calls parseProcType to handle the actual parsing of the procedure declaration and then sets the field’s size to four
bytes (procedure pointers are always four bytes and adjusts

If ruDcls encounters the two token sequence “pointer to” after the “identifier:” sequence in the current declara-
tion, then ruDcls creates a new symbol table entry holding an anonymous pointer type and then sets the current
field’s type to this anonymous pointer type. As for type declarations, the identifier following the “pointer to” token
sequence must either be a defined type identifier or an undefined symbol. If the symbol is currently undefined, ruD-
cls calls addFwdPtr to add it to the list of forward referenced pointer variables and the program must define that
symbol prior to leaving the current lex level.

Last, but certainly not least, comes a standard field declaration consisting of a type identifier and an optional set
of array dimension bounds. If ruDcls comes across an identifier, it first verifies that it is a type ID and then calls
getBaseIsoType to produce the base type. After getting the base level type, ruDcls checks for the optional array
bounds, generating any anonymous type symbol table entries, as necessary, to handle two or more dimensional
arrays. Finally, ruDcls enters the original symbol into the symbol table, using the address of the typeID as the
field’s type.

Utility Routines
makeLabel

optionalBounds

buildEnumType

parseProcType

