Randy Hyde’s Win32 Assembly Language Tutorials
(Featuring HOWL)

#2: Buttons

In this second tutorial of this series, we’ll take a look at implementing buttons on HOWL
forms. Specifically, we’ll be looking at Windows’ push button user-interface elements.

Prerequisites:

This tutorial set assumes that the reader is already familiar with assembly language program-
ming and HLA programming in particular. If you are unfamiliar with assembly language pro-
gramming or the High Level Assembler (HLA), you will want to grab a copy of my book “The
Art of Assembly Language, 2nd Edition” from No Starch Press (www.nostarch.com). The HOWL
(HLA Object Windows Library) also makes heavy use of HLA’s object-oriented programming
facilities. If you are unfamiliar with object-oriented programming in assembly language, you will
want to check out the appropriate chapters in “The Art of Assembly Language” and in the HLA
Reference Manual. Finally, HOWL is documented in the HLA Standard Library Reference Man-
ual; you’ll definitely want to have a copy of the chapter on HOWL available when working
through this tutorial.

Source Code:

The source code for the examples appearing in this tutorial are available as part of the HLA
Examples download. You’ll find the sample code in the Win32/HOWL subdirectories in the
unpacked examples download. This particular tutorial uses the files 002 buttonl.hla,

003 _button2.hla, 004_button3.hla, and 004x_button3.hla. Though this particular document does
not describe 002x_buttonl.hla and 003x_button2.hla, you may also find these files of interest
when reading through this tutorial.

Push Buttons:

Push buttons have four major attributes: an (x,y) coordinate position on a form, a size (width
and height), a caption, and an on click event handler. The event handler is a special kind of HLA
procedure (a widgetProc in HOWL terminology) that has the following prototype:

type
widgetProc :procedure (thisPtr:dword; wParam:dword; lParam:dword);

HOWL events include things such as text changing, images being painted, obtaining or losing
keyboard focus, and clicking on an object. Some objects support a large number of events, some
only support only a few events. Whatever the number, most user interface controls (“widgets”)
support a single main event. For push button objects, that main event is the onClick event.

Whenever some widget event occurs, HOWL relays notification of that event to your applica-
tion by (possibly) calling an event handler you’ve written and registered with HOWL. For push

buttons, you’d tell HOWL about an onClick handler you’ve written when you create the button
and then HOWL will automatically call that handler when someone presses the button on the
form. As noted above, all event handlers in HOWL are written as widgetProcs.

Therefore, to add a button to a form in your application, you need only do two things: declare
the button using the HOWL Declarative Language (HDL) and (optionally) write a widgetProc for
that button to do something whenever the user presses the button when the application is running.

The 002_buttonl.hla program included with the HOWL examples demonstrates how to place
a single button on a form. This program adds a single button to the lower right-hand corner of the
main form; when the user presses the button at run time, the widgetProc for the button terminates
the program (that is, this example adds a “quit” button to the form). Now you can quit the pro-
gram by pressing a button on the form rather than by having to press the close box on the title bar.

Like most HOWL applications, 002 _buttonl.hla is an extension of the “Hello World” pro-
gram from the first tutorial. Indeed, “Hello World” can be thought of as an empty shell application
that contains all the scaffolding code needed for every application. To extend the
001 HelloWorld.hla program there are three changes you need to make:

1. Change the windowTitle string at the beginning of the file to a more meaningful name (e.g.,
"Button Demo #1").

2. Insert the declaration for any new widgets you want between the wForm and endwForm state-
ments.

3. Add any necessary widgetProcs after the declarations (and prototypes for those widgetProcs
before the wForm statement).

In order to add a button to the application, you use the wPushButton statement in the HDL.
This statement uses the following syntax:

wPushButton

(
buttonName, // Field name in wForm object (Must be an HLA identifier).
captionString, // Caption for push button.
X, // x position on form for upper left-hand corner of button.
v, // y position on form for upper left-hand corner of button.
W, // width of button on form.
h, // height of button on form.
onClick // "on click" event handler (must be NULL or a widgetProc)

The first argument is the HLA identifier that the HDL will use as this object’s name in the
class being created by the wForm statement. This name must be unique within the new class’ def-
inition (you cannot, for example, have two buttons with the same name). Generally, a nice
descriptive name like quitButton would be a good choice.

The second argument is a string constant specifying the button’s caption text. Windows will
display this text within the button when it draws the button on the form.

The third and fourth arguments should be constants that specify the (x,y) position of the but-
ton on the form. The upper-left hand corner of the form’s client area (that is, the part of the win-
dow that excludes the title bar and frame) is position (0,0). The x coordinate increases going from
left to right and the y coordinate increases going from top to bottom. Note that the size of the
form (the formw and form# constants at the beginning of the source file in the 001 buttonli.hla

example code) specifies the size of the entire form, including the title bar and client area. There-
fore, the client area (where you can place widgets) is actually somewhat smaller than the values
you specify for formw and forma (which are both 600 for most of the examples in this tutorial
series).

The fifth and sixth arguments are constants that specify the width and height of the button on
the form. 20 is probably a good minimum for the height (otherwise the caption text may be trun-
cated on the top and bottom). The minimum width will be whatever it takes to completely display
the button’s caption text.

The last argument is probably the most interesting to us at this point. This is the name of the
widgetProc that HOWL will call when someone presses the button. You can supply the value
NULL for this argument, in which case HOWL will not call any widgetProc when the button is
pressed (and there will be no notification to your program that someone has pressed the button).
For push buttons, passing NULL for the onClick handler doesn’t make a lot of sense. For other
widgets, however, there may be no need for immediate notification when an event occurs, so sup-
plying NULL is not uncommon when declaring other types of widgets.

There is one catch when supplying the name of a widgetProc in the wpushButton declaration:
HLA requires that you define this symbol before passing it along to wpushButton. This is gener-
ally handled in a HOWL application by placing a forward or external procedure prototype before
the wForm statement. In theory, you could actually put the widgetProc code before the
wForm. .endwForm Statements but this is not normally done because many widgetProcs will need
to reference the class that the wrorm statement is defining.

Here’s the declarations needed to add a “quit” button to a form:

// Forward declaration for the onClick widgetProc that we're going to
// call when a button is pressed.

proc onQuit:widgetProc; @forward;

// Here's the main form definition for the app:

wForm (mainAppWindow) ;

// Place a quit button in the lower-right-hand corner of the form:

wPushButton
(
button, // Field name in mainWindow object
"Quit", // Caption for push button
450, // x position
525, // y position
125, // width
25, // height
onQuit // "on click" event handler

)

endwForm

// Must invoke the following macro to emit the code generated by
// the wForm macro:

mainAppWindow implementation();

Now all we need to do is supply the onouit widgetProc and we’re in business. Here’s a
straight-forward implementation of onoui t:

// Here's the onClick event handler for our quit button on the form.
// This handler will simply quit the application:

proc onQuit:widgetProc;
begin onQuit;

// Quit the app:
w.PostQuitMessage(0);

end onQuit;

The Windows’ w.PostQuitMessage call tells the application to terminate itself. This is
roughly equivalent to pressing the close box on the title bar.

If you run this application, you should see the following Window:

I Button Demo #1

A quick comment about widgetProcs is in order here. As noted earlier, the widgetProc type
has the following definition:

type
widgetProc :procedure(thisPtr:dword; wParam:dword; lParam:dword);

The examples in this tutorial all use the new-style HLA procedure declarations for wid-
getProcs, e.g.,

proc onQuit:widgetProc;

If you’re more comfortable with the original HLA procedure declaration syntax, you’d write
the widgetProc thusly:

procedure onQuit(thisPtr:dword; wParam:dword; lParam:dword);
begin onQuit;

// Quit the app:
w.PostQuitMessage(0);

end onQuit;

The advantage of the new declaration style is that it’s a little safer -- you don’t have to worry
about getting the spelling (or number) of arguments correct; the advantage of the old syntax is that
you get to see the actual parameter declarations when you look at the procedure’s code without
having to look up the definition of widgetProc in the howl.hhf header file (on the other hand,
you’ll write so many widgetProcs when using HOWL that you’ll quickly have this parameter list
memorized, so this benefit is of dubious value).

In our simple button example, we don’t use the values of these arguments, but we should still
discuss them because they will be useful when creating other types of widgets.

The thisptr argument is the address of the object associated with this event. When HOWL
calls onguit in the current example, thisptr will contain the address of the quit button object
(that is, the value held in mainAppWindow.button).

The wParam and [Param arguments contain values that Windows passes to HOWL whenever
user interaction results in some message being sent to the application (such as when the user
presses a button on the form). When the user presses a push button, for example, Windows passes
the following values in wParam and 1Param:

wParam: the H.O. word contains a special button notification message (that HOWL uses to
differentiate the type of button event that has occurred). The L.O. word contains the button’s ID
(this will be the same value as the object1D field from the wBase t class).

IParam: this is the window handle for the button (which should be the same value as the han-
dle field from the wease t class).

For button onClick widgetProcs, the wparam and 1param values are redundant. By the time
the onClick widgetProc executes HOWL has already decoded the information in wparam and we
know that it’s a button click operation by virtue of the fact that we’re executing code in the
onClick widgetProc. The IParam value is also redundant because you can obtain this value from
the handle wBase t field pointed at by thisptr.

Of course, for the current example, none of these values are important because if someone
clicks on the quit button, we’re just going to close the application regardless of the values of
thisPtr, wParam, Or 1Param.

One comment is worth making before moving on: if you have multiple buttons on a form you
don’t necessarily have to write separate widgetProcs for each button. You can specify the same
widgetProc name for all the buttons and then use the thisptr argument to differentiate the but-
tons. If the buttons are doing very similar things, this might save you from having to write a bunch

of different widgetProcs. On the other hand, if the buttons are doing completely different things
(such as quitting the application and saving a file to disk), you’re probably better off writing sepa-
rate widgetProc event handlers for each of the buttons.

The HOWL wVisual_t, wPushButton, wButton, and wClickable t Classes

Before moving on to the next example, it’s worthwhile to quickly discuss the four major
classes that HOWL uses to define push buttons. The wvisual t classis an abstract base class that
contains information common to all visual objects. The wclickable t class is an abstract base
class that handles visual objects that users can click on (such as buttons). The wClickable t class
handles both clicks and double-clicks. The weButton t class is an abstract base class that imple-
ments button functionality for the HOWL buttons (push buttons, radio buttons, and check boxes);
this is where the “guts” of a push button are found. The wPushButton_t class is a concrete imple-
mentation of wButton_t that HOWL uses to create actual push buttons. The wButton_t class has
the following definition:

wPushButton t:
class inherits(wButton t);

procedure create wPushButton

(

wpbName :string;
caption :string;
parent :dword;
X :dword;
vy :dword;
width :dword;
height :dword;
onClick :widgetProc
) ; external;
endclass;

There really isn’t much to explain here. The arguments passed to the constructor
(create wpPushButton) largely correspond to those in the wpushButton HDL declaration. The
only difference is the addition of the parent argument (which the wPushButton declaration auto-
matically fills in for you). The parent argument is the handle of the window (form) on which the
button is to be placed. If you’re placing the button on the form named mainappWindow (the form
name that all these tutorials use), then the parent’s handle value can be found in mainappwin-
dow.handle.

The real declarations for a button appear in the wButton_t class, the immediate parent class of
wPushButton t. The wButton t class definition is the following (note that wButton_t inherits
all the fields of wClickable t):

wButton t:
class inherits(wClickable t);

var
align(4);

wButton private:

record
onPaint :widgetProc;
onHilite :widgetProc;
onUnHilite :widgetProc;
onDisable :widgetProc;

onSetFocus :widgetProc;
onKillFocus :widgetProc;

endrecord;

procedure create wButton

(

method set onSetFocus
method set onKillFocus

onSetFocus :widgetProc
onKillFocus:widgetProc

; external;
; external;

wbName :string;

parent :dword;

X :dword;

vy :dword;

width :dword;

height :dword;

onClick :widgetProc
); external;
method get_onPaint; @returns("eax"); external;
method get onHilite; @returns("eax"); external;
method get onUnHilite; (@returns("eax"); external;
method get onDisable; @returns("eax"); external;
method get onSetFocus; @returns("eax"); external;
method get_onKillFocus; @returns("eax"); external;
method set onPaint (onPaint :widgetProc); external;
method set onHilite (onHilite :widgetProc); external;
method set onUnHilite (onUnHilite :widgetProc); external;
method set onDisable (onDisable :widgetProc); external;

()
()

method get text(txt:string); external;

method a get text; external;

method set text(txt:string); external;

override method processMessage; external;
endclass;

The private data fields are all widgetProc pointers to functions that HOWL will call based on
various events. By default, the create wButton constructor sets all of these fields to NULL
(meaning HOWL will ignore these events).

The onPaint, onHilite, onUnHilite, and onDisable events are laregly obsolete at this time.
They are supported for compatibility reasons only (with Windows 3.1). You normally wouldn’t
respond to these events in a HOWL application so we won’t discuss them (or their accessor/muta-
tor functions) any further.

The onsetFocus and onkillFocus data fields point at widgetProcs that HOWL will call
when a button gains or loses the keyboard focus. A button gains focus when the user clicks on it
or when the user presses TAB on the keyboard and the selection (focus) switches to the button. A
button loses focus when the users tabs off of the key or clicks on some other element on the form.
Generally, an application probably doesn’t care when a button gets or loses the keyboard focus,
but you can trap these events for some special purposes.

As noted earlier, the wButton_t constructor initializes the onsetFocus and onkKillFocus
fields to NULL. Therefore, HOWL will (by default) ignore any focus events it receives from
Windows regarding the button. You can register an event handler for these two events by calling
the set onSetFocus and set_onkKillFocus methods and passing in the address of an appropri-
ate widgetProc to handle the event. When HOWL calls such a widgetProc, the thisPtr argument
will contain the address of the button object and the wparam and 1param arguments are basically
meaningless.

You will notice that wButton_ t doesn’t have a data field for the onClick event handler. This is
because the wClickable t base class provides that functionality and wButton_t inherits that
functionality from wClickable t. See the discussion of wClickable t ina few paragraphs for
more details.

The constructor for wButton_t is identical to that of wPushButton t. See the discussion
given earlier for wPushButton_ t for more details regarding the constructor.

The last methods directly defined in this class of interest to us are the get text,a get text,
and set text methods. These methods allow a HOWL to retrieve and change the button’s cap-
tion (text label) at run time.

The get text method retrieves the current caption and stores it into the string variable you
pass as an argument. The string argument must be properly initialized and the string should have
sufficient storage to hold all the characters in the button’s caption. The get text method will
raise an exception if this is not the case.

The a_get text method also retrieves the caption text from a button. It allocates storage for a
new string on the heap, copies the label’s text to that new string, and then returns a pointer to the
new string in the EAX register. It is the caller’s responsibility to free this storage (with a call to
str.free) when it is done using the string data.

The set_text method copies the the string you pass as an argument to the button’s caption.
You are responsible for ensuring that the string actually fits; Windows will clip the character data
if it is too long to fit in the space you’ve set aside for the button.

The weutton_t class inherits all the fields of the wCclickable t class. The wClickable t
class has the following definition:

wClickable t:
class inherits(wVisual t);
var
align(4);
wClickable private:
record

onClick :widgetProc;

onDblClick :widgetProc;
endrecord;

procedure create wClickable

(

wcName :string;

parent :dword;

X :dword;

y :dword;

width :dword;

height :dword;

onClick :widgetProc
) ; external;
method get onClick; @returns("eax"); external;
method get onDblClick; @returns("eax"); external;
method set onClick(onClick :widgetProc); external;
method set onDblClick(onDblClick :widgetProc); external;
method click; external;

endclass;

Note that the wclickable t class inherits all the fields of wvisual t. This means that
wButton t and wPushButton_ t objects also inherit all the fields of wvisual t as they inherit all
the fields of wClickable t.

The wclickable t class has two private data fields: onc1lick and onbbic1ick. These point
at the widgets that HOWL will call whenever the user clicks on a clickable or double-clickable
object. Note that the onbb1c1ick field was added to the wclickable t class for convenience.
Not all objects that are clickable support double-clicking. If an object does not support double-
clicking, then HOWL ignores the value of the onb1bc1ick field.

Again, you will notice that the constructor for this class (create wClickable) has the same
argument list as the constructors for wButton t and wPushButton t. About the only thing worth
mentioning is that these constructors provide an argument for specifying the onc1ick widgetProc
but they do not have an argument for specifying the address of the onbpb1c1ick widgetProc. This
was done this way because most clickable objects will need an on click event handler but few
widgets will need an on double click event handler. If you have a button (or other object) that
needs to respond to a double click event, then you can manually register an “on double click”
widgetProc by calling the set _onDbl1c1lick method.

There is one other issue concerning the on double click event: whenever someone double
clicks on an object Windows will send an on click event to the object on the first click and then an
on double click event to the object when the second click comes along. If you have both single
and double click event handlers installed on a button (or other wClickable t object), be aware that
HOWL will call both widgetProcs in succession when the user double clicks on the object.

The only other interesting method in this class is the c1ick method. If you invoke the c1ick
method, HOWL will send a message to Windows to tell it to behave as though someone manually
clicked on the object. Note that calling the c1ick method twice in rapid succession does not sim-
ulate a double click.

The wclickable t class inherits all the fields of the wvisual t class. The wvisual t class
is the most basic visual class in HOWL (it only inherits fields from wBase t, which is a generic
abstract base class). wvisual t has the following definition:

wVisual t:
class inherits(wBase t);

var
align(4);
wVisual private:
record
X :dword;
y :dword;
width :dword;
height :dword;
bkgColor :dword;
bkgBrush :dword;
style :dword;
exStyle :dword;
endrecord;

// Constructors/Destructors:

procedure create wVisual

(

wvName :string;
parentHandle :dword;
X :dword;
vy :dword;
width :dword;
height :dword

) ; external;

// Accessor functions:

method get x; @returns("eax"); external;
method get y; @returns ("eax"); external;
method get_width; @returns("eax"); external;
method get height; @returns("eax"); external;
method get bkgColor; @returns("eax"); external;
method get style; @returns("eax"); external;
method get exStyle; @returns("eax"); external;
method set x(x:dword); external;
method set y(y:dword); external;
method set width(width:dword); external;
method set height (height:dword); external;

method set bkgColor

(
bkgColor:dword
); external;

method move (x:dword; y:dword); external;

method resize(width:dword; height:dword); external;
method setFocus; external;
override method show; external;
override method hide; external;
override method enable; external;
override method disable; external;
override method destroy; external;
method onClose; external;
method onCreate; external;
endclass;

The x, y, width, and height private data fields define a bounding box around the object
being drawn. For a button object, this defines the rectangle in which Windows will draw the but-
ton object. These are private data fields! It is very important that you access these fields only via
the accessor/mutator functions. Whenever you change one of these values, for example, the muta-
tor function calls notifies Windows that it has to redraw the object to reflect the change in position
or size on the form.

The (x,y) coordinate values specify a coordinate that is relative to the form on which the
visual object appears, not absolute screen coordinates (the particular form/window is specified by
the parentHandle argument of the constructor).

The bkgColor and bkgBrush private data fields specify the color of the background behind
the object. The background is that part of the screen within the object’s bounding rectangle but
not part of the actual object being drawn. For example, a circular object’s background would be
the four corners of the bounding rectangle up to the edge of the circle within the bounding rectan-
gle. Buttons are a good example of an object that don’t have a background because the button
comletely fills the bounding rectangle. For buttons (and other objects that don’t use a back-
ground), these fields are largely ignored.

Note that there is only accessor/mutator functions for the bkgColor field, no such functions
exist for bkgBrush. This is because the set bkgColor method automatically computes the value
for the bxgBrush field. This is why you should always call the accessor and mutator functions for
private data fields: often some field values are computed as a resulting of setting some other field
value.

The style and exstyle fields contain Windows’ style information for an object. Some
objects use these fields, others don’t (and ignore their values). For most objects, the style is set
when you create the object (e.g., by calling a class constructor) and the style never changes after
that. For this reason, you will note that there are no mutator methods for these fields.

The set x, set y, set width, and set height mutators deserve special attention. As
mentioned earlier these methods will cause Windows to redraw the object in the new position (or
with the new size) whenever you call them. There is one minor problem, however: if you call
set_x and then call set_y to reposition some visual object on the form, Windows will actually
wind up drawing the object twice, once for each method call. Though this is very quick, it’s still
kind of grossly inefficient to redraw the object twice. Worse, drawing it twice may result in some

objectionable flickering. For this reason the wVisual t class provides two additional methods that
will set both the (x, y) and (width, height) values with a single call (each): move and resize. A
call to move allows you to set both the x and y values with a single call (and a single redraw of the
object). A call to resize lets you set the width and height values with a single call (and a single
draw).

The show and hide methods will make a visual object visible or hidden on the form. These
methods override the methods in wBase t (which basically do nothing) and are responsible for
telling Windows to show or hide the object. Most of the remaining tutorial examples will demon-
strate the use of these two methods.

The enable and disable methods will (as their name implies) enable and disable a visual
object. If an object is disabled, Windows will draw it using grayed text and lines and it will ignore
any user-interface requests. For example, if you disable a button Windows will reject any attempt
to click on that button. As with the show and hide methods, these methods override the wBase t
methods (which do nothing).

The onClose and onCreate methods are called by the class constructor and destructor. Appli-
cation programs should never call these methods. These methods were originally intended for
developers who are extending the HOWL class library; though it’s likely that these functions will
go away in a future release of HOWL.

The wVisual t destructor (destroy) should never be called by an application. It is automati-
cally called by descendant classes when their destructor is called. Normally, an application only
calls the main form’s destructor, which is responsible for calling the destructors of all the objects
attached to the form.

Another Button Example: Button2

Okay, with a discussion of the various classes associated with buttons out of the way, it’s time
to look at some additional HOWL examples involving buttons. The first example we’ll look at
(002 _button2.hla) demonstrates getting and setting the caption text on a button. This is a very
straight-forward extension of the 002 buttonl application. In order to demonstrate some addi-
tional functionality, we’re going to add four new widgetProcs to the program: two of them will
simply demonstrate the onSetFocus and onKillFocus events, two of them will be on click handlers
(for the new button we add) that will get and set the button’s caption text. Here’s the declaration
for the form:
proc onSetFocusl:widgetProc; @forward;
proc onKillFocusl:widgetProc; Q@forward;
proc onClickChangel:widgetProc; @forward;

proc onClickChange2:widgetProc; @forward;
proc onQuit:widgetProc; @forward;

// Here's the main form definition for the app:
wForm (mainAppWindow) ;

wPushButton
(

buttonl, // Field name in mainWindow object
"Press to change", // Caption for push button

10, // x position

10, // y position

125, // width

25, // height

onClickChangel // initial "on click" event handler

)

// Place a quit button in the lower-right-hand corner of the form:

wPushButton
(
quitButton, // Field name in mainWindow object
"Quit", // Caption for push button
450, // x position
525, // vy position
125, // width
25, // height
onQuit // "on click" event handler
)
endwForm

This particular application is going to have two event handlers that trigger when buttonl gets
and loses keyboard focus. These widgetProcs are very straight-forward:

// The onSetFocus and onKillFocus widgetProcs simply print to the console
// what has happened.

proc onSetFocusl:widgetProc;
begin onSetFocusl;

stdout.put ("Set focus to button 1" nl);

end onSetFocusl;

proc onKillFocusl:widgetProc;
begin onKillFocusl;

stdout.put ("Shifted focus from button 1" nl);

end onKillFocusl;

These two methods will simply print an informative string to the console window whenever
buttonl receives or loses the keyboard focus. Note that you shouldn’t compile this code with the
HLA -w command-line option or you should always run the application from a command-line so
that you can see the data these methods send to the standard output device.

Because the wPushButton declaration doesn’t let you set the onsetFocus and onkillFocus
widgetProc pointers, you’re going to have to explicitly call the wButton t mutator functions to
accomplish this. The only question is where do you call these methods from? You can’t place the
code to do this in the wForm. .endwForm sequence: remember, that code is the declaration of a
class, you can’t arbitrarily place executable code there. The best solution is to place initialization
code (such as setting up event handler addresses) in the mainAppWindow.onCreate method (that

is part of the skeleton program we inherited from Hello World. HOWL calls mainAppwin-
dow.onCreate after it has created the form object and immediately before returning to its caller.
You could also place the code in the appStart procedure, immediately after the call to the mainap-
pWindow constructor call, but the standard HOWL convention is to place the code in the onCre-
ate method. Here’s what the modified oncreate method looks like:

// The following gets called immediately after the main application
// window is created. It must be provided, even if it does nothing.

method mainAppWindow t.onCreate;
begin onCreate;

// Lets set up the buttonl's onSetFocus and onKillFocus event handlers:

mov (this.buttonl, esi);
(type wPushButton t [esi]).set onSetFocus(&onSetFocusl);
(type wPushButton t [esi]).set onKillFocus(&onKillFocusl);

end onCreate;

This function loads the pointer to the mainAppWindow.buttonl object into ESI (this is the
pointer to the button object we want to attach the event handlers to) and then calls the
set onSetFocus and set onKillFocus methods to set those data fields to point at the
onSetFocus1 and onSetFocus2 widgetProcs given earlier.

Note the use of type coercion in this example. Remember that this oncreate method is a
member of the mainAppWindow t class, nota member of the wButton t class. Within this
method “this” refers to an object of type mainappwindow t. After loading this.buttonl into ESI,
this code has to coerce ESI to point at a wpushButton_t object in order to correctly access the
methods that set the focus widgetProcs.

Next, let’s take a look at the onClickChangel widgetProc that the system (initially) calls
when the user presses buttonl on the form:

proc onClickChangel:widgetProc;
var
curCaption :string;
curCapBuf :char[256];
begin onClickChangel;

str.init (curCapBuf, @size(curCapBuf));
mov (eax, curCaption);

mov (thisPtr, esi); // ESI already contains this, but just in case...
// Print the current caption to the console window:

(type wPushButton t [esi]).get text(curCaption);

stdout.put ("Current captionl: ", curCaption, nl);

// Change the caption:

(type wPushButton t [esi]).set text("Restore original"”);

// Point the onClick handler at onClickChange?2:

(type wPushButton t [esi]).set onClick(&onClickChangeZ2);

// Print the new caption to the console window:

(type wPushButton t [esi]).a get text();
stdout.put ("New captionl: ", (type string eax), nl nl);
str.free(eax);

end onClickChangel;

The first thing to remember about a widgetProc is that it is not a class method. Therefore, you
cannot use the HLA “this” reserved word inside the procedure to access fields of the object asso-
ciated with the widgetProc. Also note that you do not have to save any register values inside a
widgetProc -- HOWL automatically preserves the important registers for you before it calls your
widgetProc. In theory, ESI will contain a pointer to the object that invoked the widgetProc (that
is, the value of thispPtr); however, it’s much safer to load ESI with the value of thispPtr upon
entry into the widgetProc, just in case some future HOWL code doesn’t do this for you.

After setting up ESI with the value of thisPtr, this widgetProc demonstrates reading the but-
ton’s caption text into a local string variable (and then it prints this string to the console). After
fetching the string, this code then changes the string to “Restore Original”. Next, the code
changes the onc1ick widgetProc address to point at the onc1ickChange2 procedure. That means
that the next time the user presses the button HOWL will call onc1ickChange2 rather than
onClickChangel. This code demonstrates a simple way to implement state machines ina HOWL
application -- by simply changing the event handler addresses in response to events.

The last thing that onclickChangel does is demonstrate the a_get text method by call that
method to fetch the new string we’ve just assigned to the button and printing it on the console.
Like all good functions that call a_get text, this procedure calls str. free to free the storage
associated with the string when it’s done using it.

The onclickchange2 handler is very similar to onClickChangel and takes the following
form:

proc onClickChange2:widgetProc;
var
curCaption:string;
curCapBuf:char[256];
begin onClickChange?2;

str.init (curCapBuf, @size(curCapBuf));
mov (eax, curCaption);

mov (thisPtr, esi);// ESI already contains this, but just in case...
// Print the current caption to the console window:

(type wPushButton t [esi]).get text(curCaption);
stdout.put ("Current caption2: ", curCaption, nl);

// Change the caption:
(type wPushButton t [esi]).set text("Press to change");
// Point the onClick handler at onClickChangel:

(type wPushButton t [esi]).set onClick(&onClickChangel);

// Print the new caption to the console window:

(type wPushButton t [esi]).a get text();
stdout.put ("New caption2: ", (type string eax), nl nl);
str.free(eax);

end onClickChange2;

Note that this code changes the caption back to its original text and resets the onc1ick wid-
getProc pointer to point back at onclickChangel.

If you run this program, you can watch the text toggle between the two strings “Press to
change” and “Restore original”.

Here is the complete program (last time I’ll do this to you):

// button2-

//

// This program demonstrates changing a button's caption and other attributes
// under program control,

program button2;
#linker ("comdlg32.lib")
#linker ("comctl32.1ib"™)

?compileAll 1= true;
?@NoDisplay := true;
?@NoStackAlign := true;

#includeOnce ("stdlib.hhf")

#includeOnce ("howl.hhf")

const
applicationName := "Button #2";
formX = w.CW USEDEFAULT; // Let Windows position this guy
formY := w.CW _USEDEFAULT;
formw = 600;
formH = 600;

// Forward declarations for the onClick widgetProcs that we're going to
// call when a button is pressed.

proc onSetFocusl:widgetProc; @forward;
proc onKillFocusl:widgetProc; Q@forward;

proc onClickChangel:widgetProc; @forward;
proc onClickChange2:widgetProc; @forward;
proc onQuit:widgetProc; @forward;

// Here's the main form definition for the app:

wForm (mainAppWindow) ;

wPushButton
(
buttonl, // Field name in mainWindow object
"Press to change", // Caption for push button
10, // x position
10, // vy position
125, // width
25, // height
onClickChangel // initial "on click" event handler

)

// Place a quit button in the lower-right-hand corner of the form:

wPushButton
(
quitButton, // Field name in mainWindow object
"Quit", // Caption for push button
450, // x position
525, // y position
125, // width
25, // height
onQuit // "on click" event handler
)
endwForm

// Must invoke the following macro to emit the code generated by
// the wForm macro:

mainAppWindow implementation();

// The onSetFocus and onKillFocus widgetProcs simply print to the console
// what has happened.

proc onSetFocusl:widgetProc;
begin onSetFocusl;

stdout.put ("Set focus to button 1" nl);
end onSetFocusl;
proc onKillFocusl:widgetProc;
begin onKillFocusl;

stdout.put ("Shifted focus from button 1" nl);

end onKillFocusl;

// Here's 1 of 2 onClick handlers for buttonl. This widgetProc
// changes the caption to "Restore caption" and sets the
// onClick pointer to point at the second onClick handler.

proc onClickChangel:widgetProc;
var
curCaption :string;
curCapBuf :char[256];
begin onClickChangel;

str.init (curCapBuf, @size(curCapBuf));
mov (eax, curCaption);

mov (thisPtr, esi); // ESI already contains this, but just in case...
// Print the current caption to the console window:

(type wPushButton t [esi]).get text(curCaption);

stdout.put ("Current captionl: ", curCaption, nl);

// Change the caption:

(type wPushButton t [esi]).set text("Restore original");

// Point the onClick handler at onClickChange2:

(type wPushButton t [esi]).set onClick(&onClickChange2);

// Print the new caption to the console window:

(type wPushButton t [esi]).a get text();
stdout.put ("New captionl: ", (type string eax), nl nl);
str.free(eax);

end onClickChangel;

// Here's 2 of 2 onClick handlers for buttonl. This widgetProc
// changes the caption back to "Restore caption" and sets the
// onClick pointer to point at the first onClick handler.

proc onClickChange2:widgetProc;
var
curCaption :string;
curCapBuf :char[256];

begin onClickChange?2;

str.init (curCapBuf, @size(curCapBuf));

mov (eax, curCaption);

mov (thisPtr, esi); // ESI already contains this, but just in case...
// Print the current caption to the console window:

(type wPushButton t [esi]).get text(curCaption);

stdout.put ("Current caption2: ", curCaption, nl);

// Change the caption:

(type wPushButton t [esi]).set text("Press to change");

// Point the onClick handler at onClickChangel:

(type wPushButton t [esi]).set onClick(&onClickChangel);

// Print the new caption to the console window:
(type wPushButton t [esi]).a get text();
stdout.put ("New caption2: ", (type string eax), nl nl);

str.free(eax);

end onClickChange2;

// Here's the onClick event handler for our quit button on the form.
// This handler will simply quit the application:

proc onQuit:widgetProc;
begin onQuit;

// Quit the app:
w.PostQuitMessage(0);

end onQuit;

// The following gets called immediately after the main application
// window is created. It must be provided, even if it does nothing.

method mainAppWindow t.onCreate;
begin onCreate;

// Lets set up the buttonl's onSetFocus and onKillFocus event handlers:
mov (this.buttonl, esi);
(type wPushButton t [esi]).set onSetFocus(&onSetFocusl);

i]

(type wPushButton t [esi]).set onKillFocus(&onKillFocusl);

end onCreate;

L7777 0007007777777 77777 77077777 777

//

//

// The following is mostly boilerplate code for all apps (about the only thing
// you would change is the size of the main app's form)

//

//

LI 77777777777 7777777777777777777777777777
//

// When the main application window closes, we need to terminate the

// application. This overridden method handles that situation. Notice the

// override declaration for onClose in the wForm declaration given earlier.

// Without that, mainAppWindow t would default to using the wVisual t.onClose
// method (which does nothing).

method mainAppWindow t.onClose;
begin onClose;

// Tell the winmain main program that it's time to terminate.
// Note that this message will (ultimately) cause the appTerminate
// procedure to be called.

w.PostQuitMessage(0);

end onClose;

// When the application begins execution, the following procedure
// is called. This procedure must create the main

// application window in order to kick off the execution of the
// GUI application:

procedure appStart;
begin appStart;

push(esi);
// Create the main application window:

mainAppWindow.create mainAppWindow

(
applicationName, // Window title
w.WS _EX CONTROLPARENT, // Need this to support TAB control selection
w.WS_OVERLAPPEDWINDOW, // Style

NULL, // No parent window
formX, // Form x-coordinate
formy, // Form y-coordinate
formw, // Width
formH, // Height
howl.bkgColor g, // Background color
true // Make visible on creation
)i
mov (esi, pmainAppWindow); // Save pointer to main window object.

pop(esi);

end appStart;

// appTerminate-

//

// Called when the application is quitting, giving the app a chance

// to clean up after itself.

//

// Note that this is called *after* the mainAppWindow t.onClose method

// executes (indeed, mainAppWindow t.onClose, by posting the quit message,
// 1s what actually causes the program to begin terminating, which leads
// to the execution of this procedure).

procedure appTerminate;
begin appTerminate;

// Clean up the main application's form.
// Note that this will recursively clean up all the widgets on the form.

mainAppWindow.destroy () ;
end appTerminate;
// appException-
//
// Gives the application the opportunity to clean up before

// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

raise(eax);

end appException;

// The main program for a HOWL application must
// call the HowlMainApp procedure.

begin button2;

// Set up the background and transparent colors that the
// form will use when registering the window t class:

w.GetSysColor (w.COLOR MENU) ;

mov (eax, howl.bkgColor g);

or($FF00_0000, eax);

mov (eax, howl.transparent g);
w.CreateSolidBrush(howl.bkgColor g);
mov (eax, howl.bkgBrush g);

// Start the HOWL Framework Main Program:

HowlMainApp () ;

// Delete the brush we created earlier:
w.DeleteObject (howl.bkgBrush g);

end button2;

Button3: Demonstrating Lots of Button Methods

The button2 example demonstrated how to change the caption on a push button. In this exam-
ple we’re going to expand our examination of the various methods you can call to affect a button.
We’ll look at making buttons invisible and visible, enabling and disabling buttons, moving and
resizing buttons, clicking buttons under program control, and activating the onDbIClick, onSetFo-
cus, and onKillFocus events.

The button3 program uses the button2 program as its base code and extends that program by
adding five new buttons to the form. Here is the initial code just prior to the HDL declarations in
the source file:

// button3-

//

// This program expands on button2 by demonstrating multiple buttons,
// simulated button clicks, double clicks, showing and hiding buttons,
// enabling and disabling buttons, moving buttons, and resizing buttons.

program button3;
#linker ("comdlg32.1lib")
#linker ("comctl32.1lib")

?@NoDisplay := true;
?@NoStackAlign := true;

#includeOnce ("stdlib.hhf")
#includeOnce ("howl.hhf")

const
applicationName := "Button Demo #3";
formX = w.CW _USEDEFAULT; // Let Windows position this guy
formY = w.CW _USEDEFAULT;
formw := 600;
formH = 600;

// Forward declarations for the onClick widgetProcs that we're going to
// call when a button is pressed.

proc onSetFocusl :widgetProc; @forward;
proc onKillFocusl :widgetProc; @forward;
proc onClickChangel :widgetProc; @forward;
proc onClickChange? :widgetProc; Q@forward;
proc hideShowButton :widgetProc; @forward;
proc enableDisableButton :widgetProc; @forward;
proc moveButton :widgetProc; @forward;

proc resizeButton :widgetProc; @forward;

proc onDblClick :widgetProc; @forward;
proc onQuit :widgetProc; @forward;

Most of this code is straight out of the button2 example. The only thing really different here is
the addition of several new widgetProc prototypes that the new buttons on the form will call.
Now, let’s take a look at the first part of the HDL declaration section:

// Here's the main form definition for the app:

wForm (mainAppWindow) ;

var
showState :boolean;
blEnabled :boolean;
align(4);

Here’s a big difference from the earlier examples in this tutorial: variable declarations appear-
ing within a wForm. . endwForm statement. Technically, these could have been global variables,
but they were stuck within the wForm. .endwForm sequence to demonstrate (and reinforce) that
the wForm. .endwForm sequence is a declaration, not code. Any statement that is legal within a
class..endclass declaration is legal within a wForm. .endwForm sequence. The var declara-
tions here add two boolean data fields to the mainappwindow class we are creating. Throughout
the program we can refer to these data fields using mainAppWindow.showState and mainApp-
window.blEnabled. Okay, let’s take a look at the button declarations (that constitute the remain-
der of the wForm. .endwForm declaration):

wPushButton
(
buttonl, // Field name in mainWindow object
"Button #1", // Caption for push button
10, // x position
10, // y position
125, // width
25, // height
onClickChangel // initial "on click" event handler
)
wPushButton
(
button2, // Field name in mainWindow object
"Hide button 1", // Caption for push button
175, // x position
10, // y position
125, // width
25, // height
hideShowButton // initial "on click" event handler
)
wPushButton
(
button3, // Field name in mainWindow object

"Disable button 1", // Caption for push button

175, // x position

40, // y position
125, // width
25, // height
enableDisableButton // initial "on click" event handler
)
wPushButton
(
button4, // Field name in mainWindow object
"Move button 1", // Caption for push button
175, // x position
70, // y position
125, // width
25, // height
moveButton // initial "on click" event handler
)
wPushButton
(
button5, // Field name in mainWindow object
"Resize button 1", // Caption for push button
175, // x position
100, // y position
125, // width
25, // height
resizeButton // initial "on click" event handler
)
wPushButton
(
buttoné6, // Field name in mainWindow object
"DblClick to Click", // Caption for push button
175, // x position
130, // y position
125, // width
25, // height
NULL // no single click handler

// Place a quit button in the lower-right-hand corner of the form:

wPushButton
(
quitButton, // Field name in mainWindow object
"Quit", // Caption for push button
450, // x position
525, // y position
125, // width
25, // height
onQuit // "on click" event handler

endwForm

// Must invoke the following macro to emit the code generated by
// the wForm macro:

mainAppWindow implementation();

There is nothing special here. Just more of the button declarations you’ve seen in earlier exam-
ples. The new stuff, of course, is in the widgetProcs for the new buttons.

The first new widgetProc is associated with button6. If you look at the declaration for button6
in the wForm. .endwForm sequence, you notice that the onc1ick event handler is NULL. The
button6 object is going to demonstrate double-clicking on a button and a program must manually
set the onbb1C1ick event handler; you’ll see the code that does this later on in the source file. In
the meantime, let’s look at this widgetProc that handles double-clicking on button6:

// The onDblClick widget proc will handle a double click on buttoné6
// and simulate a single click on button 1.

proc onDblClick:widgetProc;
begin onDblClick;

mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).click();

end onDblClick;
Whenever the system calls this widgetProc, it loads the button1 object pointer into ESI and
then calls the c1ick method for buttoni. Calling the c1ick method simulates a button click on

the associated object; therefore, double-clicking on button6 will cause a single-click operation on
buttonl.

The next widgetProc in the source file is resizeButton. HOWL will call this widgetProc
when the user presses button5. Here is the code for the resizeButton procedure:
// The resizeButton widget proc will resize buttonl between widths 125 and 150.

proc resizeButton:widgetProc;
begin resizeButton;

mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).get width();
if(eax = 125) then

stdout.put ("Resizing button to width 150" nl);
(type wPushButton t [esi]).set width(150);

else

stdout.put ("Resizing button to width 125" nl);
(type wPushButton t [esi]).set width(125);

endif;

end resizeButton;

The resizeButton widgetProc demonstrates two wButton method calls: get width and
set_width. This function calls get width to determine the current width of buttonl and then sets
buttonl’s size to 150 pixels if the current width is 125, it sets the width to 125 pixels if the current
width is not 125 (presumably, it will be 150 if it is not 125). This code also displays the new width
on the console window.

The next widgetProc in the source file is the moveButton procedure. This procedure is quite
similar to resizeButton except it changes the y-coordinate value of butfon’s position on the
screen rather than the width of the button. This procedure alternates the button’s position between
y-coordinates 10 and 40:

// The moveButton widget proc will move buttonl between y positions 10 and 40.

proc moveButton:widgetProc;
begin moveButton;

mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).get y();
if(eax = 10) then

stdout.put ("Moving button to y-position 40" nl);
(type wPushButton t [esi]).set y(40);

else

stdout.put ("Moving button to y-position 10" nl);
(type wPushButton t [esi]).set y(10);

endif;

end moveButton;

The next widgetProc in the source file is the enableDisableButton procedure. This wid-
getProc alternately enables or disables buttonl on the form:

// The enableDisableButton widget proc will enable and disable buttonl.

proc enableDisableButton:widgetProc;
begin enableDisableButton;

mov (thisPtr, esi);
if (mainAppWindow.blEnabled) then

(type wPushButton t [esi]).set_text("Enable button 1");
mov (false, mainAppWindow.blEnabled);

stdout.put ("Disabling button 1" nl);

mov (mainAppWindow.buttonl, esi);

(type wPushButton t [esi]) .disable();

else

(type wPushButton t [esi]).set text("Disable button 1");
mov (true, mainAppWindow.blEnabled);

stdout.put ("Enabling button 1" nl);
mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]) .enable();

endif;

end enableDisableButton;

The interesting thing to note about enableDisableButton is how it accesses the mainapp-
Window.blEnabled variable to determine whether the button is currently enabled or disabled.
This procedure calls buttonl’s enable or disable methods in order to toggle the current state. It
also sets the caption on butfon3 (thispPtr points at button3) to reflect the operation that pressing
the button will perform.

The next widgetProc is the hideshowButton procedure. This procedure checks the showState
class variable to determine whether it should make buttonl visible or invisible. It calls buttonl’s
show method to make it visible and buttoni’s hide method to make it invisible. This method also
displays the new status to the console window and updates button2’s caption to reflect the opera-
tion that pressing this button will perform:

// The hideShowButton widget proc will hide and show buttonl.

proc hideShowButton:widgetProc;
begin hideShowButton;

mov (thisPtr, esi);
if(mainAppWindow.showState) then

(type wPushButton t [esi]).set text("Hide button 1");
mov (false, mainAppWindow.showState);

stdout.put ("Showing button 1" nl);

mov (mainAppWindow.buttonl, esi);

(type wPushButton t [esi]) .show();

else

(type wPushButton t [esi]).set_text("Show button 1");
mov (true, mainAppWindow.showState);

stdout.put ("Hiding button 1" nl);

mov (mainAppWindow.buttonl, esi);

(type wPushButton t [esi]).hide();

endif;
end hideShowButton;

The next two widgetProcs in the source file, onsetFocus1 and onKillFocus1, are fairly triv-
ial. All they do is print a string to the console window telling the user what has happened. These

widgetProcs exist mainly to demonstrate how you activate the onsetFocus and onkillFocus
events. Here is the code for these two procedures:

// The onSetFocus and onKillFocus widgetProcs simply print to the console
// what has happened.

proc onSetFocusl:widgetProc;
begin onSetFocusl;

stdout.put ("Set focus to button 1" nl);
end onSetFocusl;
proc onKillFocusl:widgetProc;
begin onKillFocusl;
stdout.put ("Shifted focus from button 1" nl);
end onKillFocusl;
The next three widgetProcs, onClickChangel, onClickChange2, and onQuit are copied

straight from the previous example in this tutorial, so there is no need to repeat their code and
description here.

The last piece of code of interest to us in this example is the mainAppWindow t.onCreate
method. This method is where the initialization of the new class data field variables takes place
and where the program sets up the onDb1Click, onkKillFocus, and onSetFocus event handlers:

method mainAppWindow t.onCreate;
var

thisPtr :dword;
begin onCreate;

mov (esi, thisPtr);

// Initialize the showState and enableDisableButton data fields:

mov (false, this.showState);
mov (true, this.blEnabled);

// Lets set up the buttonl's onSetFocus and onKillFocus event handlers:

mov (this.buttonl, esi);

(type wPushButton t [esi]).set onSetFocus(&onSetFocusl);

(type wPushButton t [esi]).set onKillFocus(&onKillFocusl);

// Set up button6's onDblClick handler:

mov (thisPtr, esi);

mov (this.button6, esi);

(type wPushButton t [esi]).set onDblClick(&onDblClick);

end onCreate;

Note that because this is an actual method in mainaAppwindow t class we can use the this

pointer to access fields of the mainappwindow object.

Okay, here’s the full source code to the 004 button3.hla file:

// b
//
//
// s

// enabling and disabling buttons,

utton3-

This program expands on button2 by demonstrating multiple buttons,
double clicks, showing and hiding buttons,

imulated button clicks,

program button3;

#linker ("comdlg32.lib")
#linker ("comctl32.1lib")
?compileAll 1= true;
?@NoDisplay = true;
?@NoStackAlign := true;
#includeOnce ("stdlib.hhf"

#inc

cons

ludeOnce ("howl.hhf")

t

applicationName := "Button Demo #3";
formX := w.CW USEDEFAULT;
formY := w.CW USEDEFAULT;
formw := 600;

formH := 600;

moving buttons, and resizing buttons.

// Let Windows position this guy

// Forward declarations for the onClick widgetProcs that we're going to
// call when a button is pressed.

proc
proc
proc
proc
proc
proc
proc
proc
proc
proc

onSetFocusl
onKillFocusl
onClickChangel
onClickChange?2
hideShowButton
enableDisableButton
moveButton
resizeButton
onDblClick

onQuit

:widgetProc;
:widgetProc;
:widgetProc;
:widgetProc;
:widgetProc;
:widgetProc;
:widgetProc;
:widgetProc;
:widgetProc;
:widgetProc;

@forward;
@forward;
@forward;
@forward;
@forward;
@forward;
@forward;
@forward;
@forward;
@forward;

// Here's the main form definition for the app:

wFor

m(mainAppWindow) ;

var
showState :boolean;
blEnabled :boolean;
align (4);

wPushButton

(
buttonl,

"Button #1",

// Field name in mainWindow object
// Caption for push button

10,

10,

125,

25,
onClickChangel

wPushButton

(

button2,

"Hide button 1",
175,

10,

125,

25,
hideShowButton

wPushButton

(

button3,

"Disable button 1",

175,
40,
125,
25,

enableDisableButton

wPushButton

(

button4,

"Move button 1",
175,

70,

125,

25,

moveButton

wPushButton

(

buttonb,

"Resize button 1",
175,

100,

125,

25,

resizeButton

wPushButton

(

buttono,

//
//
//
//
!/

!/
1/
1/
//
//
//
!/

//
//
//
//
//
//

!/
!/
1/
//
//
//
1/

//
//
//
//
//
//
//

//

X position

y position

width

height

initial "on click" event

Field name in mainWindow
Caption for push button
x position

y position

width

height

initial "on click" event

Field name in mainWindow
Caption for push button
x position

y position

width

height

initial "on click" event

Field name in mainWindow
Caption for push button

X position

y position

width

height

initial "on click" event

Field name in mainWindow
Caption for push button

x position

y position

width

height

initial "on click" event

Field name in mainWindow

handler

object

handler

object

handler

object

handler

object

handler

object

"DblClick to Click", // Caption for push button

175, // x position

130, // y position

125, // width

25, // height

NULL // no single click handler

// Place a quit button in the lower-right-hand corner of the form:

wPushButton
(
quitButton, // Field name in mainWindow object
"Quit", // Caption for push button
450, // x position
525, // y position
125, // width
25, // height
onQuit // "on click" event handler
)
endwForm

// Must invoke the following macro to emit the code generated by
// the wForm macro:

mainAppWindow implementation();

// The onDblClick widget proc will handle a double click on buttoné6
// and simulate a single click on button 1.

proc onDblClick:widgetProc;
begin onDblClick;

mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).click();

end onDblClick;

// The resizeButton widget proc will resize buttonl between widths 125 and 150.

proc resizeButton:widgetProc;
begin resizeButton;

mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).get width();
if(eax = 125) then

stdout.put ("Resizing button to width 150" nl);

(type wPushButton t [esi]).set width(150);
else

stdout.put ("Resizing button to width 125" nl);
(type wPushButton t [esi]).set width(125);

endif;

end resizeButton;

// The moveButton widget proc will move buttonl between y positions 10 and 40.

proc moveButton:widgetProc;
begin moveButton;

mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).get y();
if(eax = 10) then

stdout.put ("Moving button to y-position 40" nl);
(type wPushButton t [esi]).set y(40);

else
stdout.put ("Moving button to y-position 10" nl);
(type wPushButton t [esi]).set y(10);

endif;

end moveButton;

// The enableDisableButton widget proc will enable and disable buttonl.

proc enableDisableButton:widgetProc;
begin enableDisableButton;

mov (thisPtr, esi);
if (mainAppWindow.blEnabled) then

(type wPushButton t [esi]).set text("Enable button 1");
mov (false, mainAppWindow.blEnabled);

stdout.put ("Disabling button 1" nl);

mov (mainAppWindow.buttonl, esi);

(type wPushButton t [esi]) .disable();

else

(type wPushButton t [esi]).set text("Disable button 1");
mov (true, mainAppWindow.blEnabled);

stdout.put ("Enabling button 1" nl);

mov (mainAppWindow.buttonl, esi);

(type wPushButton t [esi]) .enable();

endif;

end enableDisableButton;

// The hideShowButton widget proc will hide and show buttonl.

proc hideShowButton:widgetProc;
begin hideShowButton;

mov (thisPtr, esi);
if (mainAppWindow.showState) then

(type wPushButton t [esi]).set text("Hide button 1");
mov (false, mainAppWindow.showState);
stdout.put ("Showing button 1" nl);
mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).show();
else
(type wPushButton t [esi]).set text("Show button 1");
mov (true, mainAppWindow.showState);
stdout.put ("Hiding button 1" nl);
mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]) .hide();

endif;

end hideShowButton;

// The onSetFocus and onKillFocus widgetProcs simply print to the console
// what has happened.

proc onSetFocusl:widgetProc;
begin onSetFocusl;

stdout.put ("Set focus to button 1" nl);
end onSetFocusl;
proc onKillFocusl:widgetProc;
begin onKillFocusl;
stdout.put ("Shifted focus from button 1" nl);
end onKillFocusl;
// Here's 1 of 2 onClick handlers for buttonl. This widgetProc

// changes the caption to "Restore caption" and sets the
// onClick pointer to point at the second onClick handler.

proc onClickChangel:widgetProc;
var

curCaption :string;
curCapBuf :char[256];

begin onClickChangel;

str.init (curCapBuf, @size(curCapBuf));
mov (eax, curCaption);

mov (thisPtr, esi); // ESI already contains this, but just in case...
// Print the current caption to the console window:

(type wPushButton t [esi]).get text(curCaption);

stdout.put ("Current captionl: ", curCaption, nl);

// Change the caption:

(type wPushButton t [esi]).set text("Restore Button #1");

// Point the onClick handler at onClickChange2:

(type wPushButton t [esi]).set onClick(&onClickChange2);

// Print the new caption to the console window:
(type wPushButton t [esi]).a get text();
stdout.put ("New captionl: ", (type string eax), nl nl);

str.free(eax);

end onClickChangel;

// Here's 2 of 2 onClick handlers for buttonl. This widgetProc
// changes the caption back to "Restore caption" and sets the
// onClick pointer to point at the first onClick handler.

proc onClickChange2:widgetProc;
var
curCaption :string;
curCapBuf :char[256];
begin onClickChange?2;

str.init (curCapBuf, @size(curCapBuf));
mov (eax, curCaption);

mov (thisPtr, esi); // ESI already contains this, but just in case...
// Print the current caption to the console window:
(type wPushButton t [esi]).get text(curCaption);

stdout.put ("Current caption2: ", curCaption, nl);

// Change the caption:

(type wPushButton t [esi]).set text("Button #1");
// Point the onClick handler at onClickChangel:

(type wPushButton t [esi]).set onClick(&onClickChangel);

// Print the new caption to the console window:

(type wPushButton t [esi]).a get text();
stdout.put ("New caption2: ", (type string eax), nl nl);
str.free(eax);

end onClickChange2;

//
//

Here's the onClick event handler for our quit button on the form.
This handler will simply quit the application:

proc onQuit:widgetProc;
begin onQuit;

// Quit the app:

w.PostQuitMessage(0);

end onQuit;

!/
!/
1/
//
//
//

We'll use the main application form's onCreate method to initialize
the various buttons on the form.

This could be done in appStart, but better to leave appStart mainly
as boilerplate code. Also, putting this code here allows us to use
"this" to access the mainAppWindow fields (a minor convenience) .

method mainAppWindow t.onCreate;

var

thisPtr :dword;

begin onCreate;

mov (esi, thisPtr);
// Initialize the showState and enableDisableButton data fields:

mov (false, this.showState);
mov (true, this.blEnabled);

// Lets set up the buttonl's onSetFocus and onKillFocus event handlers:
mov (this.buttonl, esi

)
(type wPushButton t [esi]).set onSetFocus(&onSetFocusl);
(type wPushButton t [esi]).set onKillFocus(&onKillFocusl);

// Set up button6's onDblClick handler:

mov (thisPtr, esi);
mov (this.button6, esi);
(type wPushButton t [esi]).set onDblClick(&onDblClick);

end onCreate;

LI 7777777777777 777 777777777777777777777777777777777777777
//

//

// The following is mostly boilerplate code for all apps (about the only thing
// you would change is the size of the main app's form)

//

//
LI 777777777777 777777777777 777777777777
//

// When the main application window closes, we need to terminate the

// application. This overridden method handles that situation. Notice the

// override declaration for onClose in the wForm declaration given earlier.

// Without that, mainAppWindow t would default to using the wVisual t.onClose
// method (which does nothing) .

method mainAppWindow t.onClose;
begin onClose;

// Tell the winmain main program that it's time to terminate.
// Note that this message will (ultimately) cause the appTerminate
// procedure to be called.

w.PostQuitMessage(0);

end onClose;

// When the application begins execution, the following procedure
// is called. This procedure must create the main

// application window in order to kick off the execution of the
// GUI application:

procedure appStart;
begin appStart;

push(esi);
// Create the main application window:

mainAppWindow.create mainAppWindow

(
applicationName, // Window title
w.WS_EX CONTROLPARENT, // Need this to support TAB control selection
w.WS_OVERLAPPEDWINDOW, // Style

NULL, // No parent window

formX, // Form x-coordinate

formy, // Form y-coordinate

formw, // Width

formH, // Height

howl.bkgColor g, // Background color

true // Make visible on creation
)i
mov (esi, pmainAppWindow); // Save pointer to main window object.
pop(esi);

end appStart;

// appTerminate-

//

// Called when the application is quitting, giving the app a chance

// to clean up after itself.

//

// Note that this is called *after* the mainAppWindow t.onClose method

// executes (indeed, mainAppWindow t.onClose, by posting the quit message,
// 1s what actually causes the program to begin terminating, which leads
// to the execution of this procedure).

procedure appTerminate;
begin appTerminate;

// Clean up the main application's form.
// Note that this will recursively clean up all the widgets on the form.

mainAppWindow.destroy () ;
end appTerminate;
// appException-
//
// Gives the application the opportunity to clean up before

// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

raise(eax);

end appException;

// The main program for a HOWL application must simply
// call the HowlMainApp procedure.

begin button3;

// Set up the background and transparent colors that the
// form will use when registering the window t class:

w.GetSysColor (w.COLOR MENU) ;

mov (eax, howl.bkgColor g);

or(SFF00_ 0000, eax);

mov (eax, howl.transparent g);
w.CreateSolidBrush(howl.bkgColor g);
mov (eax, howl.bkgBrush g);

// Start the HOWL Framework Main Program:
HowlMainApp () ;

// Delete the brush we created earlier:
w.DeleteObject (howl.bkgBrush g);

end button3;

The Manual Solution

Once again, it’s time to take a look at how to manually implement the HDL code directly in
HLA. We’re only going to see how this is done in a couple of chapters; however, the last chapter
didn’t really demonstrate much, so this chapter will show you the general mechanisms behind cre-
ating a HOWL application without using the HDL. Because the latter examples in this tutorial
have simply been extensions of the previous examples, we’ll only consider the 004x_button3.hla
source file in this section.

Everything in 004 _button3.hla and 004x_button3.hla are largely identical up to the wForm
statement. At that point, the two source files diverge for a while; we’ll discuss the parts of the files
that are actually different.

Remember, the wForm..endwForm statement in 004 button3.hla is a class declaration. There-
fore, the wForm (mainaAppwindow) clause is going to translate into an HLA class declaration:

type

// Create a new class for our main application window.
// All application forms must be derived from wForm t:

mainAppWindow t:
class inherits(wForm t);

<< mainAppWindow t class declarations >>

endclass;

For each button we place on the form, we’ve got to have a corresponding data field declara-
tion. Combined with the two data fields appearing in the 004 _button3.hla source file, we have the
following declarations at the beginning of the class:

mainAppWindow t:

class inherits(wForm t);

// We have to add VAR declarations for all our widgets

// here.

var
buttonl :wPushButton p;
button?2 :wPushButton p;
button3 :wPushButton p;
button4 :wPushButton p;
buttonb :wPushButton p;
button6 :wPushButton p;
quitButton :wPushButton p;
showState :boolean;
blEnabled :boolean;
align (4);

The buttonl..button6 and quitButton declarations correspond to the wButton declara-
tions in the 004_button3.hla source file.

Every class derived from wForm_t needs to override the onCreate and onClose methods.
The onclose method is the code that actually tells Windows to terminate the program (it’s part of
the boilerplate code that appears in all the tutorial files) and the oncreate method is where
004x_button3.hla puts the code to initialize the object’s data field variables and set up the event
handlers. Here’s the class prototypes for these methods (which immediately follows the data field
declarations given above):

// We need to override these:

override method onClose;
override method onCreate;

The last declaration in the mainAppWindow t class is the constructor for the class. Here’s the
procedure declaration for the constructor (and the end of the class declaration):

// Every main application window must have a
// constructor with the following prototype:

procedure create mainAppWindow
(
caption :string;
exStyle :dword;

style :dword;
parent :dword;
X :dword;
y :dword;
width :dword;

height :dword;
bkgClr :dword;
visible :boolean

)

endclass;

After the class declaration, there is some (basically boilerplate) code that declares a pointer
type to the class, declares the VMT, an object of the class type, and a pointer to that object:

mainAppWindow p :pointer to mainAppWindow t;
// Must have the following declarations in all (manually written) HOWL apps:

static
vmt (mainAppWindow t);
mainAppWindow: mainAppWindow t;
pmainAppWindow: mainAppWindow p := &mainAppWindow;

The mainappwindow variable is the actual class object for the form. Most apps will never
actually use this variable (why use pmainAppWindow when mainAppWindow is available?), never-
theless it doesn’t hurt to declare it just in case it’s convenient to use for some purpose.

The next bit of code in 004x_button3.hla is the constructor for the mainappWindow t class.
Let’s take a look at this code in a piece-by-piece fashion:

// Here is the constructor we must supply for the mainAppWindow class:

procedure mainAppWindow t.create mainAppWindow
(

caption :string;

exStyle :dword;

style :dword;
parent :dword;
X :dword;
vy :dword;
width :dword;

height :dword;
bkgClr :dword;
visible :boolean

var
main :mainAppWindow p;

begin create mainAppWindow;

push(eax);
push(ebx);
push(ecx);
push(edx);

// Standad main form initialization:

//

// If a class procedure call (not typical), then allocate storage
// for this object:

if(esi = NULL) then
mem.alloc(@size(mainAppWindow t));
mov (eax, esi);
mov (true, cl);
else
mov (this.wBase private.onHeap, cl);
endif;

The code above is mostly typical of any HLA class constructor. If ESI contains NULL upon
entry, this means you’ve called the constructor as a class constructor (e.g., mainAppWin-
dow t.create mainAppWindow, notice the “ t” at the end of mainAppwindow t) that tells the
constructor you want to create a new object whose storage is allocated on the heap. Generally, this
will not be the case because you’ll normally call the constructor using the call mainappwin-
dow.create mainAppWindow (notice the lack of a “ t” at the end of the first mainAppwindow in
this call). When called this way, ESI will contain the address of the mainappwindow variable upon
entry into the constructor.

About the only thing novel about this code (novel may be too strong a word as almost every
manually-written HOWL application does this) is the fact that the CL register is loaded with true
or false depending on whether the object was initialized on the heap (note that the static declara-
tion of mainAppWindow variable initializes the this.wBase private.onHeap field to false auto-
matically when the program is loaded into memory). At a later time in this procedure the program
will store the value of CL into the this.wBase private.onHeap data field.

Note that this code accesses private data fields of the wease t class. In applications, such
access is normally forbidden. However, keep in mind that we are writing the class constructor for
a HOWL class here, and HOWL class procedures and methods can access the private data fields.

Moving on, the next piece of code handles the generic wForm_t object initialization by calling
the parent class’ constructor:

// Call the wForm t constructor to do all the default initialization:

(type wForm t [esi]).create wForm
(

"mainAppWindow",

caption,

exStyle,

style,

parent,

xl

Y

width,

height,

bkgClr,

visible

)

The call above is where most of the real initialization work for a generic wForm t object actually
gets done.

The next step is to initialize the object’s VMT pointer with the address of the
mainAppWindow t VMT. Again, this is standard HLA constructor initialization stuff:

// Initialize the VMT pointer:

mov (&mainAppWindow t. VMT , this. pVMT);

Next, we initialize the this.wBase private.onHeap variable with the value saved in the CL
register and we also preserve the value of the this pointer (held in EST) because we’re about to call
several class constructors that will wipe out ESI’s value:

// Retrieve the onHeap value from above and store it into
// the onHeap data field:

mov(cl, this.wBase private.onHeap);

// Preserve "this" because we're about to make an object call
// that will overwrite this' value:

mov (esi, main);

In the 004 _button3.hla source file, we didn’t have direct access to the constructor for the
mainAppWindow_t class, so we stuck the application-specific initialization for that class in the
onCreate method. However, as we’re writing the constructor manually in this example, we may
as well put that object initialization code directly in the constructor. So here’s the code that initial-
izes the showstate and b1Enabled data fields:

// Initialize the showState and enableDisableButton data fields:

mov (false, this.showState);
mov (true, this.blEnabled);

And now, the real fun begins. For each of the buttons on the form (that is, for each of the
wPushButton HDL declarations appearing in the 004_button3.hla wForm. . endwForm statement),
we need to call a wpushButton constructor and perform various housekeeping activities to add
that button to our mainAppWindow form. The next sequence of statements in the constructor, for
example, creates the main push button (button1) on the form:

// The primary push button on the form:

wPushButton t.create wPushButton

(

"buttonl", // Button name

"Press to change", // Caption for push button
this.handle, // Parent window handle

10, // x position

10, // vy position

125, // width

25, // height

sonClickChangel // initial "on click" event handler

Note that upon return from the (class) constructor above, ESI no longer points at the main-
AppWindow form object, instead it contains the address of the new wPushButton object created on
the heap. As long as we have easy access to the buttonl object (in ESI), we can write some code
to register the onsetFocus and onkillFocus event handlers (this was done in the onCreate

method in the 004_button3.hla source file because we couldn’t insert code directly into the
wForm. .endwForm statement):
// Set up the onSetFocus and onKillFocus widgetProcs.

(type wPushButton t [esi]).set onSetFocus(&onSetFocusl);
(type wPushButton t [esi]).set onKillFocus(&onKillFocusl);

The last thing we have to do with a new object is store away the object’s pointer (currently in
ESI) into the buttonl data field of the main form.

mov (esi, mainAppWindow.buttonl); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

We repeat this process for all the remaining buttons. However, except for button6, there
aren’t any event handlers to be initialized, so we drop the code that registers the widgetProcs for
most of these buttons:

// The show/hide button on the form:

wPushButton t.create wPushButton

(

"button2", // Button name

"Hide button 1", // Caption for push button

this.handle, // Parent window handle

175, // x position

10, // vy position

125, // width

25, // height

&hideShowButton // initial "on click" event handler
)
mov (esi, mainAppWindow.button2); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The enable/disable button on the form:

wPushButton t.create wPushButton

(

"button3", // Button name

"Disable button 1", // Caption for push button

this.handle, // Parent window handle

175, // x position

40, // y position

125, // width

25, // height

&enableDisableButton // initial "on click" event handler
)
mov (esi, mainAppWindow.button3); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The move button on the form:

wPushButton t.create wPushButton

(

"buttond", // Button name

"Move button 1", // Caption for push button

this.handle, // Parent window handle

175, // x position

70, // y position

125, // width

25, // height

&moveButton // initial "on click" event handler
)
mov (esi, mainAppWindow.buttond4); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The resize button on the form:

wPushButton t.create wPushButton

(

"button5", // Button name

"Resize button 1", // Caption for push button

this.handle, // Parent window handle

175, // x position

100, // y position

125, // width

25, // height

&resizeButton // initial "on click" event handler
)
mov (esi, mainAppWindow.buttonb); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

The double-click button (buttoné) requires the registration of an onbb1C1ick event handler.
So the code that initializes this button object contains an extra line of code that handles that chore:

// The double-click button on the form:

wPushButton t.create wPushButton

(

"button6", // Button name

"DblClick to Click", // Caption for push button
this.handle, // Parent window handle

175, // x position

130, // vy position

125, // width

25, // height

NULL // initial "on click" event handler

)
// Set up the onDblClick event handler:
(type wPushButton t [esi]).set onDblClick(&onDblClick);

mov (esi, mainAppWindow.button6); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

The creation of the quit button completes the initialization of buttons on the form:

// We need to create a quit button and store the pointer to the
// new button object in the this.button field on the form:

wPushButton t.create wPushButton
(
"quitButton",
"Quit",
this.handle,
450,
525,
125,
25,
gonQuit
)i

//
//
//
//
/7
//
//
//

mov (esi, mainAppWindow.quitButton

main.insertWidget (esi);

Button name

Caption

parent window handle

X position

y position

width

height

"on click" event handler

) // Save ptr to new button
// Add button to wForm's widget list.

The last thing a wrForm (or derived from wForm) constructor must do is call the oncreate
method. As it turns out, onCreate is often empty in HOWL applications that manually define the
form(after all, you could simply insert whatever code you’d put into onCreate in place of this
call), but just in case someone decides to stick some code in onCreate at a later date, it’s a good

1dea to make this call:

this.onCreate();
pop (edx);
pop(ecx);
pop (ebx);
pop(eax);

end create mainAppWindow;

//

Be nice, call this guy (even if empty).

Once you’re done with the constructor, the remaining code in the program is identical to that
in the 004_button3.hla source file with one exception: the oncreate method is now empty
because we’ve moved all that code into the constructor:

method mainAppWindow t.onCreate;
begin onCreate;
end onCreate;

Here’s the complete source file for 004x_button3.hla:

// button3-

program button3;
#linker ("comdlg32.1lib")
#linker ("comctl32.1lib")

?@NoDisplay = true;
?@NoStackAlign true;

"stdlib.hhf"
"howl.hhf")

#includeOnce (
#includeOnce (

const

applicationName :=
formX =
formY 1=
formw =
formH =

600;
600;

type

// Create a new class for our

"Button Demo #3x";
W.CWiUSEDEFAULT;
w.CW _USEDEFAULT;

// Let Windows position this

main application window.

// All application forms must be derived from wForm t:

mainAppWindow t:

class inherits(wForm t);

// We have to add VAR declarations for all our widgets

// here.

var
buttonl
button?2
button3
button4
buttonb
button6
quitButton
showState
blEnabled
align (4);

// We need to override these

:wPushButton p;
:wPushButton p;
:wPushButton p;
:wPushButton p;
:wPushButton p;
:wPushButton p;
:wPushButton p;
:boolean;

:boolean;

(actually, onClose is the

// only one that is important):

override method onClose;
override method onCreate;

// Every main application window must have a
// constructor with the following prototype:

procedure create mainAppWindow

(
caption
exStyle
style
parent
X
Yy
width
height
bkgClr
visible

:string;
:dword;
:dword;
:dword;
:dword;
:dword;
:dword;
:dword;
:dword;
:boolean

guy

endclass;
mainAppWindow p :pointer to mainAppWindow t;
// Must have the following declarations in all (manually written) HOWL apps:
static
vmt (mainAppWindow t);

mainAppWindow: mainAppWindow t;
pmainAppWindow: mainAppWindow p := &mainAppWindow;

// Forward declarations for the onClick widgetProcs that we're going to
// call when a button is pressed.

proc onSetFocusl :widgetProc; @forward;
proc onKillFocusl :widgetProc; @forward;
proc onClickChangel :widgetProc; @forward;
proc onClickChange?2 :widgetProc; @forward;
proc hideShowButton :widgetProc; @forward;
proc enableDisableButton :widgetProc; Q@forward;
proc moveButton :widgetProc; Q@forward;
proc resizeButton :widgetProc; @forward;
proc onDblClick :widgetProc; @forward;
proc onQuit :widgetProc; @forward;

// Here is the constructor we must supply for the mainAppWindow class:

procedure mainAppWindow t.create mainAppWindow

(
caption :string;
exStyle :dword;

style :dword;
parent :dword;
X :dword;
vy :dword;

width :dword;
height :dword;
bkgClr :dword;
visible :boolean
)i
var
main :mainAppWindow p;

begin create mainAppWindow;

push(eax);
push(ebx);
push(ecx);
push(edx);

// Standad main form initialization:

/7

// If a class procedure call (not typical), then allocate storage
// for this object:

if(esi = NULL) then
mem.alloc(@size(mainAppWindow t));
mov (eax, esi);
mov (true, cl);
else
mov (this.wBase private.onHeap, cl);
endif;

// Call the wForm t constructor to do all the default initialization:

(type wForm t [esi]).create wForm
(

"mainAppWindow",

caption,

exStyle,

style,

parent,

Xl

Y

width,

height,

bkgClr,

visible

)i
// Initialize the VMT pointer:
mov (&mainAppWindow t. VMT , this. pVMT);

// Retrieve the onHeap value from above and store it into
// the onHeap data field:

mov (cl, this.wBase private.onHeap);

// Preserve "this" because we're about to make an object call
// that will overwrite this' value:

mov (esi, main);

// Initialize the showState and enableDisableButton data fields:

mov (false, this.showState);
mov (true, this.blEnabled);

// The primary push button on the form:

wPushButton t.create wPushButton

(

"buttonl", // Button name

"Press to change", // Caption for push button
this.handle, // Parent window handle
10, // x position

10, // y position

125, // width

25, // height

sonClickChangel // initial "on click" event handler

// Set up the onSetFocus and onKillFocus widgetProcs.

(type wPushButton t [esi]).set onSetFocus(&onSetFocusl);
(type wPushButton t [esi]).set onKillFocus(&onKillFocusl);

mov (esi, mainAppWindow.buttonl); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The show/hide button on the form:

wPushButton t.create wPushButton

(

"button2", // Button name

"Hide button 1", // Caption for push button

this.handle, // Parent window handle

175, // x position

10, // y position

125, // width

25, // height

&hideShowButton // initial "on click" event handler
)i
mov (esi, mainAppWindow.button2); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The enable/disable button on the form:

wPushButton t.create wPushButton

(

"button3", // Button name

"Disable button 1", // Caption for push button

this.handle, // Parent window handle

175, // x position

40, // vy position

125, // width

25, // height

&enableDisableButton // initial "on click" event handler
)
mov (esi, mainAppWindow.button3); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The move button on the form:

wPushButton t.create wPushButton

(
"buttond", // Button name
"Move button 1", // Caption for push button
this.handle, // Parent window handle

175, // x position

70, // y position

125, // width

25, // height

&moveButton // initial "on click" event handler
)
mov (esi, mainAppWindow.buttond4); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The resize button on the form:

wPushButton t.create wPushButton

(

"button5", // Button name

"Resize button 1", // Caption for push button

this.handle, // Parent window handle

175, // x position

100, // y position

125, // width

25, // height

&resizeButton // initial "on click" event handler
)
mov (esi, mainAppWindow.button5); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// The double-click button on the form:

wPushButton t.create wPushButton

(

"buttoné6", // Button name

"DblClick to Click", // Caption for push button
this.handle, // Parent window handle

175, // x position

130, // y position

125, // width

25, // height

NULL // initial "on click" event handler

) ;
// Set up the onDblClick event handler:
(type wPushButton t [esi]).set onDblClick(&onDblClick);

mov (esi, mainAppWindow.button6); // Save ptr to new button
main.insertWidget (esi); // Add button to wForm's widget list.

// We need to create a quit button and store the pointer to the
// new button object in the this.button field on the form:

wPus

(

)
mov (
main

this
pop (
pop (
pop (
pop (

end crea

hButton t.create wPushButton

"quitButton", //
"Quit™", //
this.handle, //
450, //
525, //
125, /7
25, /7
gonQuit //

esi, mainAppWindow.quitButton
.insertWidget (esi);

.onCreate () ; //
edx);
ecx);
ebx);
eax);

te mainAppWindow;

Button name

Caption

parent window handle

x position

y position

width

height

"on click" event handler

); // Save ptr to new button
// Add button to wForm's widget list.

Be nice, call this guy (even if empty).

// The onDblClick widget proc will handle a double click on buttoné6
// and simulate a single click on button 1.

proc onD
begin on

mov (
(typ

end onDb

blClick:widgetProc;

DblClick;
mainAppWindow.buttonl, esi);
e wPushButton t [esi]).click();

1Click;

// The resizeButton widget proc will resize buttonl between widths 125 and 150.

proc res
begin re

mov (

(typ
1f(

else

izeButton:widgetProc;
sizeButton;

mainAppWindow.buttonl, esi);

e wPushButton t [esi]).get width();

eax = 125) then

stdout.put ("Resizing button to width 150" nl);
(type wPushButton t [esi]).set width(150);

stdout.put ("Resizing button to width 125" nl);
(type wPushButton t [esi]).set width(125);

endif;

end resizeButton;

// The moveButton widget proc will move buttonl between y positions 10 and 40.

proc moveButton:widgetProc;
begin moveButton;

mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]).get y();
if(eax = 10) then

stdout.put ("Moving button to y-position 40" nl);
(type wPushButton t [esi]).set y(40);

else
stdout.put ("Moving button to y-position 10" nl);
(type wPushButton t [esi]).set y(10);

endif;

end moveButton;

// The hideShowButton widget proc will hide and show buttonl.

proc enableDisableButton:widgetProc;
begin enableDisableButton;

mov (thisPtr, esi);
if (mainAppWindow.blEnabled) then

(type wPushButton t [esi]).set text("Enable button 1");
mov (false, mainAppWindow.blEnabled);

stdout.put ("Disabling button 1" nl);

mov (mainAppWindow.buttonl, esi);

(type wPushButton t [esi]) .disable();

else

(type wPushButton t [esi]).set text("Disable button 1");
mov (true, mainAppWindow.blEnabled);

stdout.put ("Enabling button 1" nl);

mov (mainAppWindow.buttonl, esi);

(type wPushButton t [esi]) .enable();

endif;

end enableDisableButton;

// The hideShowButton widget proc will hide and show buttonl.

proc hideShowButton:widgetProc;
begin hideShowButton;

mov (thisPtr, esi);
if (mainAppWindow.showState) then

(type wPushButton t [esi]).set text("Hide button 1");

mov (false, mainAppWindow.showState);
stdout.put ("Showing button 1" nl);
mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]) .show();

else

(type wPushButton t [esi]).set text("Show button 1");

mov (true, mainAppWindow.showState);
stdout.put ("Hiding button 1" nl);
mov (mainAppWindow.buttonl, esi);
(type wPushButton t [esi]) .hide();

endif;

end hideShowButton;

// The onSetFocus and onKillFocus widgetProcs
// what has happened.

proc onSetFocusl:widgetProc;
begin onSetFocusl;

stdout.put ("Set focus to button 1" nl);
end onSetFocusl;
proc onKillFocusl:widgetProc;
begin onKillFocusl;

stdout.put ("Shifted focus from button 1"

end onKillFocusl;

// Here's 1 of 2 onClick handlers for buttonl.

simply print to the console

nl);

This widgetProc

// changes the caption to "Restore caption" and sets the
// onClick pointer to point at the second onClick handler.

proc onClickChangel:widgetProc;
var
curCaption :string;
curCapBuf :char[256];

begin onClickChangel;

str.init (curCapBuf, @size(curCapBuf));
mov (eax, curCaption);

mov (thisPtr, esi); // ESI already contains this,

// Print the current caption to the console window:

(type wPushButton t [esi]).get text(curCaption);

stdout.put ("Current captionl: ", curCaption, nl);

// Change the caption:

but just in case...

(type wPushButton t [esi]).set text("Restore Button #1");

// Point the onClick handler at onClickChange?2:

(type wPushButton t [esi]).set onClick(&onClickChange2);

// Print the new caption to the console window:

(type wPushButton t [esi]).a get text();

stdout.put ("New captionl: ", (type string eax), nl nl

str.free(eax);

end onClickChangel;

// Here's 2 of 2 onClick handlers for buttonl.
// changes the caption back to "Restore caption" and sets the
// onClick pointer to point at the first onClick handler.

proc onClickChange2:widgetProc;

var

curCaption :string;
curCapBuf :char[256];

begin onClickChange?2;

str.init (curCapBuf, @size(curCapBuf));
mov (eax, curCaption);

mov (thisPtr, esi); // ESI already contains this,

// Print the current caption to the console window:
(type wPushButton t [esi]).get text(curCaption);
stdout.put ("Current caption2: ", curCaption, nl);
// Change the caption:

(type wPushButton t [esi]).set text("Button #1");

// Point the onClick handler at onClickChangel:

This widgetProc

but just in case...

(type wPushButton t [esi]).set onClick(&onClickChangel);

// Print the new caption to the console window:

(type wPushButton t [esi]).a get text();
stdout.put ("New caption2: ", (type string eax), nl nl);
str.free(eax);

end onClickChange2;

// Here's the onClick event handler for our quit button on the form.
// This handler will simply quit the application:

proc onQuit:widgetProc;
begin onQuit;

// Quit the app:
w.PostQuitMessage(0);

end onQuit;

// We'll use the main application form's onCreate method to initialize
// the various buttons on the form.

//

// This could be done in appStart, but better to leave appStart mainly
// as boilerplate code. Also, putting this code here allows us to use
// "this" to access the mainAppWindow fields (a minor convenience).

method mainAppWindow t.onCreate;
begin onCreate;
end onCreate;

[117700777 77777077777 777
//

//

// The following is mostly boilerplate code for all apps (about the only thing
// you would change is the size of the main app's form)

//

//

[T 777777777777 77777 77777777777 777
//

// When the main application window closes, we need to terminate the

// application. This overridden method handles that situation. Notice the

// override declaration for onClose in the wForm declaration given earlier.

// Without that, mainAppWindow_ t would default to using the wVisual t.onClose
// method (which does nothing).

method mainAppWindow t.onClose;
begin onClose;

// Tell the winmain main program that it's time to terminate.
// Note that this message will (ultimately) cause the appTerminate
// procedure to be called.

w.PostQuitMessage(0);

end onClose;

//
//
//
//

When the application begins execution, the following procedure
is called. This procedure must create the main

application window in order to kick off the execution of the
GUI application:

procedure appStart;
begin appStart;

push(esi);

// Create the main application window:

mainAppWindow.create mainAppWindow

(
applicationName, // Window title
w.WS_EX CONTROLPARENT, // Need this to support TAB control selection
w.WS_OVERLAPPEDWINDOW, // Style

NULL, // No parent window

formX, // Form x-coordinate

formy, // Form y-coordinate

formw, // Width

formH, // Height

howl.bkgColor g, // Background color

true // Make visible on creation
)i
pop(esi);

end appStart;

//
//
//
//
//
//
//
//
//

appTerminate-
Called when the application is quitting, giving the app a chance
to clean up after itself.

Note that this is called *after* the mainAppWindow t.onClose method
executes (indeed, mainAppWindow t.onClose, by posting the quit message,
is what actually causes the program to begin terminating, which leads
to the execution of this procedure).

procedure appTerminate;
begin appTerminate;

// Clean up the main application's form.
// Note that this will recursively clean up all the widgets on the form.

mainAppWindow.destroy () ;
end appTerminate;
// appException-
//
// Gives the application the opportunity to clean up before

// aborting when an unhandled exception comes along:

procedure appException(theException:dword in eax);
begin appException;

raise(eax);

end appException;

// The main program for a HOWL application must
// call the HowlMainApp procedure.

begin button3;

// Set up the background and transparent colors that the
// form will use when registering the window t class:

w.GetSysColor (w.COLOR MENU) ;

mov (eax, howl.bkgColor g);

or(SFF00 0000, eax);

mov (eax, howl.transparent g);
w.CreateSolidBrush (howl.bkgColor g);
mov (eax, howl.bkgBrush g);

// Start the HOWL Framework Main Program:
HowlMainApp () ;

// Delete the brush we created earlier:

w.DeleteObject (howl.bkgBrush g);

end button3;

	Randy Hyde’s Win32 Assembly Language Tutorials (Featuring HOWL)
	#2: Buttons
	Prerequisites:
	Source Code:
	Push Buttons:
	1. Change the windowTitle string at the beginning of the file to a more meaningful name (e.g., "Button Demo #1").
	2. Insert the declaration for any new widgets you want between the wForm and endwForm statements.
	3. Add any necessary widgetProcs after the declarations (and prototypes for those widgetProcs before the wForm statement).

	The HOWL wVisual_t, wPushButton, wButton, and wClickable_t Classes
	Another Button Example: Button2
	Button3: Demonstrating Lots of Button Methods
	The Manual Solution

