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Chapter 3: The C - Assembly Connection

3.1: Why are We Reading About C?

You probably purchased this book to learn assembly language programming under Windows (after a
what the title promises).  This chapter is going to spend considerable time talking about the C programm
guage.  Now assembly language programmers fall into two camps with respect to the C programming la
those who already know it and don’t really need to learn a whole lot more about C, and those who don’t 
and probably don’t want to learn it, either.  Unfortunately, as the last chapter points out, the vast majority 
dows programming documentation assumes that the reader is fluent in C.  This book cannot begin to pr
the information you may need to write effective Win32 applications;  therefore, this chapter does the ne
thing - it describes how you can translate that C documentation for use in your assembly language progr

This chapter contains two main sections.  The first section provides a basic description of the C progr
language for those readers who are not familiar with the C/C++ programming language.  It describes
statements in C/C++ and provides their HLA equivalents.  Though far from a complete course on the C p
ming language, this section will provide sufficient information to read some common Win32 program
examples in C and translate them into assembly language.  Experienced C/C++ programmers can ele
this section (though if you’re not comfortable with HLA, you may want to skim over this section because
help you learn HLA from a C perspective).  The second portion of this chapter deals with the Win32 interfa
how C passes parameter data to and from Windows.  Unless you’re well-versed in compiler construction
language calling sequences, and you’ve examined a lot of compiler code, you’ll probably want to take a
this material.  

3.2: Basic C Programming From an Assembly Perspective

The C programming language is a member of the group of programming languages known as the imperative
or procedural programming languages.  Languages in this family include FORTRAN, BASIC, Pascal (D
Kylix), Ada, Modula-2, and, of course, C.  Generally, if you’ve learned to write programs in one of thes
guages, it’s relatively easy to learn one of the other languages in the same category.  When you attempt 
new language from a different class of languages (i.e., you switch programming paradigms), it’s almost like
you’re learning to program all over again;  learning a new language that is dissimilar to the one(s) you 
know is a difficult task.  A recent trend in programming language design has been the hybrid language.  A hybrid
language bridges the gap between two different programming paradigms.  For example, the C++ langu
hybrid language that shares attributes common to both procedural/imperative languages and object-orie
guages.  Although hybrid languages often present some compromises on one side or the other of the 
span, the advantage of a hybrid language is that it is easy to learn a new programming paradigm if you’re
familiar with one of the programming methodologies that the language presents.  For example, progr
who already know find it much easier to learn object-oriented programming via C++ rather than learn
object-oriented programming paradigm from scratch, say by learning Smalltalk (or some other “pure” obj
ented language).  So hybrid languages are good in the sense that they help you learn a new way of prog
by leveraging your existing knowledge.

The High Level Assembler, HLA, is a good example of a hybrid programming language.  While a true 
bly language, allowing you to do just about anything that is possible with a traditional (or low-level) assembler,
HLA also inherits some syntax and many other features from various high-level imperative programmi
guages.  In particular, HLA borrows several control and data structures from the C, Pascal, Ada, and M
programming languages.  The original intent for this design choice was to make it easier to learn assem
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guage if you already knew an high level language like Pascal or C/C++.  By borrowing heavily from the 
of these high-level programming languages, a new assembly language programmer could learn assem
gramming much more rapidly by leveraging their C/C++/Pascal knowledge during the early phase o
assembly education.  

Note, however, that the reverse is also true.  Someone who knows HLA well but doesn’t know C can u
HLA knowledge to help them learn the C programming language.  HLA’s high level control structure
strongly based on languages like C and Modula-2 (or Ada);  therefore, if you’re familiar with HLA’s high
control structures, then learning C’s control structures will be a breeze.  The sections that immediately fo
this concept to teach some basic C syntax.  For those programmers who are not comfortable or fami
HLA’s high level control structures, the following subsections will also describe how to convert between 
assembly language and various C control structures.  The ultimate goal here is to show you how to c
code to HLA assembly code;  after all, when reading some Win32 programming documentation, you’re g
need to convert the examples you’re reading in C into assembly language.   Although it is always possi
very easy) to convert any C control structure directly into assembly language, the reverse is not true.  Tha
possible to devise some control flow scheme in assembly language that does not translate directly int
level language like C.  Fortunately, for our purposes, you generally won’t need to go in that direction.  S
though you’re learning about C from an assembly perspective (that is, you’re being taught how to read C
studying the comparable assembly code), this is not a treatise on converting assembly into C (which can 
difficult task if the assembly code is not well structured).

3.2.1: C Scalar Data Types

The C programming language provides three basic scalar data types1: integers, and a couple floating poin
types.  Other data types you’d find in a traditional imperative programming language (e.g., character or 
values) are generally implemented with integer types in C.  Although C only provides three basic scalar 
does provide several variations of the integer and floating point types.  Fortunately, every C data typ
directly to an HLA structured data type, so conversion from C to HLA data types is a trivial process.

3.2.1.1: C and Assembler Integer Data Types

The C programming language specifies (up to) four different integer types: char (which, despite its name, is
a special case of an integer value), short, int, and long. A few compilers support a fifth size, “long long”. I
general, the C programming language does not specify the size of the integer values; that decision 
whomever implements a specific compiler. However, when working under Windows (Win32), you can ma
following assumptions about integer sizes:

• char - one byte

• short - two bytes

• int, long - four bytes

1. For our purposes, a scalar data type is a primitive or atomic data type;  one that the language treats as a single unit, tha isn’t 
composed of smaller items (like, say, elements of an array or fields of a structure).
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The C programming language also specifies two types of integers: signed and unsigned. By default,
ger values are signed. You can explicitly specify unsigned by prefacing one of these types with the k
unsigned. Therefore, C’s integral types map to HLA’s types as shown in Table 3-1.

Table 3-1: Integer Type Correspondence Between HLA and C 

Generic integer literal constants in C take several forms.  C uses standard decimal representation fo
integer constants, just like most programming languages (including HLA).  For example, the sequence o

128

represents the literal integer constant 128.

If a literal integer constant begins with a zero (followed by one or more octal digits in the range 0..7),
treats the literal constant as a base-8 (octal) value.  HLA doesn’t support octal constants, so you will have
ually convert such constants to decimal or hexadecimal prior to using them in an assembly language p
Fortunately, you rarely see octal constants in modern C programs (especially in Win32 programs).

C integer literal constants that begin with “0x” are hexadecimal (base-16) constants.  You will repla
“0x” prefix with a “$” prefix when converting the value from C to HLA.  For example, the C literal cons
“0x1234ABCD” becomes the HLA literal constant “$1234ABCD”.

C also allows the use of an “L” suffix on a literal integer constant to tell the compiler that this shoul
long integer value.  HLA automatically adjusts all literal constants to the appropriate size, so there is no
tell HLA to extend a smaller constant to a long (32-bit) value.  If you encounter an “L” suffix in a C litera
stant, just drop the suffix when translating the value to assembly.

C Type Corresponding HLA Types

char char, byte, int8a

a.Some compilers have an option that lets you specify the use of un-
signed char as the default.  In this case,  the corresponding HLA type is
uns8.

short word, int16

int dword, int32

long dword, int32

long long qword, int64

unsigned char char, byte, uns8

unsigned short word, uns16

unsigned dword, uns32

unsigned int dword, uns32

unsigned long dword, uns32

unsigned long long qword, uns64
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3.2.1.2: C and Assembly Character Types

As the previous section notes, C treats character variables and constants as really small (one-byte
values.  There are some non-intuitive aspects to using C character variables that can trip you up;  hence
ence of this section.

The first place to start is with a discussion of C and HLA literal character constants.  The two literal for
quite similar, but there are just enough differences to trip you up if you’re not careful.  The first thing to 
that both HLA and C treat a character constant differently than a string containing one character. We’
character strings a little later in this chapter, but keep in mind that character objects are not a special 
string object.  

A character literal constant in C and HLA usually consists of a single character surrounded by apo
characters. E.g., ‘a’ is a character constant in both of these languages. However, HLA and C differ when
with non-printable (i.e., control) and a couple of other characters. C uses an escape character sequence to repre-
sent the apostrophe character, the backslash character, and the control characters. For example, to re
apostrophe character itself, you’d use the C literal constant ‘\’’. The backslash tells C to treat the followin
specially; in this particular case, the backslash tells C to treat the following apostrophe character as a
character rather than using it to terminate the character constant. Likewise, you use ‘\\’ to tell C that you
single backslash character constant. C also uses a backslash followed by a single lowercase alphabetic
to denote common control characters. Table 3-2 lists the escape character sequences that C defines.

Table 3-2: C Escape Character Sequences 

C also allows the specification of the character’s numeric code by following a backslash with an octal o
decimal constant in the range 0..0xff, e.g., ‘\0x1b’.  

HLA does not support escape character sequences using the backslash character. Instead, HLA use
sign (‘#’) followed immediately by a numeric constant to specify the ASCII character code. Table 3-3 show
to translate various C escape sequences to their corresponding HLA literal character constants.

C Escape 
Sequence

Control Character

‘\n’ New line (carriage return/line feed under Windows, 
though C encodes this as a single line feed)

‘\r’ Carriage return

‘\b’ Backspace

‘\a’ Alert (bell character, control-G)

‘\f’ Form Feed (control-L)

‘\t’ Tab character (control-I)

‘\v’ Vertical tab character (control-k)
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Table 3-3: Converting C Escape Sequences to HLA Character Constants 

Because C treats character values as single-byte integer values, there is another interesting aspect to
values in C - they can be negative.  One might wonder what “minus ‘z’” means, but the truth is, there rea
such thing as a negative character;  C simply uses signed characters to represent small integer values in
-128..+127 (versus unsigned characters that represent values in the range 0..255).  For the standard
ASCII characters, the values are always positive, regardless of whether you’re using a signed charac
unsigned character object.  Note, however, that many C functions return a signed character value to sp
tain error conditions or other states that you cannot normally represent within the ASCII character set.  Fo
ple, many functions return the character value minus one to indicate end of file.

3.2.1.3: C and Assembly Floating Point (Real) Data Types

The C programming language defines three different floating point sizes: float, double, and long double2.
Like the integer data type sizes, the C language makes no guarantees about the size or precision of floa
values other than to claim that double is at least as large as float and long double is at least as large as double.
However, while nearly every C/C++ compiler that generates code for Windows uses the same sizes for
(8, 16, and 32 bits for char, short, and int/long), there are differences in the sizes of floating objects among c
pilers.  In particular, some compilers use a 10-byte extended precision format for long double (e.g., Borland)
while others use an eight-byte double precision format (e.g., Microsoft).  Fortunately, all (reasonable) co
running under Windows use the IEEE 32-bit single-precision format for float and the IEEE 64-bit double-preci
sion format for double.  If you encounter a long double object in C code, you will have to check with the com

C Escape 
Sequence

HLA 
Character 
Constant

Description

‘\n’ #$a  #$d Note that the end of line sequence under Windows is not a character, but rat
string consisting of two characters.  If you need to represent newline with a 
gle character, using a linefeed (as see does) whose ASCII code is $A;  linef
is also defined in the HLA Standard Library as stdio.lf.  Note that the “nl” sym
bol an HLA user typically uses for newline is a two-character string containin
line feed followed by carriage return.

‘\r’ #$d Carriage return character.  This is defined in the HLA Standard Library as 
stdio.cr.

‘\b’ #8 Backspace character.  This is defined in the HLA Standard Library as stdio.b

‘\a’ #7 Alert (bell) character.  This is defined in the HLA Standard Library as stdio.b

‘\f’ #$c Form feed character.

‘\t’ #9 Tab character.  This is defined in the HLA Standard Library as stdio.tab.

‘\v’ #$b Vertical tab character.

2. Only recent versions of the C programming language support the “long double” floating point type.
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piler’s vendor to determine the size of the object in order to convert it to assembly language.  Of course, f
applications it won’t really matter if you go ahead and use a 10-byte real value whenever you encountelong
double object.  After all, the original programmer is probably expecting something bigger than a double object
anyway.  Do keep in mind, however, that some algorithms involving real arithmetic may not be stable wh
with a different floating point size other than the sized used when they were developed.

T shows the correspondence between C/C++ floating point data types and HLA’s floating point data t

Table 3-4: Real Type Correspondence Between C and Assembly 

C and HLA floating point literal constants are quite similar.  They may begin with an optional sign, fol
by one or more decimal digits.  Then you can have an optional decimal point followed by another o
sequence of decimal digits; following that, you can have an optional exponent specified as an ‘e’ or 
optional sign, and one or more decimal digits.  The final result must not look like an integer constant (
decimal point or an exponent must be present).

C allows an optional “F” suffix on a floating point constant to specify single precision, e.g., 1.2f.  Sim
you can attach an “L” suffix to a float value to indicate long double, e.g., 1.2L.  By default, C literal floating poin
constants are always double precision values.  HLA always maintains all constants as 80-bit floating poin
internally and converts them to 64 or 32 bits as necessary, so there is no need for such a suffix.  So by
the “F” or “L” suffix, if it is present, you can use any C floating point literal constant as-is in the HLA code

3.2.2: C and Assembly Composite Data Types

C provides four major composite (or aggregate) data types: arrays, structures, unions, and pointe
adds the class types well.  A composite type is a type that is built up from smaller types (e.g., an array is 
tion of smaller objects, each element having the same type as all other elements in the array).  In the f
sub-sections, we’ll explore these composite data types in C and provide the corresponding type in HLA.

As is the case throughout this chapter, this section assumes that you already know assembly lang
may not know C. This section provides the correspondence between C and HLA, but doesn’t attempt to te
how to do things like access an array in assembly language; the previous chapter already covered that m

C Real Type
Corresponding 

HLA Type
Comment

float real32 32-bit IEEE format floating point value.

double real64 64-bit IEEE format floating point value.

long double real64 64-bit IEEE format floating point value on certain com-
pilers (e.g., Microsoft).

real80 80-bit IEEE format floating point value on certain com-
pilers (e.g., Borland)
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3.2.2.1: C and Assembly Array Types

Since HLA’s syntax was based on the C and Pascal programming languages, it should come as no
that array declarations in HLA are very similar to those in C.  This makes the translation from C to HLA
easy.

The syntax for an array declaration in C is the following:

elementType  arrayName[ elements ] <<additional dimension infor-
mation>>;

elementType is the type of an individual element of the array. arrayName is the name of the array object. ele-
ments is an integer constant value the specifies the number of array elements.  Here are some sample C 
larations:

int intArray[4];
char grid[3][3];  // 3x3 two-dimensional array
double flts[16];
userType userData[2][2][2]

In HLA, multiple dimension arrays use a comma-delimited list to separate each of the maximum b
(rather than using separate sets of brackets).  Here are the corresponding declarations in HLA:

intArray :int32[ 4 ];
grid     :char[3,3];
flts     :real64[16];
userData :userType[2,2,2];

Both C and HLA index arrays from zero to n-1, where n is the value specified as the array bound in the decl
tion.

C stores arrays in memory using row-major ordering.  Therefore, when accessing elements of a multi
sional array, always use the row-major ordering algorithm (see The Art of Assembly Language for details if
you’re unfamiliar with accessing elements of a multi-dimensional array in assembly language).

In C, it is possible to provide an initial value for an array when declaring an array.  The following C ex
demonstrates the syntax for this operation:

int iArray[4] = {1,2,3,4};

HLA also allows initialization of array variables, but only for static objects.  Here’s the HLA version of th
code:

static
iArray :int32[4] := [1,2,3,4];

C allows the same syntax for an array initialization to automatic variables.  However, you cannot initia
automatic variable at compile time (this is true for C and HLA);  therefore, the C compiler automatically
code to copy the data from some static memory somewhere into the automatic array, e.g., a C declaratio
following appearing in a function (i.e., as an automatic local variable):

int autoArray[4] = {1,2,3,4};
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gets translated into machine code that looks something like the following:

readonly
staticInitializeData :dword := [1,2,3,4];

.

.

.
var

autoArray: int32[4];
.
.
.

mov( &staticInitializerData, esi );
lea( edi, autoArray );
mov( 4, ecx );
rep.movsd();

(yes, compilers really do generate code like this).  This code is pretty disgusting.  If you see an automa
variable with an initializer, it’s probably a better idea to try and figure out if you really need a new copy of t
tial data every time you enter the function.

3.2.2.2: C and Assembly Record/Structure Types

C implements the equivalent of HLA’S records using the struct keyword.   Structure declarations in C loo
just like standard variable declarations sandwiched inside a “struct {...}” block.  Conversion to HLA is rela
simple: just stick the HLA equivalent of those field declarations in a record..endrecord block.  The only point
of confusion is C’s syntax for declaring tags, types, and variables of some struct type.

C allows you to declare structure variables and types several different ways.  First, consider the fo
structure variable declaration:

struct
{

int fieldA;
float fieldB;
char fieldC;

}
structVar;

Assuming this is a global variable in C (i.e., not within a function) then this creates a static variable structVar

that has three fields: structVar.fieldA, structVar.fieldB, and structVar.fieldC.  The corresponding
HLA declaration is the following (again, assuming a static variable):

static
structVar:

record
fieldA  :int32;
fieldB  :real32;
fieldC  :char;

endrecord;
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In an HLA program, you’d access the fields of the structVar variable using the exact same syntax as C,
cally: structVar.fieldA, structVar.fieldB, and structVar.fieldC.

There are two ways to declare structure types in C: using typedef and using tag fields.  Here’s the version
using C’s typedef facility (along with a variable declaration of the structure type):

typedef struct
{

int fieldA;
float fieldB;
char fieldC;

}
structType;

structType structVar;

Once again,  you access the fields of structVar as structVar.fieldA, structVar.fieldB, and struct-
Var.fieldC.

The typedef keyword was added to the C language well after it’s original design.  In the original C lang
you’d declare a structure type using a structure tag as follows:

struct structType
{

int fieldA;
float fieldB;
char fieldC;

} /* Note: you could actually declare structType variables here */ ;

struct structType strucVar;

HLA provides a single mechanism for declaring a record type - by declaring the type in HLA’s type se
The syntax for an HLA record in the type section takes this form:

type
structType:

record
fieldA  :int32;
fieldB  :real32;
fieldC  :char;

endrecord;

static
structVar  :structType;

C also allows the initialization of structure variables by using initializers in a variable declaration.  Th
tax is similar to that for an array (i.e., a list of comma separated values within braces).  C associates the 
the list with each of the fields by position.  Here is an example of the structVar declaration given earlier with an
initializer:

struct structType structVar = { 1234, 5.678, ‘9’ };
Page 149



lds at
 com-

d struc-

hin the
re.  The

rtain
ompil-
 bytes).

n even
that we

timal
t an offset

 field
ammer;
mer must
bly lan-
xplicitly
Like the array initializers you read about in the previous section, the C compiler will initialize these fie
compile time if the variable is a static or global variable.  however, if it’s an automatic variable, then the C
piler emits code to copy the data into the structure upon each entry into the function defining the initialize
ture (i.e., this is an expensive operation).

Like arrays, HLA allows the initialization of static objects you define in a static, storage, or readonly
section.  Here is the previous C example translated to HLA:

static
structVar  :structType := structType:[1234, 5.678, ‘9’ ];

One major difference between HLA and C with respect to structures is the alignment of the fields wit
structure.  By default, HLA packs all the fields in a record so that there are no extra bytes within a structu
structType structure, for example, would consume exactly nine bytes in HLA (four bytes each for the int32

and real32 fields and one byte for the char field).  C structures, on the other hand, generally adhere to ce
alignment and padding rules.  Although the rules vary by compiler implementation, most Win32 C/C++ c
ers align each field of a struct on an offset boundary that is an even multiple of that field’s size (up to four
In the current structType example, fieldA would fall at offset zero, fieldB would fall on offset four within the
structure, and FieldC would appear at offset eight in the structure.  Since each field has an offset that is a
multiple of the object’s size, C doesn’t manipulate the field offsets for the record.  Suppose, however, 
have the following C declaration in our code:

typedef struct
{

char fieldC;
int fieldA;
short fieldD;
float fieldB;

}
structType2;

If C, like HLA, didn’t align the fields by default, you’d find fieldC appearing at offset zero, fieldA at offset 1,
fieldD at offset five, and fieldB at offset seven.  Unfortunately, these fields would appear at less than op
addresses in memory.  C, however, tends to insert padding between fields so that each field is aligned a
within the structure that is an even multiple of the object’s size (up to four bytes, which is the maximum
alignment that compilers support under Win32).  This padding is generally transparent to the C progr
however, when converting C structures to assembly language records, the assembly language program
take this padding into consideration in order to correctly communicate information between an assem
guage program and Windows.  The traditional way to handle this (in assembly language) has been to e
add padding fields to the assembly language structure, e.g.,

type
structType2:

record
fieldC  :char;
pad0    :byte[3]; // Three bytes of padding.
fieldA  :int32;
fieldD  :int16;
pad1    :byte[2]; // Two bytes of padding.
fieldB  :real32;

endrecord;
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HLA provides a set of features that automatically and semi-automatically align record fields.  First of all, y
use the HLA align directive to align a field to a given offset within the record; this mechanism is great for
grams that need absolute control over the alignment of each field. However, this kind of control is not ne
when implementing C records in assembly language, so a better approach is to use HLA’s automatic rec

alignment facilities3.  The rules for C/C++ (under Windows, at least) are pretty standard among compiler
rule is this: each object (up to four bytes) is aligned at a starting offset that is an even  multiple of that 
size.  If the object is larger than four bytes, then it gets aligned to an offset that is an even multiple of fou
In HLA, you can easily do this using a declaration like the following:

type
structType2:

record[4:1];
fieldC  :char;
pad0    :byte[3]; // Three bytes of padding.
fieldA  :int32;
fieldD  :int16;
pad1    :byte[2]; // Two bytes of padding.
fieldB  :real32;

endrecord;

The “[4:1];” appendage to the record keyword tells HLA to align objects between one and four bytes on th
ural boundary and larger objects on a four-byte boundary, just like C.  This is the only record alignment
you should need for C/C++ code (and, in fact, you should always use this alignment option when conve
C++ structs to HLA records).  If you would like more information on this alignment option, please see the
reference manual.

Specifying the field alignment via the “[4:1];” option only ensures that each field in the record starts
appropriate offset.  It does not guarantee that the record’s length is an even multiple of four bytes (and
C++ compilers will add padding to the end of a struct to ensure the length is an even multiple of four byte
However, you can easily tell HLA to ensure that the record’s length is an even multiple of four bytes by ad
align directive to the end of the field list in the record, e.g.,

type
structType2:

record[4:1];
fieldC  :char;
pad0    :byte[3]; // Three bytes of padding.
fieldA  :int32;
fieldD  :int16;
pad1    :byte[2]; // Two bytes of padding.
fieldB  :real32;
align(4);

endrecord;

Another important thing to remember is that the fields of a record or structure are only properly alig
memory if the starting address of the record or structure is aligned at an appropriate address in memory. 
ing the alignment of the fields in an HLA record does not guarantee this.  Instead, you will have to use
align directive when declaring variables in your HLA programs.  The best thing to do is ensure that an in

3. For those who are interested in using the align directive and other advanced record field alignment facilities, please co 
the HLA reference manual.
Page 151



zero, in
a union
re are no
convert

r 
of a record (i.e., a record variable) begins at an address that is an even multiple of four bytes4.  You can do this by
declaring your record variables as follows:

static
align(4);  // Align following record variable on a four-byte address in memory.
recVar   :structType2;

3.2.2.3: C and Assembly Union Types

A C union is a special type of structure where all the fields have the same offset (in C, the offset is 
HLA you can actually select the offset though the default is zero).  That is, all the fields of an instance of 
overlay one another in memory.  Because the fields of a union all have the same starting address, the
issues regarding field offset alignment between C and HLA.  Therefore, all you need really do is directly 
the C syntax to the HLA syntax for a union declaration.

In C, union type declarations can take one of two forms:

union unionTag
{

<<fields that look like variable declarations>>
} <<optional union variable declarations>>;

typedef union
{

<<fields that look like variable declarations>>
}

unionTag2; /* The type declaration */

You may also declare union variables directly using syntax like the following:

union
{

<< fields that look like variable declarations >>
}

unionVariable1, unionVariable2, unionVariable3;

union unionTag unionVar3, unionVar4;
unionTag2 unionVar5;

In HLA, you declare a union type in HLA’s type section using the union/endunion reserved words as fol-
lows:

type
unionType:

union
<< fields that look like HLA variable declarations >>

endunion;

4. Technically, you should align a record object on a boundary that is an even multiple of the largest field’s size, up to fou
bytes.  Aligning record variables on a four-byte boundary, however, will also work.
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You can declare actual HLA union variables using declarations like the following:

storage
unionVar1:

union
<< fields that look like HLA variable declarations >>

endunion;

unionvar2: unionType;

The size of a union object in HLA is the size of the largest field in the union declaration.  You can force the
size of the union object to some fixed size by placing an align directive at the end of the union declarati
example, the following HLA type declaration defines a union type that consumes an even multiple of four

type
union4_t:

union
b    :boolean;
c    :char[3];
w    :word;
align(4);

endunion;

Without the “align(4);” field in this union declaration, HLA would only allocate three bytes for a object of
union4_t because the single largest field is c, which consumes three bytes.  The presence of the “align(
directive, however, tells HLA to align the end of the union on a four-byte boundary (that is, make the unio
an even multiple of four bytes).  You’ll need to check with your compiler to see what it will do with union
most compilers probably extend the union so that it’s size is an even multiple of the largest scalar (e.
array) object in the field list (in the example above, a typical C compiler would probably ensure that and i
of the union4_t type is an even multiple of two bytes long). 

As for records, the fact that a union type is an even multiple of some size does not guarantee that a va
that type (i.e., an instance) is aligned on that particular boundary in memory.  As with records, if you w
ensure that a union variable begins at a desired address boundary, you need to stick an align directive b
declaration, e.g.,

var
align(4);
u  :union4_t;

3.2.2.4: C and Assembly Character String Types

The C/C++ programming language does not support a true string type.  Instead, C/C++ uses an array
acters with a zero terminating byte to represent a character string.  C/C++ uses a pointer to the first cha
the character sequence as a “string object”.  HLA defines a true character string type, though it’s intern
sentation is a little different than C/C++’s.  Fortunately, HLA’s string format is upwards compatible wit
zero-terminated string format that C/C++ uses, so it’s very easy to convert HLA strings into the C/C++ 
(indeed, the conversion is trivial). There are a few problems going in the other direction (at least, at run tim
a special discussion of HLA versus C/C++ strings is in order.
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Character string declarations are somewhat confused in C/C++ because C/C++ often treats pointe
object and arrays of that same object type equivalently.  For example, in an arithmetic expression, C/C
not differentiate between the use of a char* object (a character pointer) and an array of characters.  Becau
this syntactical confusion in C/C++, you’ll often see strings in this language declared one of two differen
as an array of characters or as a pointer to a character.  For example, the following are both typical string
declarations in C/C++:

char stringA[ 256 ]; // Holds up to 255 characters plus a zero terminating byte.
char *stringB;       // Must allocate storage for this string dynamically.

The big difference between these two declarations is that the stringA declaration actually reserves the stora
for the character string while the stringB declaration only reserves storage for a pointer. Later, when the 
gram is running, the programmer must allocate storage for the string associated with stringB (or assign the
address of some previously allocated string to stringB).  Interestingly enough, once you have two declaratio
like stringA and stringB in this example, you can access characters in either string variable using either p
or array syntax.  That is, all of the following are perfectly legal given these declarations for stringA and
stringB (and they all do basically the same thing):

char ch;

ch = stringA[i];       // Access the char at position i in stringA.
ch = *(stringB + i);   // Access the char at position i in stringB.
ch = stringB[i];       // Access the char at position i in stringB.
ch = *(stringA + i);   // Access the char at position i in stringA.

String literal constants in C/C++ are interesting.  Syntactically, a C/C++ string literal looks very similar
HLA string literal: it consists of a sequence of zero or more characters surrounded by quotes.  The big di
between HLA string literals and C/C++ string literals is that C/C++ uses escape sequences to represen
characters and non-graphic characters within a string (as well as the backslash and quote characters).  
not support the escape character sequences (see the section on character constants for more details
escape character sequences).  To convert a C/C++ string literal that contains escape sequences into an 
acter string, there are four rules you need follow:

• Replace the escape sequence \” with ““.  HLA uses doubled-up quotes to represent a single quot
a string literal constant.

• Replace the escape sequence \\ with a single backslash.  Since HLA doesn’t use the backslash as
character within a string literal, you need only one instance of it in the string to represent a single
slash character

• Convert special control-character escape sequences, e.g., \n, \r, \a, \b, \t, \f, and \v, to their corres
ASCII codes (see Table 3-3) and splice that character into the string using HLA’s #nn character
e.g., the C/C++ string “hello\nworld\n” becomes the following:

“hello” #$d #$a “world” #$d #$a    //HLA automatically splices all 
this together.

• Whenever a C/C++ numeric escape sequence appears in a string (e.g., \0nn or \0Xnn) then simply
the octal constant to a hexadecimal constant (or just use the hexadecimal constant as-is) along w
HLA #$nn literal constant specification and splice the object into the string as before.  For exampl
C/C++ string “hello\0xaworld0xa” becomes:
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“hello” #$a “world” #$a

Whenever a C/C++ compiler sees a string literal constant in a source file, the compiler will allocate 

for each character in that constant plus one extra byte to hold the zero terminating byte5 and, of course, the com
piler will initialize each byte of this storage with the successive characters in the string literal constant. 
compilers will typically (though not always) place this string they’ve created in a read-only section of me
Once the compiler does this, it replaces the string literal constant in the program with the address of the fi
acter it has created in this read-only memory segment.  To see this in action, consider the following C/C
fragment:

char* str;

str = “Some Literal String Constant”;

This does not copy the character sequence “Some Literal String Constant” into str.  Instead, the compiler
creates a sequence of bytes somewhere in memory, initializes them with the characters in this string (pl
terminating byte), and then stores the address of the first character of this sequence into the str character pointer
variable.  This is very efficient, as C/C++ needs to only move a four-byte pointer around at run-time rath
moving a 29 byte sequence.

The HLA language provides an explicit string data type. Internally, however, HLA represents strings us
a four-byte pointer variable, just as C/C++ does. There is an important difference, however, between the
data that an HLA string variable references and a C/C++ character pointer references: HLA includes som
tional information with its string data: specifically, a length field and a maximum length field. Like C/C++ 
objects, the address held in an HLA string variable points at the first character of the character string (and H
strings also end with a zero terminating byte). Unlike C/C++ however, the four bytes immediately preced
first character of the string contain the current length of the string (as an uns32 value). The four bytes precedin
the length field contain the maximum possible length of the string (that is, how much memory is reserved
string variable, which can be larger than the current number of characters actually found in the string). F
1 shows the HLA string format in memory.

Figure 3-1: HLA String Format in Memory  

The interesting thing to note about HLA strings is that they are downwards compatible with C/C++ s
That is, if you’ve got a function, procedure, or some other piece of code that operates on a C/C++ string,

generally pass it a pointer to an HLA string and the operation will work as expected6.  This was done by design

5. Some compilers may actually allocate a few extra bytes of padding at the end of the string to ensure that the literal str
constant’s length is an even multiple of four bytes.  However, this is not universal among compilers so don’t count on it

6. The only ‘gotcha’ is that you cannot expect the string to remain in a consistent HLA format if your code that operates o
C++ strings makes any modifications to the HLA string data.

Pointer to string data

MaxLength Length A B C D \0
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and is one of the reasons HLA interfaces so well with the Win32 API.  The Win32 API generally expects 
zero terminated strings when you pass it string data.  Usually, you can pass an HLA string directly to a
API function and everything will work as expected (few Win32 API function calls actually change the 
data).

Going the other direction, converting a C/C++ string to an HLA string, is not quite as trivial (though stil
to accomplish using appropriate code in the HLA Standard Library).  Before describing how to convert 
strings to the HLA format, however, it is important to point out that HLA is assembly language and assembly
guage is capable of working with any string format you can dream up (including C/C++ strings).  If you’
some code that produces a zero-terminated C/C++ string, you don’t have to convert that string to an HLA strin
in order to manipulate it within your HLA programs.  Although the HLA string format is generally more effi
(faster) because the algorithms that process HLA strings can be written more efficiently,  you can write yo
zero-terminated string functions and, in fact, there are several common zero-terminated string functions 
the HLA Standard Library.  However, as just noted, HLA strings are generally more efficient, so if you’re
to be doing a bit of processing on a zero terminated string, it’s probably wise to convert it to an HLA strin
On the other hand, if you’re only going to do one or two trivial operations on a zero-terminated string t
Win32 API returns, you’re better off manipulating it directly as a zero-terminated string and not botherin
the conversion (of course, if convenience is your goal rather than efficiency, it’s probably always better to
the string to the HLA string format upon return from a Win32 API call just so you don’t have to work with
different string formats in your assembly code).  Of course, the other option open to you is to work excl
with zero-terminated strings in your assembly code (though the HLA Standard Library doesn’t provide an
near the number of zero-terminated string functions).

The purpose of this chapter is to explain how to convert C/C++ based Windows documentation to a fo
able for assembly language programmers and describe how assembly language programmers can c
based functions that make up the Win32 API set.  Therefore, we won’t get into the details of converting
function calls in C/C++ to their equivalent (or similar) HLA Standard Library calls.  Rest assured, the HLA
dard Library provides a much richer set of string functions than does the C Standard Library;  so anyth
find someone doing in C/C++ can be done just as easily (and usually more efficiently) using an HLA S
Library function.  Please consult the HLA Standard Library documentation for more details.  In this s
we’ll simply cover those routines that are necessary for converting between the two different string form
copying string data from one location to another.

In C/C++ code, it is very common to see the program declare a string object (character pointer) and i
the pointer with the address of a literal string constant all in one operation, e.g.,

char *str = “Literal String Constant”;

Remember, this doesn’t actually copy any character data;  it simply loads the character pointer variable str with
the address of the ‘L’ character in this string literal constant.  The compiler places the literal string data
where in memory and either initializes str with the address of the start of that character data (if str is a global or
static variable) or it generates a short (generally one instruction) machine code sequence to initialize a 
variable with the address of this string constant.  Note, and this is very important, many compilers will allocate
the actual string data in read-only  memory.  Therefore, as long as str continues to point at this literal string con
stant’s data in memory, any attempt to store data into the string will likely produce a memory protectio
Some very old C programs may have made the assumption that literal string data appears in read/write
and would overwrite the characters in the string literal constant at run-time.  This is generally not allow
modern C/C++ compilers.  HLA, by default, also places string literal data in write-protected memory.  So
encounter some older C code that overwrites the characters in a string literal constant, be aware of the
you will not (generally) be able to get away with this in HLA.
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If str (in the previous example) is a static or global variable, converting this declaration to assemb
guage is very easy, you can use a declaration like the following:

static
HLAstr  :string := “Literal String Constant”;

Remember, like C/C++, HLA implements string objects using pointers.  So HLAstr is actually a four-byte
pointer variable and this code initializes that pointer with the address of the first character in the literal stri
stant.

Because HLA string variables are pointers that (when properly initialized) point at a sequence of cha
that end with a zero byte (among other things), you can use an HLA string variable just about anywhere
expects a string object.  So, for example, if you want to make some Win32 API call that requires a string p
ter, you can pass in HLAstr as that parameter, e.g., 

Win32APIcall( HLAstr );

Of course, you don’t have to assign the address of a string literal constant to an HLA string variable to m
function call, HLA allows you to pass the literal string constant directly:

Win32APIcall( “Literal String Constant” );

Note that this call does not pass the string data directly to the function;  like C/C++, HLA continues to a
and initialize the literal string constant in write-protected memory somewhere else and simply passes the
of the literal string constant as the function’s parameter. 

For actual string variable objects (that is, strings whose character values you can change at run-time
typically find two different ways of variable declaration/allocation in a C/C++ program: the programme
either create a character array with sufficient storage to hold the characters in the string, or the program
simply declare a character pointer variable and allocate storage for the string at run-time using a func
malloc (C) or new (C++).   We’ll look at both of these mechanisms in HLA in the following paragraphs.

One way to allocate storage for a C string variable is to simply declare a character array with sufficie
to hold the longest possible string value you will assign plus an extra byte for the zero terminator.  To do t
C++ programmer simply declares a character array with n+1 elements, where n is the maximum number
acters they expect to put into the string.  The following is a typical “string” declaration in C/C++ that cre
string capable of holding up to 255 characters:

char myStr[256];  // 255 chars plus a zero terminating byte

Although HLA most certainly allows you to create arrays of characters, such arrays are not directly com
with HLA strings (because they don’t reserve extra storage prior to the string object for the length and ma
length fields that are present in the HLA string format).  Therefore, you cannot allocate storage for an HLA
variable by simply doing the following:

static
myStr :char[256];  // Does NOT create an HLA string!

You can use this technique to pre-allocate storage for a zero-terminated string in HLA, but this does no
the proper storage for an HLA string variable.

In general, HLA expects you to allocate storage for string objects dynamically (that is, at run-time). 
ever, for static strings (i.e., non-automatic string variables) the HLA Standard Library does provide a 
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str.strvar, that lets you declare string variable and allocate storage for the string variable at compil
Here is an example of the use of this macro:

static  //Note: str.strvar only makes sense in the STATIC section
preAllocated :str.strvar( 255 ); // Allows strings up to 255 characters long.

There are a couple of important things to note about this declaration.  First of all, note that you surround
of the string with parentheses, not square brackets.  This is because str.strvar is actually a macro, not a type
and the 255 that appears in this example is a macro argument.  The second thing to note is that the u
str.strvar macro only makes sense in the static declaration section.  It is illegal in a var or storage section
because this macro initializes the variable you’re declaring (something you can’t do in a var or storage declara-
tion section).  While the use of the str.strvar macro is technically legal in HLA’s readonly declaration sec-
tion, it doesn’t make sense to use it there since doing so would allocate the string data storage in write-p
memory, so you’d never be able to store any character data into the string.  Also note that the str.strvar macro
doesn’t provide any mechanism for initializing the character data in the string within the declaration (no
would be that hard to create a new macro that does this).  Finally, note that you specify the maximum nu
characters you want to allow in the string as the str.strvar argument.  You do not have to account for any ze
terminating bytes, the current string length field, or the maximum length field.

Although the str.strvar macro is very convenient to use, it does have a couple of serious limitations.
cifically, it only makes sense to use it in the static section of an HLA program and you must know the ma
mum length of the string before you can use the str.strvar macro to declare a string object.  Both of the
issues are easy to resolve by using dynamically allocated string objects.  C/C++ programmers can als
dynamically allocated strings by declaring their string variables as pointers to characters, e.g.,

char *strAsPtr;
.
.
.

// Allocate storage for a 255 character string at run-time

strAsPtr = malloc( 256 );  // 255 chars + zero terminating byte

// Or (in C++):

strAsPtr = new char[256];

In HLA, the declaration and allocation is very similar:

var  // Could also be static or storage section
strAsPtr :string;

.

.

.
strmalloc( 255 );
mov( eax, strAsPtr );

Do note a couple of things about the HLA usage.  First, you should note that the specify the actual nu
characters you wish to allow in the string;  you don’t have to worry about the zero terminating byte. Seco
should call the HLA Standard Library stralloc  function (rather than malloc, which HLA also provides) in
order to allocate storage for a string at run time; in addition to allocating storage for the character dat
string, stralloc also allocates (additional) storage for the zero terminating byte, the maximum length valu
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the current length value.  The stralloc function also initializes the string to the empty string (by setting the 
rent length to zero and storing a zero in the first character position of the string data area).  Finally, note t
loc returns the address of the first character of the string in EAX so you must store that address into thestring

variable.  HLA does support a feature known as instruction composition, so you could actually write the
instructions as follows:

mov( stralloc( 255 ), strAsPtr );

The drawback to this form, however, is that it hides the fact that this code sequence wipes out the EAX 
So be careful if you decide to use this form.

Once you’ve initialized an HLA string variable so that it points at valid string data, you can generall
that string variable to a C/C++ function (i.e., a Win32 API function) that expects a string value.  The only r
tion is that if the C/C++ function modifies the string data in such a way that it changes the length of the
HLA will not recognize the change if you continue to treat the string as an HLA type string upon return fro
C/C++ function.  Likewise, if a C/C++ function returns a pointer to a string that the function has created
your HLA functions cannot treat that string as an HLA string because it’s probably just a zero-terminated
Fortunately, there are only a small number of Win32 API functions that return a string or modify an e
string, so you don’t have to worry about this very often.  However, that’s a problem in and of itself;  yo
have to deal with this problem so infrequently that it slips your mind whenever you call a function that r
such a string.  As a concrete example, consider the following (HLA) prototype for the Win32 GetFullPathName

function:

static
GetFullPathName: procedure
(
       lpFileName    : string;
       nBufferLength : dword;
   var lpBuffer      : var;
   var lpFilePart    : var
);
@stdcall; @returns( "eax" ); @external( "__imp__GetFullPathNameA@16" );

This function, given the address of a zero-terminated string containing a filename (lpFileName), the length
length of a buffer (nBufferLength),  the address of a buffer (lpBuffer), and the address of a pointer variab
(lpFilePart) will convert the filename you pass in to a full drive letter/path/filename string.  Specifically
function returns a string in the buffer whose address you specify in the lpbuffer parameter.  However, this func
tion does not create an HLA-compatible string;  it simply creates a zero-terminated string.

Fortunately, most functions in the Win32 API that return string data do two things for you that will help
your life easier.  First of all, Win32 API functions that store string data into your variables generally requi
you pass a maximum length for the string (e.g., the nBufferLength parameter in the prototype above).  Th
function will not write any characters to the buffer beyond this maximum length (doing so could corrup
data in memory).  The other important thing this function does (which is true for most Win32 API function
return string data) is that it returns the length of the string in the EAX register; the function returns zero 
was some sort of error.  Because of the way this function works, converting the return result to an HLA s
nearly trivial.  Consider the following call to GetFullPathName:

static
fullName :string;
namePtr  :pointer to char;

.

.
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.
stralloc( 256 );       // Allocate sufficient storage to hold the string data.
mov( eax, fullName );

.

.

.
mov( fullName, edx );
GetFullPathName
(

“myfile.exe”,                          // File to get the full path for.
(type str.strRec [edx]).MaxStrLen,     // Maximum string size
[edx],                                 // Pointer to buffer
namePtr                                // Address of base name gets stored here

);
mov( fullName, edx );                     // Note: Win32 calls don’t preserve EDX
mov( eax, (type str.strRec [edx]).length  // Set the actual string length

The nice thing about most Win32 API calls that return string data is that they guarantee that they won’t ov
a buffer you pass in (you also pass in the maximum string length, which is available in the MaxStrLen field of the
string object, that is, at offset -8 from the string pointer).  These string functions also return the string le
the function’s result, so you can shove this into the HLA string’s length field (at offset -4 from the string’s bas
address) immediately upon return.  This is a very efficient way to convert C/C++ strings to HLA format 
upon return from a function.

Of course, converting a C/C++ string to an HLA string is only easy if the C/C++ function you’re ca
returns the length of the string it has processed.  It also helps if the function guarantees that it won’t ove
bounds of the string variable you’ve passed it (i.e., it accepts a MaxStrLen parameter and won’t write any dat
beyond the maximum buffer size you’ve specified).  Although most Win32 API functions that return strin
operate this way (respect a maximum buffer size and return the length of the actual string), there are man
functions you may need to call that won’t do this.  In such a case, you’ve got to compute the length of th
yourself (and guarantee that your character buffer is large enough to hold the maximum possible string t
tion will produce).  Fortunately, there is a function in the HLA Standard Library, str.zlen, that will compu
length of a zero terminated string so you can easily update the length field of an HLA string object that a
function has changed (without respect to the HLA string’s length field).  For example, suppose you have a
function named fstr that expects the address of a character buffer where it can store (or modify) a zero
nated string.  Since HLA strings are zero-terminated, you can pass an HLA string to this function.  How
fstr changes the length of the string, the function will not update the HLA string’s length field and the result
will be inconsistent.  You can easily correct this by computing the length of the string yourself and stor
length into the HLA string’s length field, e.g.,

static
someStr  :str.strvar( 255 );  // Allow strings up to 255 characters in length.

.

.

.
fstr( someStr );     // Assume this changes the length of someStr.

mov( someStr, edx ); // Get the pointer to the string data structure.
str.zlen( edx );     // Compute the new length of someStr.
mov( eax, (type str.strRec [edx]).length );  // Update the length field.

One thing to keep in mind is that str.zlen has to search past every character in the string to find the zero-t
nating byte in order to compute the string’s length.  This is not a particularly efficient operation, particularl
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string is long.  Although str.zlen uses a fairly decent algorithm to search for the terminating zero byte
amount of time it takes to execute is still proportional to the length of the string.  Therefore, you want to
calling str.zlen if at all possible.  Fortunately, many C/C++ string functions (that modify string data) retur
length as the function result, so calling str.zlen isn’t always necessary.

Although not explicitly shown in the example above, do keep in mind that many string functions (esp
Win32 API functions) assign double-duty to the function return result;  they’ll return a positive value if the
tion successfully produces a string and they’ll return a negative result (or sometimes a zero result) if ther
error.  For example, the GetFullPathName function in the earlier example returns zero if it there was a prob
producing the string.  You code should check for errors on return from these functions to prevent pro
While shoving a zero into a string length field isn’t cause for concern (indeed, that’s perfectly reasonable)
ative number will create all kinds of problems (since the HLA string functions treat the length field as anuns32

value, those functions will interpret a negative number as a really large positive value).

3.2.2.5: C++ and Assembly Class Types

C++ and HLA both support classes.  Since HLA is an assembly language, it should be obvious that a
you can do with a C++ class you can do with in HLA (since C++ compilers convert C++ source code in
machine code, it should be obvious that you can achieve anything possible in C++ using assembly la
However, directly translating C++ classes into HLA classes is not a trivial matter.  Many constructs t
across directly.  Some constructs in C++, however, do not have a direct correspondence in HLA.  Quite h
the conversion of C++ classes to HLA classes is beyond the scope of this book;  fortunately, we’re deal
the Win32 API in this book so we won’t see much Windows source code that uses classes in typical doc
tion we’re interested it.  There is quite a bit of C++-based object-oriented code out there for Windows but 
it uses the Microsoft Foundation Classes (MFC) class library, and that’s not applicable to assembly langu
gramming (at least, not today; someday there might be an “Assembly Language Foundation Class” lib
until that day arrives we don’t have to worry about MFC).  Since this book covers Win32 API program
there really is no need to worry about converting C++ classes into assembly - the Win32 API docume
doesn’t use classes.   This book may very well use HLA classes and objects in certain programming e
but that will be pure assembly language, not the result of translating C++ code into HLA code.

3.2.3: C and Assembly Pointer Types 7

When running under 32-bit versions of the Windows operating system, C pointers are always 32-bit
and map directly to 32-bit flat/linear machine addresses.  This is true regardless of what the pointer re
(including both data and functions in C).  At one level, the conversion of a pointer from C to HLA/assem
fairly trivial, just create a dword variable in you HLA program and keep the pointer there.  However, HLA (
C) supports typed pointers and procedure pointers;  generally, it’s a good idea to map C pointers to th
typed-pointer equivalent. 

In C, you can apply the address-of operator, ‘&’ to an object (e.g., a static variable or a function name)
the address of that object.  In HLA, you may use this same operator to take the address of a static object (a
static/storage/readonly variable, statement label, or procedure name).  The result is a 32-bit value th
may load into a register or 32-bit memory variable.  For example, if in C you have a statement like the fo
(pi is a pointer to an integer and i is a static integer variable):

7. Many programmers (and languages) consider pointers to be a scalar type because the value is not composed of other 
This book treats pointers as a separate classification simply because it has to discuss both scalar and composite data
before being able to discuss pointers.
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pi = &i;

You convert this to HLA syntax as follows:

mov( &i, pi );

If the object you’re taking the address of with the ‘&’ operator is not a function name or a static (non-ind
variable, then you must compute the address of the object at run-time using the lea instruction.  For example,
automatic variables (non-static local variables) fall into this class.  Consider the following C function fragm

int f( void )
{

int *pi;   // Declares a variable that is a pointer to an integer.
int i;     // Declares a local integer variable using automatic allocation.

 
pi = &i;

.

.

.
}

Because i is an automatic variable (the default storage class for local variables in a function) HLA canno
compute this address for you at compile time.  Instead, you would use the lea instruction as follows:

procedure f;
var

pi: pointer to int32;  // Declare HLA pointers this way.
i:  int32;             // Declares an automatic variable in HLA (in the VAR section)

.

.

.
lea( eax, i );    // Compute the run-time address of i
mov( eax, pi );   // Save address in pi.

.

.

.

You should also note that you need to use the lea instruction when accessing an indexed object, even if 
base address is a static variable.  For example, consider the following C/C++ code that takes the addr
array element:

int *pi;
static int array[ 16 ];

.

.

.
pi = &array[i];

In order to access an array element in assembly language, you will need to use a 32-bit register as an in
ter and compute the actual element address at run-time rather than at compile-time (assuming that i in this exam-
ple is a variable rather than a constant).  Therefore, you cannot use the ‘&’ operator to statically comp
address of this array element at compile-time, instead you should use the lea instruction as follows:

mov( i, ebx );               // Move index into a 32-bit register.
lea( eax, array[ ebx*4 ] );  // int objects are four bytes under Win32
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mov( eax, pi );

As you’ve seen in these simple examples, C uses the unary ‘*’ operator to declare pointer objects.  A
you see a declaration like the following in C:

typename *x;

you can convert it to a comparable HLA declaration as follows:

x:pointer to hla_typename;  // hla_typename is the HLA equivalent of C’s typename

Of course, since all pointers are simply 32-bit objects, you can also convert to assembly language using
ment like the following:

x:dword;

Both forms are equivalent in assembly language, though the former version is preferable since it’s a litt
descriptive of what’s going on here.

Function pointers in C is one area where the C syntax can get absolutely weird.  A simple C function
declaration takes the following form:

returnType (*functionPtrName) ( parameters );

For example,

int (*ptrToFuncReturnsInt) ( int i, int j );

This example declares a pointer to a function that takes two integer parameters and returns an integer va
that the following is not equivalent to this example:

int *ptrToFuncReturnsInt( int i, int j );  //Not a function pointer declaration!

This example is a prototype for a function that returns a pointer to an integer, not a function pointer.  C’s
is a little messed up (i.e., it wasn’t thought out properly during the early stages of the design), so you 
some real interesting function pointer declarations;  some are nearly indecipherable.

Of course, at the assembly language level all pointers are just dword variables.  So all you really need t
implement the C function pointer in HLA is a statement like the following:

ptrToFuncReturnsInt: dword;

You can all this function in HLA using the call instruction as follows:

call( ptrToFuncReturnsInt );

As for data pointers, however, HLA provides a better solution: procedure variables.  A procedure varia
pointer object that (presumably) contains the address of some HLA procedure.  The advantage of a p
variable over a dword variable is that you can use HLA’s high-level syntax calling convention with proce
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In C,
variables;  something you cannot do with a dword variable.  Here’s an example of a procedure variable decl
tion in HLA:

ptrToFuncReturnsInt: procedure( i:int32; j:int32 );

HLA allows you to call the code whose address this variable contains using the standard HLA proced
syntax, e.g.,

ptrToFuncReturnsInt( 5, intVar );

To make this same call using a dword variable8, you’d have to manually pass the parameters yourself as foll
(assuming you pass the parameters on the stack):

push( 5 );       // Pass first parameter (i)
push( intVar );  // Pass second parameter.
call( ptrToFuncReturnsInt );

In C, any time a function name appears without the call operator attached to it (the “call operator” is 
parenthesis that may contain optional parameters), C substitutes the address of the function in place of t
You do not have to supply the address-of operator (‘&’) to extract the function’s address (though it is leg
ahead and do so).  So if you see something like the following in a C program:

ptrToFuncReturnsInt = funcReturnsInt;

where funcReturnsInt is the name of a function that is compatible with ptrToFuncReturnsInt’s declaration
(e.g., it returns an integer result and has two integer parameters in our current examples), this code is si
ing the address of the function and shoving it into ptrToFuncReturnsInt exactly as though you’d stuck the ‘&’
operator in front of the whole thing.  In HLA, you can use the ‘&’ operator to take the address of a functio
are always static objects as far as the compiler is concerned) and move it into a 32-bit register or variabl
procedure variable).  Here’s the code above rewritten in HLA:

mov( &funcReturnsInt, ptrToFuncReturnsInt );

Both C and HLA allow you to initialize static variables (including pointer variables) at compile time.  
you could do this as follows:

static int (*ptrToFuncReturnsInt) ( int i, int j) = funcRe-
turnsInt;

The comparable statement in HLA looks like this:

procedure funcReturnsInt( i:int32; j:int32 );
begin funcReturnsInt;

.

.

.
end funcReturnsInt;

.

.

.
static

8. Actually, this calling scheme works for HLA procedure variables, too.
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ptrToFuncReturnsInt:procedure( i:int32; j:int32 ) := &funcReturnsInt;

Especially note that in HLA, unlike C, you still have to use the ‘&’ operator when taking the address of a
tion name.

Note that you cannot initialize HLA automatic variables (var variables) using a statement like the one in t
example.  Instead, you must move the address of the function into the pointer variable using the mov instruction
given a little earlier.

Arrays are another object that C treats specially with respect to pointers.  Like functions, C will automa
supply the address of an array if you specify the name of an array variable without the corresponding ind
ator (the square brackets).  HLA requires that you explicitly take the address of the array variable.  If the
a static object (static/readonly/storage) then you may use the (static) address-of operator, ‘&’;  howeve
variable is an automatic (var) object, then you have to take the address of the object at run-time using thlea

instruction:
static

staticArray  :byte[10];
var

autoArray    :byte[10];
.
.
.

mov( &staticArray, eax );   // Can use ‘&’ on static objects
lea( ebx, autoArray );      // Must use lea on automatic (VAR) objects.

C doesn’t automatically substitute the address of a structure or union whenever it encounters a struct
variable.  You have to explicitly take the address of the object using the ‘&’ operator.  In HLA, taking the a
of a structure or union operator is very easy - if it’s a static object you can use the ‘&’ operator, if it’s an
matic (var) object, you have to use the lea instruction to compute the address of the object at run-time, 
other variables in HLA.

There are a couple of different ways that C/C++ allows you to dereference a pointer variable9.  First, as
you’ve already seen, to dereference a function pointer you simply “call” the function pointer the same w
would directly call a function: you append the call operator (parenthesis and possible parameters) to the
name.  As you’ve already seen, you can do the same thing in HLA as well.  Technically, you could also 
ence a function pointer in C/C++ as follows:

(*ptrToFuncReturnsInt)( 5, intVar );

However, you’ll rarely see this syntax in an actual C/C++ source file.  You may convert an indirect functi
in C/C++ to either HLA’s high-level or low-level syntax, e.g., the following two calls are equivalent:

push( 5 );
push( intVar );
call( ptrToFuncReturnsInt );

// -or-

ptrToFuncReturnsInt( 5, intVar );

9. Dereferencing means to access the data pointed at by a pointer variable.
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Dereferencing a pointer to a data object is a bit more exciting in C/C++.  There are several ways to 
ence pointers depending upon the underlying data type that the pointer references.  If you’ve got a poi
refers to a scalar data object in memory, C/C++ uses the unary ‘*’ operator.  For example, if pi is a pointer that
contains the address of some integer in memory, you can reference the integer value using the followin
syntax:

*pi = i+2;  // Store the sum i+2 into the integer that pi points at.
j = *pi;    // Grab a copy of the integer’s value and store it into j.

Converting an indirect reference to assembly language is fairly simple.  The only gotcha, of course
you must first move the pointer value into an 80x86 register before dereferencing the pointer.  The fo
HLA examples demonstrate how to convert the two C/C++ statements in this example to their equivale
code:

// *pi = i + 2;

mov( pi, ebx );    // Move pointer into a 32-bit register first!
mov( i, eax );     // Compute i + 2 and leave sum in EAX
add( 2, eax );
mov( eax, [ebx] ); // Store i+2’s sum into the location pointed at by EBX.

// j = *pi;

mov( pi, ebx );    // Only necessary if EBX no longer contains pi’s value!
mov( [ebx], eax ); // Only necessary if EAX no longer contains *pi’s value!
mov( eax, j );     // Store the value of *pi into j.

If you’ve got a pointer that holds the address of a sequence of data values (e.g., an array), then ther
completely different (but equivalent) ways you can indirectly access those values.  One way is to use C
pointer arithmetic syntax, the other is to use array syntax.  Assuming pa is a pointer to an array of integers, th
following example demonstrates these two different syntactical forms in action:

*(pa+i) = j;   // Stores j into the ith object beyond the address held in pa.
pa[i] = j;     // Stores j into the ith element of the array pointed at by pa.

The important thing to note here is that both forms are absolutely equivalent and almost every C/C++ c
on the planet generates exactly the same code for these two statements.  Since compilers generally
exactly the same code for these two statements, it should come as no surprise that you would manually
these two statements to the same assembly code sequence.  Conversion to assembly language is sligh
cated by the fact that you must remember to multiply the index into an array (or sequence of objects) by
of each array element.  You might be tempted to convert the statements above to something like the follo

mov( j, XXX );          // XXX represents some register that will hold j’s value.
mov( pa, ebx );         // Get base address of array/sequence in memory
mov( i, ecx );          // Grab index
mov( XXX, [ebx][ecx] ); // XXX as above

The problem with this sequence is that it only works properly if each element of the array is exactly one
size.  For larger objects, you must multiply the index by the size of an array element (in bytes).  For exa
each element of the array  is six bytes long, you’d probably use code like the following to implement these
C++ statements:
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mov( j, eax );            // Get the L.O. four bytes of j.
mov( j[4], dx );          // Get the H.O. two bytes of j.
mov( pa, ebx );           // Get the base address of the array into EBX
mov( i, ecx );            // Grab the index
intmul( 6, ecx );         // Multiply the index by the element size (six bytes).
mov( eax, [ebx][ecx] );   // Store away L.O. four bytes
mov( dx, [ebx][ecx][4] ); // Store away H.O. two bytes.

Of course, if the size of your array elements is one of the four magic sizes of one, two, four, or eigh
then you don’t need to do an explicit multiplication.  You can get by using the 80x86 scaled indexed add
mode as the following HLA example demonstrates:

mov( j, eax );
mov( pa, ebx );           // Get base address of array/sequence in memory
mov( i, ecx );            // Grab index
mov( eax, [ebx][ecx*4] ); // Store j’s value into pa[i].

C uses yet another syntax when accessing fields of a structure indirectly (that is, you have a pointer
structure in memory and you want to access a field of that structure via the pointer).  The problem is 
unary ‘*’ (dereference) operator has a lower precedence than C’s ‘.’ (field access) operator.  In order to 
field of some structure to which you have a pointer, you’d have to write an expression like the following
using the ‘*’ operator:

(*ptrToStruct).field

Avoid the temptation to write this as follows:

*ptrToStruct.field

The problem with this latter expression is that ‘.’ has a higher precedence than ‘*’, so this expression tel
compiler to dereference the thing that ptrToStruct.field points at. That is, ptrToStruct must be an actual
struct object and it must have a field, field, that is a pointer to some object. This syntax indirectly references
value whose address field contains. An expression of the form “*(ptrToStruct).field” tells the compiler to fi
dereference the pointer ptrToStruct and then access field at the given offset from that indirect address.

Because accessing fields of a structure object indirectly is a common operation, using the syntax “
Struct).field” tends to clutter up a program and make it less readable.  In order to reduce the clutter the
programming language defines a second dereferencing operator that you use specifically to access fi
structure (or union) via a pointer:  the “->” operator.  The “->” operator has the same precedence as t
selection operator (“.”) and they are both left associative.  This allows you to write the following expr
rather than the ungainly one given earlier:

ptrToStruct->field

Regardless of which syntax you find in the C/C++ code, in assembly language you wind up using the sa
sequence to access a field of a structure indirectly.  The first step is to always load the pointer into a 32-
ter and then access the field at some offset from that indirect address.  In HLA, the best way to do this is 
an indirect expression like “[ebx]” to the structure type (using the “(type XXX [ebx])” syntax) and then use the “.
field reference operator.  For example,
type

Struct:
record

field  :int32;
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.
static

ptrToStruct :pointer to Struct;
.
.
.

// Access field “field” indirectly via “ptrToStruct”

mov( ptrToStruct, ebx );
mov( (type Struct [ebx]).field, eax );

For more details on the HLA type coercion operator, please consult the HLA language reference manua
that you use this same technique to indirectly access fields of a union or a class in HLA.

You may combine structure, array, and pointer types in C/C++ to form recursive and nested types.  That is,
you can have an array of structs, a struct may contain a field that is an array (or a struct), or you could e
a structure that has a field that is an array of structs whose fields are arrays of pointers to structs whose fi
general, a C/C++ programmer can create an arbitrarily complex data structure by nesting array, struc
class, and pointer data types.  Translating such objects into assembly language is equally complex, often
half dozen or more instructions to access the final object.  Although such constructs rarely appear in re
C/C++ programs, they do appear every now an then, so you’ll need to know how to translate them into a
language.  

Although a complete description of every possible data structure access conversion would require to
space here, an example that demonstrates the process you would go through is probably worthwhile.
purposes, consider the following complex C/C++ expression:

per->field[i].p->x[j].y

This expression uses three separate operators: “->”, “[ ]”, and “.”.  These three operators all have the sam

dence and are left associative, so we process this expression strictly on a left-to-right basis10.  The first object in
this expression, per, is a pointer to some structure.  So the first step in the conversion to HLA is to get this p
value into a 32-bit register so the code can refer to the indirect object:

mov( per, ebx );

The next step is to access a field of the structure that per references.  In this example, field is an array of struc-
tures and the code accesses element i of this array.  To access this particular object, we need to compute
index into the array (by multiplying the index by the size of an array element).  Assuming field is an array of
fieldpiece objects, you’d use code like the following to reference the ith object of field:

mov( i, ecx );                      // Get the index into the field array.
intmul( @size( fieldpiece ), ecx );  // Multiply index by the size of an element

10.A later section in this chapter will discuss C/C++ operator precedence and associativity.  Please see that section for m
details concerning operator precedence and associativity.
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The next step in the conversion of this expression is to access the p field of the ith array element of field.  The
following code does this:

mov( (type ptrsType[ebx]).p[ecx], edx );

The interesting thing to note here is that the index into the field array is tacked on to the end of the HLA 
expression we’ve created, i.e., we write “(type ptrsType[ebx]).p[ecx]” rather than “(type ptrsType[ebx])[ec
This is done simply because HLA doesn’t allow this latter syntax.  Because the “.” and “[ ]” operator
involve addition and addition is commutative, it doesn’t matter which syntax we use.  Note that HLA 
allow an address expression of the form “(type ptrsType [ebx][ecx]).p” but this tends to (incorrectly) imp

EBX points at an array of pointers, so we’ll not use this form here11.

The array element that “(type ptrsType [ebx]).p[ecx]” access is a pointer object.  Therefore, we have t
this pointer into a 32-bit register in order to dereference the pointer.  That’s why the previous HLA sta
moved this value into the EDX register.  Now this pointer points at an array of array objects (the x field) 
code then accesses the jth element of this array (of structures).  To do this, we can use the following HLA s
ments:

mov( j, esi );                  // Get the index into the array.
intmul( @size( xType ), esi );  // Multiply by the size of an array element.

   // Now [edx][esi] references the jth element of the x field

The last step in our code sequence is to reference the y field of the jth element of the x array.  Assuming that y is
a double-word object (just to make things easy for this example), here’s the code to achieve this:

mov( (type xType [edx]).y[esi], eax );

Here’s the complete code sequence:

// ptr->field[i].p->x[j].y

mov( ptr, ebx );
mov( i, ecx );                      // Get the index into the field array.
intmul( @size( fieldType ), ecx );  // Multiply index by the size of an element
mov( (type ptrsType [ebx]).p[ecx], edx );
mov( j, esi );                  // Get the index into the array.
intmul( @size( xType ), esi );  // Multiply by the size of an array element.
mov( (type xType [edx]).y[esi], eax );

3.2.4: C and Assembly Language Constants

Although we’ve already looked at literal constants in C/C++ and assembly language, we must still c
symbolic constants in C/C++ and their equivalents in assembly language.  A symbolic constant is one that we
refer to by name (an identifier) rather than the constant’s value (i.e., a literal constant).  Syntactically, a s
constant is an identifier and you use it as you would a variable identifier;  semantically of course, there ar
limitations on symbolic constants (such as you cannot assign the value of an expression to a symbol c
There are two types of symbolic constants you’ll find in the C and C++ languages: manifest constants and stor-
age constants.

11.The implication is only visual.  This form is completely equivalent to the previous form since addition is still commutative.
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The first type of constant to consider is a manifest constant. A manifest constant is a symbolic identifier 
which you’ve bound (assigned) some value. During compilation, the compiler simply substitutes the actu
of the constant everywhere it encounters the manifest constant’s identifier. From the standpoint of the co
code generation algorithms, there is no difference between a manifest constant and a literal constant. By
the code generator sees the constants, it’s a literal value. In C/C++, you can use the #define preprocessor direc-
tive to create manifest constants.  Note that you can use a manifest constant anywhere a literal constant

There are two ways to convert a C/C++ manifest constant into assembly language.  The first way, of c
to manually do the translation from symbolic to literal constant.  That is, whenever you encounter a manif
stant in C/C++, you simply translate it to the corresponding literal constant in your assembly languag
E.g.,

#define someConst 55
.
.
.

i = someConst;

in assembly language becomes:

mov( 55, i );

Obviously, manually expanding manifest constants when converting C/C++ code into assembly lang
not a good idea.  The reasons for using symbolic constants in C/C++ apply equally well to assembly la
programs.  Therefore, the best solution is to keep the constants symbolic when translating the C/C++
assembly language.  In HLA, the way to create manifest constants is by using the const declaration section.  The
exact form of the translation depends how the C/C++ code uses the #define preprocessor directive.  Technically
the #define preprocessor directive in C/C++ doesn’t define a constant, it defines a macro.  There are tw
forms of the #define directive:

#define someID  some text...

#define someID(parameter list) some text...

We’ll not consider the second form here, since that’s a true macro declaration.  We’ll return to macros and
convert this second example to HLA a little later in this chapter.

The first #define directive in this example defines a textual substitution macro.  The C/C++ preprocesso
will substitute the text following someID for each occurrence of someID appearing after this declaration in th
source file.  Note that the text following the declaration can be anything,  it isn’t limited to being a literal con-
stant.  For the moment, however, let’s just consider the case where the text following the #define directive and
the identifier is a single literal constant.  This begin the case, you can create an equivalent HLA manifest 
declaration using code like the following:

// #define fiftyFive 55

const
fiftyFive := 55;

Like C/C++, HLA will substitute the literal value 55 for the identifier fiftyFive everywhere it appears in the
HLA source file.
Page 170



-

.  How-
 expression
 C/C++

its that

f 
nstant

tion
his;
ning it

nt decla-
arations:
rce file
, only
onsider

le will
,

There is a subtle difference between HLA manifest constants you define in a const section and manifest con
stants you define with C/C++’s #define directive:  HLA’s constants are typed while C/C++ #define constants
are untyped textual substitutions.  Generally, however, you will not notice a difference between the two
ever, one special case does deserve additional comment: the case where a program specifies a constant
rather than a single literal constant (which both languages allow).  Consider the following statements in
and in HLA:

// C/C++ constant expression:

#define constExpr i*2+j

// HLA constant expression:

const
constExpr := i*2+j;

The difference between these two is that the C/C++ preprocessor simply saves up the text “i*2+j” and em
string whenever it encounters constExpr in the source file.  C/C++ does not require that i and j be defined prior
to the #define statement. As long as these identifiers have a valid definition prior to the first appearance ocon-

stExpr in the source file, the C/C++ code will compile correctly.  HLA, on the other hand, evaluates the co
expression at the point of the declaration.  So i and j must be defined at the point of the constant declara
(another difference is that HLA requires i and j to both be constants whereas C/C++ doesn’t require t
though if i and j are not constant objects then this isn’t really a manifest constant declaration as we’re defi
here, so we won’t worry about that).

Beyond the fact that C/C++ relaxes the requirement that i and j be defined before the manifest consta
ration, there is another subtle difference between C/C++ constant declarations and HLA constant decl
late binding.  HLA evaluates the value of the expression at the point you declare the constant in your sou
(which is why i and j have to be defined at that point in the previous example). C/C++, on the other hand
evaluates the constant expression when it actually expands the symbolic identifier in your source file.  C
the following C/C++ source fragment:

#define constExpr i*2 + j
#define i 2
#define j 3

printf( “1:%d\n”, constExpr );

#define i 4  //The compiler may issue a warning about this

printf( “2:%d\n”, constExpr );

The first printf statement in this example will display the value seven (2*2+3) whereas the second examp
display 11 (4*2+3).  Were you to do the equivalent in HLA (using val constants and the “?” statement in HLA
see the HLA reference manual for more details), you would get a different result, e.g.,

program t;
#include( “stdlib.hhf” )

? i := 2; // Defines i as a redefinable constant
? j := 3;
const
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constExpr := i*2 + j;

begin t;

stdout.put( “1:”, constExpr, nl );
? i := 4;
stdout.put( “2:”, constExpr, nl );

end t;

The HLA code prints the strings “1:7” and “2:7” since HLA only computes the expression “i*2+j” once, w
you define the constExpr manifest constant.

HLA does allow the definition of textual substitution constants using the text data type in the const section
For example, consider the following HLA const declaration:

const
constExpr :text := “i*2+j”;

This declaration is totally equivalent to the C/C++ #define declaration.  However, as you cannot drop in ari
metic expressions into assembly code at arbitrary points in your source file, this textual substitution isn’t
legal in an assembly file as it might be in a C/C++ source file.  So best not to attempt to use textual sub
constants like this.  For completeness’ sake, however, the following HLA example demonstrates how to
textual substitution constant expressions in an HLA source file (and have the compiler calculate the expr
the point of expansion):

program t;
#include( “stdlib.hhf” )

? i := 2; // Defines i as a redefinable constant
? j := 3;

const

// Note: “@eval” tells HLA to evaluate the constant expression inside
//       the parentheses at the point of expansion.  This avoids some
//       syntax problems with the stdout.put statements below.

constExpr :text := “@eval(i*2 + j)”;

begin t;

stdout.put( “1:”, constExpr, nl );
? i := 4;
stdout.put( “2:”, constExpr, nl );

end t;

This HLA example prints “1:7” and “2:11” just like the C/C++ example.  Again, however, if the C/C++ man
constant expansion depends upon late binding (that is, computing the value of the expression at the po
rather than the point of declaration in the source file) then you should probably expand the text manually
point of use to avoid problems.
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The other way to define constant objects in C/C++ is to use the const keyword. By prefacing what looks like
an initialized C/C++ variable declaration with the const keyword, you can create constant (immutable 
time) values in your program, e.g.,

const int cConst = 4;

Although C/C++ lets you declare constant objects using the const keyword, such constants possess differe
semantics than manifest and literal constants. For example, in C/C++ you may declare an array as follow

#define maxArray 16

int array[ maxArray ];
int anotherArray[ maxArray ];

However, the following is generally not legal in C/C++:

const int maxBounds = 8;
int iArray[ maxBounds ];

The difference between manifest constants and const objects in C/C++ has to do with how the program tre
the constant object at run-time. Semantically, C++ treats const objects as read-only variables. If the CPU a
operating system support write-protected memory, the compiler may very well place the const object’s v
write-protected memory to enforce the read-only semantics at run-time. Other than the compiler doesn
you to store the result of some expression into a const object, there is little difference between const and
static variable declarations in C++. This is why a declaration like the one for iArray earlier is illegal. C/C++
does not allow you to specify an array bounds using a variable and (with the exception of the read-only a
const objects are semantically equivalent to variables. To understand why C/C++ const objects are not manifes
constants and why such declarations are even necessary in C/C++ (given the presence of the #define preproces-
sor directive), we need to look at how CPUs encode constants at the machine code level.

The 80x86 provides special instructions that can encode certain constants directly in a machine ins
Consider the following two 80x86  assembly language instructions:

mov( maxBound, eax );  // Copy maxBound’s value into eax
mov( 8, eax );         // Copy the value eight into eax

In both cases the machine code the CPU executes consists of three components: an opcode that tel
cessor that it needs to move data from one location to another; an addressing mode specification that sp
register, whether the register is a destination or source register, and the format the other operand takes (i
a register, a memory location, or a constant); and the third component is the encoding of the memory ad
the actual constant. The instruction that copies maxBound’s value into EAX encodes the address of the varia
as part of the instruction whereas the instruction that copies the value eight into EAX encodes the 32-bit v
eight into the instruction. At the machine level, there is a fundamental difference between the execution 
two instructions – the CPU requires an extra step to fetch maxBound’s value from memory (and this fact remain
true even if you initialize maxBound to eight and place maxBound in write-protected memory). Therefore, th
CPU treats certain types of literal and manifest constants differently than it does other types of constants

Note that a constant (literal, manifest, or otherwise) object in a high level language does not imply 
language encodes that constant as part of a machine instruction. Most CPUs only allow you to encod
constants (and in some cases, small integer constants) directly in an instruction’s opcode. The 80x86, for ex
ple, does not allow you to encode a floating point constant within a machine instruction. Even if the CP
capable of encoding floating point and all supported integer values as immediate constants within an 
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high level languages like C/C++ support the declaration of large data objects as constant data. For exam
could create a constant array in C/C++ as follows:

const int constArray[4] = {0,1,2,3};

Few processors, if any, support the ability to encode an arbitrary array constant as immediate data 
machine instruction. Similarly, you’ll rarely find structure/record constants or string constants encoded d
within an instruction. Support for large structured constants is the main reason C/C++ adds a another
constants to the language.

A high level language compiler may encode a literal constant or a manifest constant as an instruction’
diate operand. There is no guarantee, however, that the compiler might actually do this;  the CPU must
immediate constants of the specified type and the compiler write must choose to emit the appropriate im
addressing mode along with the instruction. On the other hand, constants that are not manifest consta
const objects in C/C++) are almost always encoded as memory references rather than as immediate d
instruction.

So why would you care whether the compiler emits a machine instruction that encodes a constant a
the opcode versus accessing that constant value appearing in memory somewhere?  After all, since
instructions appear in memory, an immediate constant encoded as part of  an instruction also appears in
So what’s the difference?  Well, the principle difference is that accessing a constant value appearing else
memory (i.e., not as immediate data attached to the instruction) requires twice as much memory to enco
you need the constant itself, consuming memory somewhere;  second, you need the address that
encoded as part of the instruction. Since the address of a constant value typically consumes 32-bits, it 
takes twice as much memory to encode the access to the constant. Of course, if you reference the sam
value throughout your code, the compiler should only store one copy of the constant in memory an
instruction that references that constant would reference the same memory location. However, even if yo
tize the size of the constant access over any number of instructions, the bottom line is that encoding con
memory location still takes more room than encoding immediate constants.

Another difference between manifest/literal constants and read-only objects is that decent compil
compute the result of constant expressions at compile-time, something that it may not be able to do w
only objects. Consider the following C++ code:

#define one 1
#define two 2
const int three = 3;
const int four = 4;
int i;
int j;

i = one + two;
j = three + four;

Most decent C/C++ compilers will replace the first assignment statement above with the following:

i = 3;  // Compiler compute 1+2 at compile-time

On the 80x86 processor this statement takes a single machine instruction to encode (this is generally
most processors). Some compilers, however, may not precompute the value of the expression “three+f
will, instead, emit machine instructions to fetch these values from their memory locations and add them
time.
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HLA provides a mechanism whereby you can create immutable “variables” in your code if you need th
age semantics of a variable that the program must not change at run-time.  You can use HLA’s readonly declara-
tion section to declare such objects, e.g.,

readonly
constValue :int32 := -2;

For all intents and purposes, HLA treats the readonly declaration like a static declaration. The two major dif-
ferences are than HLA requires an initializer associated with all readonly objects and HLA attempts to plac
such objects in read-only memory at run time.  Note that HLA doesn’t prevent you from attempting to 
value into a readonly object.  That is, the following is perfect legal and HLA will compile the program with
complaint:

mov( 56, constValue );

Of course, if you attempt to execute the program containing this statement, the program will probably ab
an illegal access violation when the program attempts to execute this statement.  This is because HLA wil
this object in write-protected memory and the operating system will probably raise an exception wh
attempt to execute this statement.

A compiler may not be able to efficiently process a constant simply because it is a literal constant or 
fest constant. For example most CPUs are not capable of encoding a string constant in an instruction.
manifest string constant may actually make your program less efficient. Consider the following C code:

#define strConst “A string constant”
.
.
.

printf( “string: %s\n”, strConst );
.
.
.

sptr = strConst;
.
.
.

result = strcmp( s, strConst );
.
.
.

Because the compiler (actually, the C preprocessor) expands the macro strConst to the string literal “A
string constant” everywhere the identifier strConst appears in the source file, the above code is actually equ
lent to:

.

.

.
printf( “string: %s\n”, “A string constant” );

.

.

.
sptr = “A string constant”;

.
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result = strcmp( s, “A string constant” );

.

.

.

The problem with this code is that the same string constant appears at different places throughout
gram. In C/C++, the compiler places the string constant off in memory somewhere and substitutes a p
that string for the string literal constant. A naive compiler would wind up making three separate copies
string in memory, thus wasting space since the data is exactly the same in all three cases. Compiler w
ured this out a couple of decades ago and modified their compilers to keep track of all the strings the c
had already emitted;  when the program used the same literal string constant again, the compiler would
cate storage for a second copy of the string, it would simply return the address of the earlier string appe
memory. Such an optimization could reduce the size of the code the compiler produced by a fair amou
same string appears through some program. Unfortunately, this optimization probably lasted about a wee
the compiler vendors figured out that there were problems with this approach. One major problem w
approach is that a lot of C programs would assign a string literal constant to a character pointer variable 
proceed to change the characters in that literal string, e.g., 

sptr = “A String Constant”;
.
.
.

*(sptr+2) = ‘s’;
.
.
.

printf( “string: ‘%s’\n”, sptr ); /* displays “string: ‘A string Constant’” */
.
.
.

printf( “A String Constant” );    /* Prints “A string Constant”! */

Compilers that used the same string constant in memory for multiple occurrences of the same strin
appearing in the program quickly discovered that this trick wouldn’t work if the user stored data into the
object, as the code above demonstrates. Although this is a bad programming practice, it did occur fre
enough that the compiler vendors could not use the same storage for multiple copies of the same strin
Even if the compiler vendor were to place the string literal constant into write-protected memory to prev
problem, there are other semantic issues that this optimization raise. Consider the following C/C++ code

sptr1 = “A String Constant”;
sptr2 = “A String Constant”;
s1EQs2 = sptr1 == sptr2;

Will s1EQs2 contain true (1) or false (0) after executing this instruction sequence?  In programs written be
compilers had strong optimizers available, this sequence of statements would leave false in s1EQs2 because the
compiler created two different copies of the same string data and placed those strings at different add
memory (so the addresses the program assigns to sptr1 and sptr2 would be different). In a later compiler, tha
kept only a single copy of the string data in memory, this code sequence would leave true sitting in s1EQs2 since
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both sptr1 and sptr2 would be pointing at the same address in memory;  this difference exists regardl
whether the string data appears in write-protected memory.

Of course, when converting the C/C++ code to assembly language, it is your responsibility to det
whether you can merge strings and use a common copy of the data or whether you will have to use a
copy of the string data for each instance of the symbolic constant throughout your assembly code.

C/C++ supports other composite constant types as well (e.g., arrays and structures/records). This d
of string constants in a program applies equally well to these other data types. Large data structures that
cannot represent as a primitive data type (i.e., hold in a general purpose register) almost always wind up
memory and the program access the constant data exactly as it would access a variable of that type. 
modern systems, the compiler may place the constant data in write-protected memory to prevent the 
from accidentally overwriting the constant data, but otherwise the “constant” is structurally equivalent to 
able in every sense except the ability to change its value.  You can place such “constant” declarations in
readonly declaration section to achieve the HLA equivalent to the C/C++ code.

HLA also allows the declaration of composite constants in the const section.  For example, the following i
perfect legal in HLA:

const
constArray :int32[4] := [1,2,3,4];

However, you should note that HLA maintains this array strictly at compile-time within the compiler.  You
not, for example, write HLA code like the following once you have the above declaration:

for( mov( 0, ebx ); ebx < 4; inc( ebx )) do

mov( constArray[ ebx*4 ], eax );
stdout.puti32( eax );

endfor;

The problem with this code is that constArray is not a  memory location so you cannot refer to it using an
addressing mode.  In order for this array constant to be accessible (as an array) at run time, you have 
copy of it in memory.  You can do this with an HLA declaration like the following:

readonly
rtConstArray :int32[4] := constArray; //Assuming the declaration given earlier.

Please consult the HLA documentation for more details on structured (composite) constants.  Althoug
are quite useful for HLA programmers, they aren’t generally necessary when converting C/C++ code t
As such, they’re a bit beyond the scope of this chapter so we won’t deal any farther with this issue here.

3.2.5: Arithmetic Expressions in C and Assembly Language

One of the major advances that high level languages provided over low level languages was the use
braic-like expressions. High level language arithmetic expressions are an order of magnitude more read
the sequence of machine instructions the compiler converts them into. However, this conversion proce
arithmetic expressions into machine code) is also one of the more difficult transformation to do efficientl
fair percentage of a typical compiler’s optimization phase is dedicated to handling this transformation. 
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Computer architects have made extensive studies of typical source files and one thing they’ve disco
that a large percentage of assignment statements in such programs take one of the following forms:

var = var2;
var = constant;
var = op var2;
var = var op var2;
var = var2 op var3;

Although other assignments do exist, the set of statements in a program that takes one of these form is 
larger than any other group of assignment statements. Therefore, computer architects have generally o
their CPUs to efficiently handle one of these forms.

The 80x86 architecture is what is known as a two-address machine. In a two-address machine, one of th
source operands is also the destination operand. Consider the following 80x86/HLA add instruction:

add( ebx, eax );  ; computes eax := eax + ebx;

Two-address machines, like the 80x86, can handle the first four forms of the assignment statement g
lier with a single instruction. The last form, however, requires two or more instructions and a temporary r
For example, to compute “var1 = var2 + var3;” you would need to use the following code (assuming var2 and
var3 are memory variables and the compiler is keeping var1 in the EAX register):

mov( var2, eax );
add( var3, eax );  //Result (var1) is in EAX.

Once your expressions get more complex than the five forms given earlier, the compiler will have to g
a sequence of two or more instructions to evaluate the expression. When compiling the code, most comp
internally translate complex expressions into a sequence of “three address statements” that are sem
equivalent to the more complex expression. The following is an example of a more complex expressio
sequence of three-address instructions that are representative of what a typical compiler might produce:

// complex = ( a + b ) * ( c - d ) - e/f;

temp1 = a + b;
temp2 = c - d;
temp1 = temp1 * temp2;
temp2 = e / f;
complex = temp1 - temp2;

If you study the five statements above, you should be able to convince yourself that they are semantically
lent to the complex expression appearing in the comment. The major difference in the computation is th
duction of two temporary values (temp1 and temp2). Most compilers will attempt to use machine registers
maintain these temporary values (assuming there are free registers available for the compiler to use).
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Table 3-5 lists most of the arithmetic operators used by C/C++ programs as well as their associativity

Table 3-5: C/C++ Operators, Precedence, and Associativity  

Precedence
Operator 

Classification
Associativity C/C++ Operators

1 (highest) Primary Scope 
Resolution (C++)

left to right ::

2 Primary left to right ( )   [ ]  .  ->   

3 Unary

(monadica)

a.Monadic means single operand .

right to left ++   --   +  -  !  ~  &  *  
(type) sizeof new delete

4 Multiplicative

(dyadicb)

left to right *   /   %

5 Additive
(dyadic)

left to right +   -

6 Bitwise Shift
(dyadic)

left to right <<    >>

7 Relational
(dyadic)

left to right <   >    <=    >=

8 Equality
(dyadic)

left to right ==    !=

9 Bitwise AND 
(dyadic)

left to right &

10 Bitwise Exclusive 
OR (dyadic)

left to right ^

11 Bitwise Inclusive 
OR (dyadic)

left to right |

12 Logical AND
(dyadic)

left to right &&

13 Logical OR
(dyadic)

left to right ||

14 Conditional

(triadicc)

right to left ?  :

15 Assignment right to left =  +=  -=  *=  /=  <<=  >>=  
%=  &=  ^=  |=

16 (lowest) Comma left to right ,
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3.2.5.1: Converting Simple Expressions Into Assembly Language

In this section we will consider the case where we need to convert a simple C/C++ expressions into a
language. We’ve already discussed the conversion of the primary operators (in Table 3-5) into assem
guage, so we won’t bother repeating that discussion here. Likewise, we’ve already discussed the addres
ator (“&”) and the dereferencing operator (“*”) so we’ll skip their discussions here as well.

Although the conversion of the remaining operators into assembly language is generally obvious, the
few peculiarities. So it’s worthwhile to quickly discuss how to convert a simple expression of the form @X
or X@Y (where ‘@’ represents one of the operators found in Table 3-5) into assembly language. Note 
discussion that follows deals with integer (signed or unsigned) only. The conversion of floating point expr
into assembly language is actually easier than converting integer expressions. This book will not deal w
verting floating point expressions into assembly language. There are two reasons for this: (1) once you se
convert integer expressions to assembly, you’ll discover than floating point expression conversion is very
(2) the Win32 API uses very few floating point values. The whole reason for this chapter is to describe the
to assembly conversion process so you can read and understand existing C/C++ documentation whe
Windows assembly code. Since you won’t find much Windows programming documentation that involv
use of floating point arithmetic, there is little need to present that information here. If you’re interested in t
ject, be sure to check out the discussion of this process in The Art of Assembly Language Programming.

Each of the examples appearing in this section will assume that you’re operating on 32-bit integers pr
a 32-bit result (except in the case of boolean results, where this book will assume an 8-bit result is proba
ficient).  If you need to operate on eight or sixteen bit values, so sweat, just substitute the 8-bit or 16-bit r
in place of the 32-bit registers you’ll find in these examples.  If you need to deal with larger values (e.g
long ints), well, that’s beyond the scope of this book;  please see the section on extended precision arith
The Art of Assembly Language for details on those operations.

Translating the ++ and -- (increment and decrement) operators from C/C++ to assembly language l
first, like a trivial operation.  You simply substitute an inc or dec instruction for these operators.  However, the
are two details that complicate this conversion by a slight amount: pre- and post- increment/decrement op
and pointer increment/decrement operations.

Normally, when you apply the ++ (increment) operator to an integer variable, the ++ operator increme
value of that variable by one. Similarly, when you apply the -- (decrement) operator to an integer variable
operator decrements that variable by one. However, C/C++ also allows you to apply the ++ and -- ope
pointer variables as well as integers (pointers and integer variables are the only legal objects to which 
apply these operators, though). The semantics of a pointer increment are different than the semantics o
ger increment; applying the ++ operator to a pointer increments that pointer variable by the size of the object at
which the pointer refers. For example, if pi is a pointer that points at a 32-bit integer value somewhere in m
ory, then ++pi adds four to pi (rather than one); this cause pi to point at the next sequential memory location th
can hold a 32-bit integer (without overlapping the current integer in memory). Similarly, the -- (decrement
ator subtracts the size of the object at which a pointer refers from the pointer’s value. So --pi would subtract

b.Dyadic means two operand .
c.Triadic means three operands .
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four from pi if pi points at a 32-bit integer. So the basic conversion of the ++ and -- operator to assemb
guage is as Table 3-6 describes.

Table 3-6: Converting C/C++ Increment/Decrement Operators to Assembly  

The increment and decrement operators may appear before or after a variable.  If a C/C++ statemen
of a single variable with one of these operators, then whether you use the pre-increment/decrement form (sticking
the ++ or -- before the variable) or the post-increment/decrement form (placing the ++ or -- operator after th
variable) is irrelevant.  In either case the end result is that the program will increment or decrement the 
accordingly:

c++;  // is equivalent to 
++c;

// and

--c;  // is equivalent to
c--;

If the C/C++ increment and decrement operators are attached to a variable within a larger express
the issue of pre-increment/decrement versus post-increment/decrement makes a big difference in the fin
Consider the statements “a = ++c;” and “a = c++;”. In both cases the program will add one to variable c (assum-
ing c is an integer rather than a pointer to some object).  However, these two statements are quite diffe
respect to the value they assign to variable a.  The first example here first increments the value in c and then
assigns the value in c to a (hence the term pre-increment since the program first increments c and then uses its
value in the expression). The second statement here first grabs the value in c, assigns that to a, and then incre-
ments c (hence the term post-increment since this expression increments c after using its value).  Here’s som
sample HLA code that implements these two statements:

C/C++ HLAa

a.In the pointer examples, substitute the ap-
propriate type identifier when incrementing a
pointer to some type other than int32.

int i;
++i;
i++;

inc( i );

int *pi;
++pi;
pi++;

add( @size(int32), i );

int i;
--i;
i--;

dec( i );

int *pi;
--pi;
pi--;

sub( @size( int32 ), i );
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// a = ++c;

inc( c );         // pre-increment the value in c.
mov( c, eax );
mov( eax, a  );

// a = c++;

mov( c, eax );
mov( eax, a );
inc( c );         // post-increment the value in c.

The C/C++ compiler effectively ignores the unary “+” operator.  If you attach this operator to an oper
does not affect that value of that operand in any way.  It’s presence in the language is mainly for notatio
poses.   It lets you specify positive numeric constants like +123.456 in the source file.  Sometimes e
place the “+” in front of such a constant can make the program more readable.  However, since this 
rarely appears in real-world C/C++ programs, you’re unlikely to see it.

The unary “-” operator negates the expression/variable that immediately follows it.  The important th
note is that this operator negates the value of the operand immediately following the “-” for use in the exp
containing the operator.  In particular, if a simple variable immediately follows the unary “-” this operator d
negate that operator directly.  Therefore, you cannot use the 80x86 neg instruction on the variable exce
very special case where you have a statement like the following:

i = -i;

Instead, you  must move the value of the variable into a register, negate the value of that register, and
that register’s value within the expression.  For example, consider the following:

//  j = -i;

mov( i, eax );
neg( eax );
mov( eax, j );

The unary “!” operator is the logical not operator.  If the sub-expression (i.e., variable) appearing im
ately to the left of this operator is zero, the “!” operator returns one.  If the value of that sub-expression
zero, this operator returns zero.  To convert this to assembly language, what you would do is test the op
zero and set the result to one if it is zero, zero if the operand is not zero.  You can use the cmp (or test) instruc-
tion along with the 80x86 setne instruction to achieve this:

// Convert !i to assembly, assume i is an int variable, leave result in AL(or EAX)

cmp( i, 0 );
setne( al );

   // movsx( al, eax );  // Do this if you need a 32-bit boolean result.

A very common construct you’ll see in many C/C++ programs is a sub-expression like “!!i” (that is, app
logical not operator twice to the same value.  This double logical negation converts the value in i to zero if it was
previously zero, to one if it was previously non-zero.  Rather than execute the previous code fragment tw
can easily achieve this effect as follows:

// Convert !!i to assembly, assume i is an int variable, leave result in AL(or EAX)
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cmp( i, 0 );
sete( al );

   // movsx( al, eax );  // Do this if you need a 32-bit boolean result.

The C/C++ unary “~” operator does a bitwise logical not on its operand (that is, it inverts all the bits
operand).  This is easily achieved using the 80x86 not instruction as follows:

// j = ~i

mov( i, eax );
not( eax );
mov( i, j );

For the special case of “i = ~i;” you can use the 80x86 not instruction to negate i directly, i.e., “not( i );”.

A simple C/C++ expression like “x = y * z;” is easily converted to assembly language using a code se
like the following:

// x = y * z;

mov( y, eax );
intmul( z, eax );
mov( eax, x );

// Note: if y is a constant, can do the following:
// (because multiplication is commutative, this also works if z is a constant,
//  just swap z and y in this code if that is the case):

intmul( y, z, eax );
mov( eax, x );

Technically, the intmul instruction expects signed integer operands so you would normally use it only
signed integer variables.  However, if you’re not checking for overflow (and C/C++ doesn’t so you pro
won’t need to either), then a two’s complement signed integer multiply produces exactly the same resu
unsigned multiply.  See The Art of Assembly Language if you need to do a true unsigned multiply or an extend
precision multiply.  Also note that the intmul instruction only allows 16-bit and 32-bit operands.  If you ne
multiple two 8-bit operands, you can either zero extend them to 16 (or 32) bits or you can use the 80x86imul or
mul instructions (see The Art of Assembly Language for more details).

The C/C++ division and modulo operators (“/” and “%”, respectively) almost translate into the same
sequence.  This is because the 80x86 div and idiv instructions calculate both the quotient and remainder o
division at the same time.  

Unlike integer multiplication, division of signed versus unsigned operands does not produce the sam
Therefore, when dividing values that could potentially be negative, you  must use the idiv instruction.  Only use
the div instruction when dividing unsigned operands.

Another complication with the division operation is that the 80x86 does a 64/32-bit division (that is, it d
a 64-bit number by a 32-bit number).  Since both C/C++ operands are 32-bits you will need to sign exte
signed integer operands) or zero extend (for unsigned integer operands) the numerator to 64 bits. Also r
that the div and idiv instructions expect the numerator in the EDX:EAX register pair (or DX:AX for 32/16 d
sions, or AH:AL for 16/8 divisions, see The Art of Assembly Language for more details).  The last thing to note 
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Here’s the code to translate an expression of the form “x=y/z;” into 80x86 assembly code:

// x = y / z;   -- assume all operands are unsigned.

mov( y, eax );
xor( edx, edx );  // zero extend EAX to 64 bits in EDX:EAX
div( z );
mov( eax, x );    // Quotient winds up in EAX

// x = y % z;   -- assume all operands are unsigned.

mov( y, eax );
xor( edx, edx );  // zero extend EAX to 64 bits in EDX:EAX
div( z );
mov( edx, x );    // Remainder winds up in EDX

// x = y / z;   -- assume all operands are signed.

mov( y, eax );
cdq();            // sign extend EAX to 64 bits in EDX:EAX
idiv( z );
mov( eax, x );    // Quotient winds up in EAX

// x = y % z;   -- assume all operands are signed.

mov( y, eax );
cdq();            // sign extend EAX to 64 bits in EDX:EAX
idiv( z );
mov( edx, x );    // Remainder winds up in EDX

Converting C/C++ expressions involving the “+”, “-”, “&”, “|”, and “&” operators into assembly languag
quite easy.  A simple C/C++ expression of the form “a = b @ c;” (where ‘@’ represents one of these op
translates into the following assembly code:
//  a = b @ c;

mov( b, eax );
instr( c, eax );  //instr = add, sub, and, or, xor, as appropriate
mov( eax, a );

The C/C++ programming language provides a shift left operator (“<<“).  This dyadic operator retur
result of its left operand shifted to the left the number of bits specified by its right operand. An expressio
form “a=b<<c;” is easily converted to one of two different HLA instruction sequences (chosen by whethec is a
constant or a variable expression) as follows:

// a = b << c;   -- c is a constant value.

mov( b, eax );
shl( c, eax );
mov( eax, a );
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// a = b << c;   -- c is a variable value in the range 0..31.

mov( b, eax );
mov( (type byte c), cl );  //assume H.O. bytes of c are all zero.
shl( cl, eax );
mov( eax, a );

C/C++ also provides a shift right operator, “>>”. This translates to a sequence that is very similar to th
version of the “<<“ operator with one caveat: the 80x86 supports two different shift right instructions: shr (shift
logical right) and sar (shift arithmetic right). The C/C++ language doesn’t specify which shift you should 
Some compilers always use a logical shift right operation, some use a logical shift right for unsigned o
and they use an arithmetic shift right for signed operands. If you don’t know what you’re supposed to us
converting code, using a logical (unsigned) shift right is probably the best choice because this is what m
grammers will expect. That being the case, the shift right operator (“>>”) appearing in an expressi
“a=b>>c;” translates into 80x86 code thusly:

// a = b >> c;   -- c is a constant value.

mov( b, eax );
shr( c, eax );
mov( eax, a );

// a = b >> c;   -- c is a variable value in the range 0..31.

mov( b, eax );
mov( (type byte c), cl );  //assume H.O. bytes of c are all zero.
shr( cl, eax );
mov( eax, a );

If you decide you need to use an arithmetic (signed) shift right operation, simply substitute sar for shr in this
code.

The logical OR and logical AND operators (“||” and “&&”) return the values zero or one based on the 
of their two operands.  The logical OR operator (“||”) returns one if either or both operands are non-z
returns zero if both operands are zero.  The logical AND operator (“&&”) returns zero if either operand is 
returns one only if both operands are non-zero.  There is, however, one additional issue to consider: the
tors employ short-circuit boolean evaluation.  When computing “X && Y” the logical AND operator will not
evaluate Y if it turns out that X is false (there is no need because if X is false, the full expression is alway
Likewise, when computing “X || Y” the logical OR operator will not evaluate Y if it turns out that X is true (a
there will be no need to evaluate Y for if X is true the result is true regardless of Y’s value).  Probably 
majority of expressions it doesn’t really matter whether the program evaluates the expression using sho
evaluation or complete boolean evaluation; the result is always the same.  However, because C/C++ prom
short-circuit boolean evaluation semantics, many programs are written to depend on these semantics an
if you recode the expression using complete boolean evaluation.  Consider the following two examples th
onstrate two such situations:

if( pi != NULL && *pi == 5 )
{

// do something if *pi == 5...
}

.

.

.
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if( --x == 0 || ++y < 10 )
{

// do something if x == 0 or y < 10
}

The first if statement in this example only works properly in all cases when using short-circuit evaluation
left-hand operand of the “&&” operator evaluates false if pi is NULL.  In that case, the code will not evaluate t
right operand and this is a good thing for if it did it would dereference a NULL pointer (which will rais
exception under Windows).  In the second example above, the result is not as drastic were the syste
short-circuit evaluation rather than complete boolean evaluation, but the program would produce a d
result in y when using complete boolean evaluation versus short-circuit boolean evaluation.  The reason
difference is that the right-hand side of the expression increments y, something that doesn’t happen if the le
operand evaluates true.

Handling short-circuit boolean evaluation almost always means using conditional jumps to skip aro
expression.  For example, given the expression “Z = X && Y” the way you would encode this using pure
circuit evaluation is as follows:

xor( eax, eax );   // Assume the result is false.
cmp( eax, X );     // See if X is false.
je isFalse;
cmp( eax, Y );     // See if Y is false.
je isFalse;

inc( eax );     // Set EAX to 1 (true);

isFalse:
mov( eax, Z );     // Save 0/1 in Z

Encoding the logical OR operator using short-circuit boolean evaluation isn’t much more difficult.  Her
example of how you could do it:

xor( eax, eax );   // Assume the result is false.
cmp( eax, X );     // See if X is true.
jne isTrue;
cmp( eax, Y );     // See if Y is false.
je isFalse;

isTrue:
inc( eax );     // Set EAX to 1 (true);

isFalse:
mov( eax, Z );     // Save 0/1 in Z

Although short-circuit evaluation semantics are crucial for the proper operation of certain algorithms, m
the time the logical AND and OR operands are simple variables or simple sub-expressions whose re
independent of one another and quickly computed. In such cases the cost of the conditional jumps may
expensive than some simple straight-line code that computes the same result (this, of course, depends e
which processor you’re using in the 80x86 family).  The following code sequence demonstrates one (so
tricky) way to convert “Z = X && Y” to assembly code, assuming X and Y are both 32-bit integer variables:

xor( eax, eax ); // Initialize EAX with zero
cmp( X, 1 );     // Note: sets carry flag if X == 0, clears carry in all other cases.
adc( 0, eax );   // EAX = 0 if X != 1, EAX = 1 if X = 0.
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cmp( Y, 1 );     // Sets carry flag if Y == 0, clears it otherwise.
adc( 0, eax );   // Adds in one if Y = 0, adds in zero if Y != 0.
setz( al );      // EAX = X && Y
mov( eax, Z );

Note that you cannot use the 80x86 and instruction to merge X and Y together to test if they are both non-zero. F
if X contained $55 (0x55) and Y contained $aa (0xaa) their bitwise AND (which the and instruction produces) is
zero, even though both values are logically true and the result should be true.  You may, however, use th
or instruction to compute the logical OR of two operands.  The following code sequence demonstrates
compute “Z = X || Y;” using the 80x86 or instruction:

xor( eax, eax );  // Clear EAX’s H.O. bytes
mov( X, ebx );
or( Y, ebx );
setnz( al );      // Sets EAX to one if X || Y (in EBX) is non-zero.

The conditional expression in C/C++ is unusual insofar as it is the only ternary (three-operand) opera
C/C++ provides.  An assignment involving the conditional expression might be

a = (x != y) ? trueVal : falseVal;

The program evaluates the expression immediately to the left of the “?” operator.  If this expression evalu
(non-zero) then the compiler returns the value of the sub-expression immediately to the right of the “?” o
as the conditional expression’s result.  If the boolean expression to the left of the “?” operator evaluates fa
zero) then the conditional expression returns the result of the sub-expression to the right of the “:” in the
sion.  Note that the conditional operator does not evaluate the true expression (trueVal in this example) if the
condition evaluates false.  Likewise, the conditional operator does not evaluate the false expression (falseVal in
this example) if the expression evaluates true.  This is similar to short-circuit boolean evaluation in the “&
“||” operators.  You encode the conditional expression in assembly as though it were an if/else statement, e.g.,

mov( falseVal, edx );   // Assume expression evaluates false
mov( x, eax );
cmp( eax, y );
jne TheyreNotEqual
mov( trueVal, edx );    // Assumption was incorrect, set EDX to trueVal

TheyreNotEqual:
mov( edx, a );          // Save trueVal or falseVal (as appropriate) in a.

C/C++ provides a set of assignment operators.  The are the following:

=  +=  -=  &=  ^=  |=  *=  /=  %=  <<=  >>=  

Generally, C/C++ programmers use these assignment operators as stand-alone C/C++ statements
may appear as subexpressions as well. If the C/C++ program uses these expressions as stand-alone 
(e.g., “x += y;”) then the statement “x @= y;” is completely equivalent to “x = x @ y;” where ‘@’ represen
operator above. Therefore, the conversion to assembly code is fairly trivial, you simply use the conversion
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been studying throughout this section. Table 3-7 lists the equivalent operations for each of the assignme
tors.

Table 3-7: Converting Assignment Operators To Assembly Language  

The comma operator in C/C++ evaluates two subexpressions and then throws the result of the first ex
away (i.e., it computes the value of the first/left expression strictly for any side effects it produces).  In g
just convert both sub-expressions to assembly using the rules in this section and then use the result of th
sub-expression in the greater expression, e.g.,

C/C++ 
Operator

C/C++ 
Example

Equivalent 
To This C/
C++ Code

HLA Encoding

= x = y; x = y; mov( y, eax );
mov( eax, x );

+= a += b; a = a + b; mov( b, eax );
add( eax, a );

-= a -= b; a = a - b; mov( b, eax );
sub( eax, a );

&= a &= b; a = a & b; mov( b, eax );
and( eax, a );

|= a |= b; a = a | b; mov( b, eax );
or( eax, a );

^= a ^= b; a = a ^ b; mov( b, eax );
xor( eax, a );

<<= a <<= b; a = a << b; mov( (type byte b), cl );
shl( cl, a );

>>= a >>= b; a = a >> b; mov( (type byte b), cl );
shr( cl, a );

*= a *= b; a = a * b; mov( a, eax );
intmul( b, eax );
mov( eax, a );

/= a /= b; a = a / b; mov( a, eax );
cdq; // or xor( edx, edx );
div( b );
mov( eax, a );  // Store away quotient

%= a %= b; a = a % b; mov( a, eax );
cdq; // or xor( edx, edx );
div( b );
mov( edx, a );  // Store away remainder
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//  x = ( y=z, a+b );

mov( z, eax );
mov( eax, y );
mov( a, eax );
add( b, eax );
mov( eax, x );

3.2.5.2: Operator Precedence

The precedence of an operator resolves the ambiguity that is present in an expression involving sever
ent operands. For example, given the arithmetic expression “4+2*3” there are two possible values we co
cally claim this expression produces: 18 or 10 (18 is achieve by adding four and two then multiplying the
by three; 10 is achieved by multiplying two times three and adding their product together with four). No
may be thoroughly convinced that 10 is the correct answer, but that’s only because by convention most peo
agree that multiplication has a higher precedence than addition, so you must do the multiplication firs
expression (that is, you’ve followed an existing convention in order to resolve the ambiguity). C/C++ also
own precedence rules for eliminating ambiguity. In Table 3-5 the precedence level appears in the left-most col
umn. Operators with a lower precedence level have a higher precedence and, therefore, take preced
other operators at a lower precedence. You’ll notice that the multiplication operator in C/C++ (“*”) has a 
precedence than addition (“+”) so C/C++ will produce 10 for the expression “4+2*3” just as you’ve been 
to expect.

Of course, you can always eliminate the ambiguity by explicitly specifying parentheses in your expre
Indeed, the whole purpose of precedence is to implicitly specify where the parentheses go.  If you have t
ators with different precedences (say ‘#’ and ‘@’) and three operands, and you have an expression of 
X#Y@Z then you must place parentheses around the operands connected by the operator with the high
dence.  In this example, if ‘@’ has a higher precedence than ‘#’ you’d wind up with X#(Y@Z).  Convers
‘#’ has a higher precedence than ‘@’ you’d wind up with (X#Y)@Z.

An important fact to realize when converting C/C++ code into assembly language is that preceden
controls the implicit placement of parentheses within an expression.  That is, precedence controls  whi
ands we associate with a given operator.  Precedence does not necessarily control the order of evaluat
operands.  For example, consider the expression “5*4+2+3”.  Since multiplication has higher preceden
addition, the “5” and “4” operands attach themselves to the “*” operator (rather than “4” attaching itself 
“+” operator).  That is, this expression is equivalent to “(5*4)+2+3”.  The operator precedence, contrary to
lar opinion, does not control the order of the evaluation of this expression.  We could, for example, comp
sub-expression “2+3” prior to computing “5*4”.  You still get the correct result when computing this part
addition first.  

When converting a complex expression to assembly language, the first step is to explicitly add in the
theses implied by operator precedence.  The presence of these parentheses will help guide the conv
assembly language (we’ll cover the exact process a little later in this chapter).

3.2.5.3: Associativity

Precedence defines where the parentheses go when you have three or  more operands separated b
operators at different precedence levels. Precedence does not deal with the situation where you have
more operands separated by operators at the same precedence level.  For example, consider the followi
sion:
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5 - 4 - 3;

Does this compute “5 - (4 - 3);” or does it compute “ (5 - 4) -3;”?  Precedence doesn’t answer the questio
because the operators are all the same.  These two expressions definitely produce different results
expression produces 5-1=4 while the second produces 1-3=-2).  Associativity is the mechanism by wh
determine the placement of parentheses around adjacent operators that have the same precedence leve

Operators generally have one of three different associativities: left, right, and none. C/C++ doesn’t h
non-associative operators, so we’ll only consider left associative and right associative operators here. T
lists the associativity of each of the C/C++ operators (left or right). If two left associative operators are a
to one another, then you place the left pair of operands and their operator inside parentheses. If two righ
tive operators appear adjacent to one another in an expression, then you place a pair of parentheses a
right-most pair of operands and their operator, e.g.,

5 - 4 - 3     -becomes-    (5 - 4) - 3
x = y = z     -becomes-    x = (y = z)

Like precedence, associativity only controls the implied placement of the parentheses within an exp
It does not necessarily suggest the order of evaluation.  In particular, consider the following arithmetic 
sion:

5 + 4 + 3 + 2 + 1

Because addition is left associative, the implied parentheses are as follows:

(((5 + 4) + 3) + 2) + 1

However, a compiler is not forced to first compute 5+4, then 9 + 3, then 12 + 2, etc.  Because addition
mutative, a compiler can rearrange this computation in any way it sees fit as long as it produces the same
this second expression.

3.2.5.4: Side Effects and Sequence Points

A side effect is any modification to the global state of a program other than the immediate result a p
code is producing. The primary purpose of an arithmetic expression is to produce the expression’s res
other changes to the system’s state in an expression is a side effect. The C/C++ language is especially
allowing side effects in an arithmetic expression. For example, consider the following C/C++ code fragme

i = i + *pi++ + (j = 2) * --k

This expression exhibits four separate side effects:  the decrement of k at the end of the expression, the assig
ment to j prior to using j’s value, the increment of the pointer pi after dereferencing pi, and the assignment to
i (generally, if this expression is converted to a stand-alone statement by placing a semicolon after the
sion, we consider the assignment to i to be the purpose of the statement, not a side effect).

Another way to create side effects within an expression is via a function call. Consider the followin
code fragment:

int k;
int m;
int n;

int hasSideEffect( int i, int& j )
{
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k = k + 1;
hasSideEffect = i + j;
j = i;

}
.
.
.

m = hasSideEffect( 5, n );

In this example, the call to the hasSideEffect function produces two different side effects: (1) the modificat
of the global variable k and the modification of the pass by reference parameter j (actual parameter is n in this
code fragment). The real purpose of the function is to compute the function’s return result; any modifica
global values or reference parameters constitutes a side effect of that function, hence the invocation o
function within an expression causes the expression to produce side effects. Note that although C does
vide “pass by reference” parameters as C++ does, you can still pass a pointer as a parameter and m
dereferenced object, thus achieving the same effect.

The problem with side effects in an expression is that most C/C++ compilers do not guarantee the 
evaluation of the components that make up an expression. Many naive programmers (incorrectly!) assu
when they write an expression like the following:

i = f(x) + g(x);

the compiler will emit code that first calls function f and then calls function g. The C and C++ programming lan
guages, however, do not specify this order of execution. That is, some compilers will indeed call f , then call g,
and then add their return results together;  some other compilers, however, may call g first, then f, and then com-
pute the sum of the function return results. That is, the compiler could translate the expression above in
of the following simplified code sequences before actually generating native machine code:

// Conversion #1 for “i = f(x) + g(x);” 

temp1 = f(x);
temp2 = g(x);
i:= temp1 + temp2;

// Conversion #2 for “i = f(x) + g(x);”

temp1 = g(x);
temp2 = f(x);
i = temp2 + temp1;

Note that issues like precedence, associativity, and commutativity have no bearing on whether the comp
uates one sub-component of an expression before another. For example, consider the following ar
expression and several possible intermediate forms for the expression:

j = f(x) - g(x) * h(x);

// Conversion #1 for this expression:

temp1 = f(x);
temp2 = g(x);
temp3 = h(x);
temp4 = temp2 * temp3
j = temp1 - temp4;
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// Conversion #2 for this expression:

temp2 = g(x);
temp3 = h(x);
temp1 = f(x);
temp4 = temp2 * temp3
j = temp1 - temp4;

// Conversion #3 for this expression:

temp3 = h(x);
temp1 = f(x);
temp2 = g(x);
temp4 = temp2 * temp3
j = temp1 - temp4;

Many other combinations are possible.

The specification for the C/C++ programming languages explicitly leave the order of evaluation und
This may seem somewhat bizarre, but there is a good reason for this: sometimes a compiler can produ
machine code by rearranging the order it uses to evaluate certain sub-expressions within an express
attempt on the part of the language designer to force a particular order of evaluation on a compiler’s impl
may limit the range of optimizations possible. Therefore, very few languages explicitly state the order of 
tion for an arbitrary expression.

There are, of course, certain rules that most languages do enforce. Though the rules vary by langua
are some fairly obvious rules that most languages (and their implementation) always follow because i
suggests the behavior. Probably the two most common rules that you can count on are the facts tha
effects within an expression occur prior to the completion of that statement’s execution. For example, if th
tion f modifies the global variable x, then the following statements will always print the value of x after f modi-
fies it:

i = f(x);
printf( “x= %d\n”, x );

Another rule you can count on is that the assignment to a variable on the left hand side of an ass
statement does not get modified prior to the use of that same variable on the right hand side of the ex
I.e., the following will not write a temporary value into variable n until it uses the previous value of n within the
expression:

n = f(x) + g(x) - n;

Because the order of the production of side effects within an expression is undefined in C/C++, the r
the following code is generally undefined:

int incN( void )
{

incN = n;
n := n + 1;

}
.
.
.
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n = 2;
printf( “%d\n”, incN() + n*2 );

The compiler is free to first call the incN function (so n will contain three prior to executing the sub-expressi
“n*2”) or the compiler may first compute “n*2” and then call the incN function. As a result, one compilation o
this statement could produce the output “8” while a different compilation of this statement might produ
output “6”. In both cases n would contain three after the execution of the writeln statement, but the order o
computation of the expression in the writeln statement could vary.

Don’t make the mistake of thinking you can run some experiments to determine the order of evalua
the very best, such experiments will tell you the order a particular compiler uses. A different compiler ma
well compute sub-expressions in a different order. Indeed, the same compiler might also compute the
nents of a subexpression differently based on the context of that subexpression. This means that a comp
compute the expression using one ordering at one point in the program and using a different ordering so
else in the same program. Therefore, it is very dangerous to “determine” the ordering your particular com
uses and rely on that ordering. Even if the compiler is consistent in the ordering of the computation 
effects, what’s to prevent the compiler vendor from changing this in a later version of the compiler?

As noted earlier, most languages do guarantee that the computation of side effects completes befor
points in your program’s execution. For example, almost every language guarantees the completion of
effects by the time the statement containing the expression completes execution. The point at which a 
guarantees that the computation of a side effect is completed is called a sequence point. The end of a statement i
an example of a sequence point.

In the C programming language, there are several important sequence points in addition to the sem
the end of a statement. C provides several important sequence points within expressions, as well. Beyon
of the statement containing an expression, C provides the following sequence points:

expression1, expression2                 (the C comma operator in an expression)
expression1 && expression2               (the C logical AND operator)
expression1 || expression2               (the C logical OR operator)
expression1 ? expression2 : expression3  (the C conditional expression operator)

C12 guarantees that all side effects in expression1 are completed before the computation of expression2 or
expression3 in these examples (note that for the conditional expression, C only evaluates one of expression2

or expression3, so only the side effects of one of these sub-expressions is ever done on a given executio
conditional expression).

To understand how side effects and sequence points can affect the operation of your program in non
ways, consider the following example in C:

int array[6] = {0, 0, 0, 0, 0, 0};
int i;

.

.

.
i = 0;
array[i] = i++;

12.C++ compilers generally provide the same sequence points at C, although the original C++ standard did not define an
sequence points.
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Note that C does not define a sequence point across the assignment operator. Therefore, the C language
guarantees about whether the expression “i” used as an index into array is evaluated before or after the progra
increments i on the right hand side of the assignment operator. Note that the fact that the “++” operator is
increment operation only implies that “i++” returns the value of i prior to the increment; this does not guarant
that the compiler will use the pre-increment value of i anywhere else in the expression. The bottom line is t
the last statement in this example could be semantically equivalent to either of the following statements:

array[0] = i++;
-or-

array[1] = i++;

The C language definition allows either form and, in particular, does not require the first form simply beca
array index appears in the expression before the post-increment operator.

To control the semantics of the assignment to array in this example, you will have to ensure that no part
the expression depends upon the side-effects of some other part of the expression. That is, you canno
the value of i at one point in the expression and apply the post-increment operator to i in another part of the
expression unless there is a sequence point between the two uses. Since no such sequence point exis
the two uses of i in this statement, the result is undefined by the C language standard (note that the standa
ally says that the result is undefined;  therefore, the compiler could legally substitute any value for i as the array
index value, though most compilers will substitute the value of i before or after the increment occurs in this pa
ticular example).

Though this comment appears earlier in this section, it is worth being redundant to stress an import
operator precedence and associativity do not control when a computation takes place in an expressi
though addition is left associative, the compiler may compute the value of the addition operator’s right o
before it computes the value of the addition operator’s left operand. Precedence and associativity control
compiler arranges the computation to produce the final result. They do not control when the program co
the subcomponents of the expression. As long as the final computation produces the results one would 
the basis of precedence and associativity, the compiler is free to compute the subcomponents in any ord
any time it pleases.

3.2.5.5: Translating C/C++ Expressions to Assembly Language

Armed with the information from the past several sections,  it is now possible to intelligently describe 
convert complex arithmetic expressions into assembly language.

The conversion of C/C++ expressions into assembly language must take into consideration the issues
ator precedence, associativity, and sequence points.  Fortunately, these rules only describe which oper
must apply to which operands and at which points you  must complete the computation of side effects.  
not specify the order that you must use when computing the value of an expression (other than compl
computation of side effects before a given point).  Therefore, you have a lot of latitude with respect to h
rearrange the computation during your conversion.  Because the C/C++ programming language has som
rules with regard to the order of computation in some expression, the result of a computation that relies 
side effects between a pair of sequence points is undefined.  However, just because the language doe
the result, some programmers will go ahead and assume that the compiler computes results on a left to r
within the statement.  That is, if two subexpressions modify the value of some variable, the programm
probably (though errantly) assume that the left-most side effect occurs first.  So if you encounter such a
fined operation in a C/C++ code sequence that you’re converting to assembly, the best suggestion is to
the result using a left-to-right evaluation of the expression.  Although this is no guarantee that you’ll p
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grammer was expecting.

A complex expression that is easy to convert to assembly language is one that involves three terms
operators, for example:

w = w - y - z;

Clearly the straight-forward assembly language conversion of this statement will require two sub instruc-
tions. However, even with an expression as simple as this one, the conversion is not trivial. There are acttwo
ways to convert this from the statement above into assembly language:

mov( w, eax );

sub( y, eax );

sub( z, eax );

mov( eax, w );

and

mov( y, eax );

sub( z, eax );

sub( eax, w );

The second conversion, since it is shorter, looks better. However, it produces an incorrect result. Asso
is the problem. The second sequence above computes “W = W - (Y - Z);” which is not the same as “W = 
- Z;”. How we place the parentheses around the subexpressions can affect the result. Note that if you 
ested in a shorter form, you can use the following sequence:

mov( y, eax );
add( z, eax );

sub( eax, w );

This computes “W=W-(Y+Z);”. This is equivalent to “W = (W - Y) - Z;”.

Precedence is another issue. Consider the C/C++ expression:

X = W * Y + Z;

Once again there are two ways we can evaluate this expression:

X = (W * Y) + Z;
or

X = W * (Y + Z);

However, C/C++’s precedence rules dictate the use of the first of these statements.

When converting an expression of this form into assembly language, you must be sure to compute th
pression with the highest precedence first. The following example demonstrates this technique:

// w = x + y * z;

mov( x, ebx );
mov( y, eax );      // Must compute y*z first since “*”
intmul( z, eax );   //  has higher precedence than “+”.
add( ebx, eax );
mov( eax, w );
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The precedence and associativity rules determine the order of evaluation. Indirectly, these rules 
where to place parentheses in an expression to determine the order of evaluation. Of course, you can a
parentheses to override the default precedence and associativity. However, the ultimate point is that you
bly code must complete certain operations before others to correctly compute the value of a given exp
The following examples demonstrate this principle:

// w = x - y - z

mov( x, eax );   // All the same operator, so we need
sub( y, eax );   //  to evaluate from left to right
sub( z, eax );   //  because they all have the same
mov( eax, w );   //  precedence and are left associative.

// w = x + y * z

mov( y, eax );      // Must compute Y * Z first since
intmul( z, eax );   // multiplication has a higher
add( x, eax );      // precedence than addition.
mov( eax, w );

// w = x / y - z

mov( x, eax );      // Here we need to compute division
cdq();              //  first since it has the highest
idiv( y, edx:eax ); //  precedence.
sub( z, eax );
mov( eax, w );

// w = x * y * z

mov( y, eax );      // Addition and multiplication are
intmul( z, eax );   // commutative, therefore the order
intmul( x, eax );   // of evaluation does not matter
mov( eax, w );

There is one exception to the associativity rule. If an expression involves multiplication and division it 
erally better to perform the multiplication first. For example, given an expression of the form:

W = X/Y * Z        // Note: this is  not !

It is usually better to compute X*Z and then divide the result by Y rather than divide X by Y and multiply the
quotient by Z. There are two reasons this approach is better. First, remember that the imul instruction always
produces a 64 bit result (assuming 32 bit operands). By doing the multiplication first, you automaticalsign
extend the product into the EDX register so you do not have to sign extend EAX prior to the division. This
the execution of the cdq instruction. A second reason for doing the multiplication first is to increase the acc
of the computation. Remember, (integer) division often produces an inexact result. For example, if you c
5/2 you will get the value two, not 2.5. Computing (5/2)*3 produces six. However, if you compute (5*3)/
get the value seven which is a little closer to the real quotient (7.5). Therefore, if you encounter an expre
the form:

w = x/y*z;

x
y
-- z× x

y z×-----------
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You can usually convert it to the assembly code:

mov( x, eax );
imul( z, eax ); // Note the use of IMUL, not INTMUL!
idiv( y, edx:eax );
mov( eax, w );

Of course, if the algorithm you’re encoding depends on the truncation effect of the division operation, you
use this trick to improve the algorithm. Moral of the story: always make sure you fully understand any exp
you are converting to assembly language. Obviously if the semantics dictate that you must perform the 
first, do so.

Consider the following C/C++ statement:
w = x - y * x;

This is similar to a previous example except it uses subtraction rather than addition. Since subtraction is n
mutative, you cannot compute y * z and then subtract x from this result. This tends to complicate the conv
sion a tiny amount. Rather than a straight forward multiply and addition sequence, you’ll have to load x into a
register, multiply y and z leaving their product in a different register, and then subtract this product from x, e.g.,

mov( x, ebx );
mov( y, eax );
intmul( x, eax );
sub( eax, ebx );
mov( ebx, w );

This is a trivial example that demonstrates the need for temporary variables in an expression. This code uses t
EBX register to temporarily hold a copy of x until it computes the product of y and z. As your expressions
increase in complexity, the need for temporaries grows. Consider the following C/C++ statement:

w = (a + b) * (y + z);

Following the normal rules of algebraic evaluation, you compute the subexpressions inside the parenthe
the two subexpressions with the highest precedence) first and set their values aside. When you’ve com
values for both subexpressions you can compute their sum. One way to deal with complex expressions
one is to reduce it to a sequence of simple expressions whose results wind up in temporary variables. F
ple, we can convert the single expression above into the following sequence:

Temp1 = a + b;

Temp2 = y + z;

w = Temp1 * Temp2;

Since converting simple expressions to assembly language is quite easy, it’s now a snap to com
former, complex, expression in assembly. The code is

mov( a, eax );
add( b, eax );
mov( eax, Temp1 );
mov( y, eax );
add( z, eax );
mov( eax, Temp2 );
mov( Temp1, eax );
intmul( Temp2, eax );
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mov( eax, w );

Of course, this code is grossly inefficient and it requires that you declare a couple of temporary vari
your data segment. However, it is very easy to optimize this code by keeping temporary variables, as 
possible, in 80x86 registers. By using 80x86 registers to hold the temporary results this code becomes:

mov( a, eax );
add( b, eax );
mov( y, ebx );
add( z, ebx );
intmul( ebx, eax );
mov( eax, w );

Yet another example:

x = (y+z) * (a-b) / 10;

This can be converted to a set of four simple expressions:

Temp1 = (y+z)
Temp2 = (a-b)
Temp1 = Temp1 * Temp2
X = Temp1 / 10

You can convert these four simple expressions into the assembly language statements:

mov( y, eax );      // Compute eax = y+z
add( z, eax );
mov( a, ebx );      // Compute ebx = a-b
sub( b, ebx );
imul( ebx, eax );   // This also sign extends eax into edx.
idiv( 10, edx:eax );
mov( eax, x );

The most important thing to keep in mind is that you should attempt to keep temporary values, in re
Remember, accessing an 80x86 register is much more efficient than accessing a memory location. Use
locations to hold temporaries only if you’ve run out of registers to use.

Ultimately, converting a complex expression to assembly language is little different than solving the e
sion by hand. Instead of actually computing the result at each stage of the computation, you simply w
assembly code that computes the result. Since you were probably taught to compute only one operation 
this means that manual computation works on “simple expressions” that exist in a complex express
course, converting those simple expressions to assembly is fairly trivial. Therefore, anyone who can solv
plex expression by hand can convert it to assembly language following the rules for simple expressions.

As noted earlier, this text will not consider the conversion of floating point expressions into 80x86 as
language.  Although the conversion is slightly different (because of the stack-oriented nature of the FPU
file), the conversion of floating point expressions into assembly language is so similar to the conversion o
expressions that it isn’t worth the space to discuss it here.  For more insight into this type of expression
sion, please see The Art of Assembly Language.
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3.2.6: Control Structures in C and Assembly Language

The C and C++ languages provide several high-level structured control statements.  Among these, you w
find the if/else statement, the while statement, the do/while statement, the for statement, the break/con-
tinue/return statements, and the goto statement.  C/C++ also provides the function call, but we’ll deal w
that control structure later in this chapter.  The C++ language provides exception handling facilities.  How
you’re unlikely to encounter C++’s try/catch statements in Win32 API documentation, we won’t bother d
cussing the conversion of those statements into assembly language in this book.  If you have need to in
exception handling into your HLA programs, please check out the HLA try..exception..endtry statements
in the HLA reference manual.

One advantage of a high level assembler like HLA is that it also provides high-level, structured, contro
ments.  Although not as sophisticated as the similar statements you’ll find in C/C++ (particularly with res
the boolean expressions the C/C++ statements allow), it’s fairly trivial to convert about 75-90% of the typ
C++ control statements you’ll encounter into assembly language (when using HLA).

This book will not cover the conversion of high level control structures into low-level assembly code
using conditional jumps and comparisons rather than the high-level control structures found in HLA). 
wish to use that conversion process and you’re not comfortable with it, please see The Art of Assembly Language
for more details.

For the most part, this book assumes that the reader is already an accomplished assembly language
mer.  However, because many assembly language programmers might not have bothered to learn HL
level control structures, the following sections will describe the semantics of the HLA structured contro
ments in addition to describing how to convert C/C++ control structures into their equivalent assembly la
statements.  Since C/C++ does not provide as many control structures as C/C++, this section will no
describing all of HLA’s high level control structures - only those that have a C/C++ counterpart.  For more
on HLA’s high level control statements, please consult the HLA Reference Manual.

3.2.6.1: Boolean Expressions in HLA Statements

Several HLA statements require a boolean (true or false) expression to control their execution. Ex
include the if, while, and repeat..until statements. The syntax for these boolean expressions repre
the greatest limitation of the HLA high level control structures. In many cases you cannot convert the
sponding C/C++ statements directly into HLA code.

HLA boolean expressions always take the following forms13:

flag_specification
!flag_specification
register
!register
Boolean_variable
!Boolean_variable
mem_reg relop mem_reg_const

A flag_specification may be one of the following symbols:

• @c    carry:  True if the carry is set (1), false if the carry is clear (0).

• @nc  no carry:  True if the carry is clear (0), false if the carry is set (1).

13.There are a few additional forms,  some of which we’ll cover a little later in this section..
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• @z    zero:  True if the zero flag is set, false if it is clear.

• @nz  not zero: True if the zero flag is clear, false if it is set.

• @o    overflow: True if the overflow flag is set, false if it is clear.

• @no no overflow: True if the overflow flag is clear, false if it is set.

• @s     sign:  True if the sign flag is set, false if it is clear.

• @ns   no sign: True if the sign flag is clear, false if it is set.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general purpose registers. The expressio
ates false if the register contains a zero; it evaluates true if the register contains a non-zero value.

If you specify a boolean variable as the expression, the program tests it for zero (false) or non-zer
Since HLA uses the values zero and one to represent false and true, respectively, the test works in an
fashion. Note that HLA requires such variables be of type boolean. HLA rejects other data types. If you 
test some other type against zero/not zero, then use the general boolean expression discussed next.

The most general form of an HLA boolean expression has two operands and a relational operator. T
lists the legal combinations.

Table 3-8: Relational Operators in HLA

Note that both operands cannot be memory operands. In fact, if you think of the Right Operand as the source
operand and the Left Operand as the destination operand, then the two operands must be the same thcmp

instruction allows.  This is the primary limitation to HLA boolean expressions and the biggest source o
lems when converting C/C++ high level control statements into HLA code.

Like the cmp instruction, the two operands must also be the same size. That is, they must both be by
ands, they must both be word operands, or they must both be double word operands. If the right operand
stant, it’s value must be in the range that is compatible with the left operand.

There is one other issue: if the left operand is a register and the right operand is a positive constant o
register, HLA uses an unsigned comparison. You will have to use HLA’s type coercion operator (e.g., “(type in
eax)” ) if you wish to do a signed comparison.

Here are some examples of legal boolean expressions in HLA:

@c
Bool_var

Left
Operand

Relational 
Operator

Right Operand

Memory Variable

or

Register

= or ==
Memory Variable,

Register,

or

Constant

<> or !=

<

<=

>

>=
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ESI
EAX < EBX
EBX > 5
i32 < -2
i8 > 128
al < i8

HLA uses the “&&” operator to denote logical AND in a run-time boolean expression.  This is a dyadic
operand) operator and the two operands must be legal run-time boolean expressions.  This operator eva
if both operands evaluate to true.  Example using an HLA if statement:

if( eax > 0 && ch = ‘a’ ) then

mov( eax, ebx );
mov( ‘ ‘, ch );

endif;

The two mov statements appearing here execute only if EAX is greater than zero and CH is equal to the characte
‘a’.  If either of these conditions is false, then program execution skips over these mov instructions.

Note that the expressions on either side of the “&&”  operator may be any legal boolean expressio
expressions don’t have to be comparisons using the relational operators.  For example, the following are
expressions:

@z && al in 5..10
al in ‘a’..’z’ && ebx
boolVar && !eax

HLA uses short circuit evaluation when compiling the “&&” operator.  If the left-most operand evalua
false, then the code that HLA generates does not bother evaluating the second operand (since the who
sion must be false at that point).  Therefore, in the last expression, the code will not check EAX agains
boolVar contains false.

Note that an expression like “eax < 0 && ebx <> eax” is itself a legal boolean expression and, therefo
appear as the left or right operand of the “&&” operator.  Therefore, expressions like the following are pe
legal:

eax < 0  &&  ebx <> eax    &&    !ecx

The “&&” operator is left associative, so the code that HLA generates evaluates the expression above in 
right fashion.  If EAX is less than zero, the CPU will not test either of the remaining expressions.  Likew
EAX is not  less than zero but EBX is equal to EAX, this code will not evaluate the third expression sin
whole expression is false regardless of ECX’s value.

HLA uses the “||” operator to denote disjunction (logical OR) in a run-time boolean expression.  Li
“&&” operator, this operator expects two legal run-time boolean expressions as operands.  This operato
ates true if either (or both) operands evaluate true.  Like the “&&” operator, the disjunction operator use
circuit evaluation.  If the left operand evaluates true, then the code that HLA generates doesn’t bother to
value of the second operand.  Instead, the code will transfer to the location that handles the situation w
boolean expression evaluates true.  Examples of legal expressions using the “||” operator:

@z || al = 10
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!boolVar || eax

As for the “&&” operator, the disjunction operator is left associative so multiple instances of the “||” op
may appear within the same expression.  Should this be the case, the code that HLA generates will eva
expressions from left to right, e.g.,

eax < 0  ||  ebx <> eax    ||   !ecx

The code above executes if either EAX is less than zero, EBX does not equal EAX, or ECX is zero.  Not
the first comparison is true, the code doesn’t bother testing the other conditions.  Likewise, if the first com
is false and the second is true, the code doesn’t bother checking to see if ECX is zero.  The check for EC
to zero only occurs if the first two comparisons are false.

If both the conjunction and disjunction operators appear in the same expression then the “&&” operato
precedence over the “||” operator.  Consider the following expression:

eax < 0 || ebx <> eax  && !ecx

The machine code HLA generates evaluates this as

eax < 0 || (ebx <> eax  && !ecx)

If EAX is less than zero, then the code HLA generates does not bother to check the remainder of the ex
the entire expression evaluates true.  However, if EAX is not less than zero, then both of the following co
must evaluate true in order for the overall expression to evaluate true.

HLA allows you to use parentheses to surround sub-expressions involving “&&” and “||” if you ne
adjust the precedence of the operators.  Consider the following expression:

(eax < 0 || ebx <> eax)  && !ecx

For this expression to evaluate true, ECX must contain zero and either EAX must be less than zero or E
not equal EAX.  Contrast this to the result the expression produces without the parentheses.  

HLA uses the “!” operator to denote logical negation.  However, the “!” operator may only prefix a regis
boolean variable;  you may not use it as part of a larger expression (e.g., “!eax < 0”).  To achieve logical n
of an existing boolean expression you must surround that expression with parentheses and prefix the pa
with the “!” operator, e.g.,

!( eax < 0 )

This expression evaluates true if EAX is not less than zero.  

The logical not operator is primarily useful for surrounding complex expressions involving the conju
and disjunction operators.  While it is occasionally useful for short expressions like the one above, it’s 
easier (and more readable) to simply state the logic directly rather than convolute it with the logical not o

3.2.6.2: Converting C/C++ Boolean Expressions to HLA Boolean Expressions

Although, superficially, C/C++ boolean expressions that appear within control structures look very sim
those appearing in HLA high-level structured control statements, there are some fundamental differen
will create some conversion problems.  Fortunately, most boolean expressions appearing in C/C++ contr
tures are relatively simple and almost translate directly into an equivalent HLA expression.  Nevertheless
percentage of expressions will take a bit of work to properly convert to a form usable by HLA.
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Although HLA provides boolean expressions involving relation and logical (and/or/not) operators, do
the impression that HLA supports generic boolean expressions as C/C++ does.  For example, an expre
“(x+y) > 10 ||  a*b < c” is perfectly legal in C/C++, but HLA doesn’t allow an expression like this.  You m
wonder why HLA allows some operators but not others.  There is a good reason why HLA supports only
ited number of operators: HLA supports all the operations that don’t require the use of any temporary valu
registers).  HLA does not allow any code in an expression that would require the use of a register to hol
porary value;  i.e., HLA will not modify any register values behind the assembly programmer’s back.
severely limits what HLA can do since subexpressions like “(x+y)” have to be computed in a temporary r
(at least, on the 80x86).  The previous section presented most of the operators that are legal in an HLA
expression. Unfortunately, of course, C/C++ does allow fairly complex arithmetic/boolean expressions w
structured control statement.  This section provides some guidelines you can use to convert complex
arithmetic/boolean expressions to HLA.

The first thing to note is that HLA only allows operands that are legal in a cmp instruction around one of the
relational operators. Specifically, HLA only allows the operands in Table 3-9 around a relational operator

Table 3-9: Legal Operands to a Relational Operator in an HLA Expression  

If you need to convert a boolean expression like “(x+y) > 10” from C/C++ into HLA, the most com
approach is to compute the sub-expression “(x+y)” and leave the result in a register, then you can com
register against the value 10, e.g.,

mov( x, eax );
add( y, eax );
if( eax > 10 ) then

.

.

.
endif;

Unfortunately, the syntax of various high level control structures in HLA don’t allow you to place the state
that compute the result before the control structure;  we’ll take a look at these problems in the sections
low.

3.2.6.3: The IF Statement

The HLA IF statement uses the syntax shown in Table 3-2.       

Left 
Operand

Relational 
Operator

Right 
Operand

reg <
<=
=

==
<>
!=
>

>=

reg

reg mem

reg const

mem reg

mem const
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Figure 3-2: HLA IF Statement Syntax  

The expressions appearing in an if statement must take one of the forms from the previous sections. I
boolean expression is true, the code after the then executes, otherwise control transfers to the next elseif or
else clause in the statement.

Since the elseif and else clauses are optional, an if statement could take the form of a single if..then

clause, followed by a sequence of statements, and a closing endif clause. The following is such a statement:

if( eax = 0 ) then

stdout.put( “error: NULL value”, nl );

endif;

If, during program execution, the expression evaluates true, then the code between the then and the endif
executes. If the expression evaluates false, then the program skips over the code between the then and the endif.

Another common form of the if statement has a single else clause. The following is an example of an if

statement with an optional else clause:

if( eax = 0 ) then

stdout.put( “error: NULL pointer encountered”, nl );

else

stdout.put( “Pointer is valid”, nl );

endif;

if( expression ) then

sequence
of one or
more statements

elseif( expression ) then

sequence
of one or
more statements

else

sequence
of one or
more statements

endif;

The elseif clause is optional.  Zero or more elseif
clauses may appear in an if statement.  If more
than one elseif clause appears, all the elseif
clauses must appear before the else clause
(or before the endif if there is no else clause).

The else clause is optional.  At most one
else clause may appear within an if statement
and it must be the last clause before the
endif.
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If the expression evaluates true, the code between the then and the else executes; otherwise the cod
between the else and the endif clauses executes.

You can create sophisticated decision-making logic by incorporating the elseif clause into an if statement.
For example, if the CH register contains a character value, you can select from a menu of items using c
the following:

if( ch = ‘a’ ) then

stdout.put( “You selected the ‘a’ menu item”, nl );

elseif( ch = ‘b’ ) then

stdout.put( “You selected the ‘b’ menu item”, nl );

elseif( ch = ‘c’ ) then

stdout.put( “You selected the ‘c’ menu item”, nl );

else

stdout.put( “Error: illegal menu item selection”, nl );

endif;

Although this simple example doesn’t demonstrate it, HLA does not require an else clause at the end of a
sequence of elseif clauses. However, when making multi-way decisions, it’s always a good idea to provi
else clause just in case an error arises. Even if you think it’s impossible for the else clause to execute, just kee
in mind that future modifications to the code could void this assertion, so it’s a good idea to have error re
statements in your code.

The C/C++ if statement is similar, but certainly not identical to, the HLA if statement.  First of all, the C
C++ if statement is based on an older language design that allows only a single statement after an if or else.
That is, C/C++ supports the following syntaxes for the if/else statement:

if( boolean_expression)
<< single statement >>;

if( boolean_expression )
<< single statement >>;

else
<< single statement >>;

If you need to attach more than a single statement to a C/C++ if or else, you have to use a compound stat
ment.  A compound statement consists of a sequence of zero or more statements surrounded by bra
means that there are six possible forms of the if statement you will find in a typical C/C++ program, as the f
lowing syntactical examples demonstrate:

1)
if( boolean_expression)

<< single statement >>;

2)
if( boolean_expression)
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{
<< zero or more statements >>

}

3)
if( boolean_expression )

<< single statement >>;
else

<< single statement >>;

4)
if( boolean_expression )
{

<< zero or more statements >>
}
else

<< single statement >>;

5)
if( boolean_expression )

<< single statement >>;
else
{

<< zero or more statements >>
}

6)
if( boolean_expression )
{

<< zero or more statements >>
}
else
{

<< zero or more statements >>
}

To convert either of the first two forms to HLA is relatively easy.  Simply convert the boolean express
HLA form (including placing any necessary arithmetic computations before the if statement), convert the state
ment or statements attached to the if to their HLA equivalents, and then place an endif after the last statemen
attached to the if.  Here are a couple of examples that demonstrate this conversion for the first two cases

// if( a >= 0 )
//     ++a;

if( a > 0 ) then

inc( a );

endif;

// if( (x*4) >= y && z < -5 )
// {
//    x = x - y;
//    ++z;
//  }
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mov( x, eax );
shl( 2, eax );  // x*4
if( eax >= y && z < -5 ) then

mov( y, eax );
sub( eax, x );
inc( eax );

endif;

Converting one of the other if/else forms from C/C++ to HLA is done in a similar fashion except, 
course, you also have to include the else section in the HLA translation.  Here’s an example that demonstr
this:

// if( a < 256 )
// {
//    ++a;
//    --b;
// }
// else
// {
//    --a;
//    ++b;
// }

if( a < 256 ) then

inc( a );
dec( b );

else

dec( a );
inc( b );

endif;

The C/C++ language does not directly support an elseif clause as HLA does, however, C/C++ program
often contain “else  if” chains that you may convert to an HLA elseif clause.  The following example demon
strates this conversion:

// if( x >= (y | z))
//    ++x;
//  else if( x >= 10 )
//    --x;
//  else
//  {
//     ++y;
//     --z;
//  }

mov( y, eax );
or( z, eax );
if( x >= eax ) then
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inc( x );

elseif( x >= 10 ) then

dec( x );

else

inc( y );
dec( z );

endif;

Sometimes a C/C++ else-if chain can create some conversion problems.  For example, suppose that
ean expression in the “else if” of this example was “x >= (y & z)” rather than an expression that is triviall
vertible to HLA.  Unfortunately, you cannot place the computation of the temporary results immediately 
the elseif in the HLA  code (since that section of code executes when if clause evaluates true).  You coul
place the computation before the if and leave the value in an untouched register, but this scheme has a co
disadvantages - first, you always compute the result even when it’s not necessary (e.g., when the if expression
evaluates true), second, it consumes a register which is not good considering how few registers there a
80x86.  A better solution is to use an HLA nested if rather than an elseif, e.g.,

// if( x >= (y | z))
//    ++x;
//  else if( x >= (y & z) )
//    --x;
//  else
//  {
//     ++y;
//     --z;
//  }

mov( y, eax );
or( z, eax );
if( x >= eax ) then

inc( x );

else

mov( y, eax );
and( z, eax );
if( x >= eax ) then

dec( x );

else

inc( y );
dec( z );

endif;

endif;
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3.2.6.4: The SWITCH/CASE Statement

The HLA programming language doesn’t directly provide a multi-way decision statement (commonly k
as a switch or case statement).  However, the HLA Standard Library provides a switch / case /  default /

endcase macro that provides this high level control statement in HLA.  If you include the hll.hhf header file
(which stdlib.hhf automatically includes for you), then you can use the switch statement exactly as though 
were a part of the HLA language.

The HLA Standard Library switch statement has the following syntax:

Figure 3-3: Syntax for the Switch..case..default..endswitch Statement 

Like most HLA high level language statements, there are several restrictions on the switch statement.  First
of all, the switch clause does not allow a general expression as the selection value.  The switch clause will only
allow a value in a 32-bit general purpose register.  In general you should only use EAX, EBX, ECX, EDX
and EDI because EBP and ESP are reserved for special purposes.  

The second restriction is that the HLA switch statement supports a maximum of 256 different case val
Few switch statements use anywhere near this number, so this shouldn’t prove to be a problem. Note t
case in Figure 3-3 allows a constant list. This could be a single unsigned integer value or a comma sepa
of values, e.g.,

case( 10 )
-or-

case( 5, 6, 8 )

Each value in the list of constants counts as one case constant towards the maximum of 256 possible c
So the second case clause above contributes three constants towards the total maximum of 256 constants

Another restriction on the HLA switch statement is that the difference between the largest and smalles
ues in the case list must be 1,024.  Therefore, you cannot have cases (in the same switch statement) with values
like 1, 10, 100, 1,000, and 10,000 since the difference between the smallest and largest values, 9999
1,024.

switch( reg32 )

case( constant_list )

<< statements >>

case( constant_list )

<< statements >>

default

<< statements >>

endswitch;

At least one CASE must be present.

Zero or more statements associated
with the CASE constants.

Optional set of zero or more CASE
sections to handle additional cases.

Optional DEFAULT section spec-
ifies statements to execute if none
of the CASE constants match the
register's value.
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The default section, if it appears in a switch statement, must be the last section in the switch statement.  If
no default section is present and the value in the 32-bit register does not match one of the case constants, then
control transfers to the first statement following the endswitch clause.

Here is a typical example of a switch..endswitch statement:

switch( eax )

case( 1 )

stdout.put( “Selection #1:” nl );
<< Code for case #1 >>

case( 2, 3 )

stdout.put( “Selections (2) and (3):” nl );
<< code for cases 2 & 3 >>

case( 5,6,7,8,9 )

stdout.put( “Selections (5)..(9)” nl );
<< code for cases 5..9 >

default

stdout.put( “Selection outside range 1..9” nl );
<< default case code >>

endswitch;

The switch statement in a program lets your code choose one of several different code paths depend
the value of the case selection variable.  Among other things, the switch statement is ideal for processing us
input that selects a menu item and executes different code depending on the user’s selection.

The HLA switch statement actually supports the semantics of the Pascal case statement (as well as multi
way selection statements found in various other languages).  The semantics of a C/C++ switch statement are
slightly different.  As it turns out, HLA’s switch macro provides an option for selecting either Pascal or C/C
semantics.  The hll.hhf header file defines a special compile-time boolean variable, hll.cswitch, that controls
which form of the switch statement HLA will use.  If this compile-time variable contains false (the default), 
HLA uses Pascal semantics for the switch statement.  If this compile-time variable contains true, then HLA u
C/C++ semantics.  You may set this compile-time variable to true or false with either of the following two
ments:

?hll.cswitch := true;  // Enable C/C++ semantics for the switch statement.
?hll.cswitch := false; // Enable Pascal semantics for the switch statement.

The difference between C/C++ and Pascal semantics has to do with what will happen when the sta
within some case block reach the end of that block (by hitting another case or the default clause).  When using
Pascal semantics, HLA automatically transfers control to the first statement following the endswitch clause
upon hitting a new case.  In the previous example, if EAX had contained one, then the switch statemen
execute the code sequence:

stdout.put( “Selection #1:” nl );
<< Code for case #1 >>
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Immediately after the execution of this code, control transfers to the first statement following the endswitch

(since the next statement following this fragment is the “case(2,3)” clause).

If you select C/C++ semantics by setting the hll.cswitch compile-time variable to true, then control doe
not automatically transfer to the bottom of the switch statement; instead, control falls into the first statemen
the next case clause.  In order to transfer control to the first statement following the endswitch at the end of a
case section, you must explicitly place a break statement in the code, e.g.,

?hll.cswitch := true;  // Enable C/C++ semantics for the switch statement.
switch( eax )

case( 1 )

stdout.put( “Selection #1:” nl );
<< Code for case #1 >>
break;

case( 2, 3 )

stdout.put( “Selections (2) and (3):” nl );
<< code for cases 2 & 3 >>
break;

case( 5,6,7,8,9 )

stdout.put( “Selections (5)..(9)” nl );
<< code for cases 5..9 >
break;

default

stdout.put( “Selection outside range 1..9” nl );
<< default case code >>

endswitch;

Note that you can alternately switch between C/C++ and Pascal semantics throughout your code b
the hll.cswitch compile-time variable to true or false at various points throughout your code.  However, 
makes the code harder to read, it’s generally not a good idea to do this on a frequent basis.  You should
form or the other and attempt to stick with it as much as possible.  Pascal semantics are actually a  little
(and safer) plus you get to continue using the break statement to break out of a loop containing a switch state-
ment.  On the other hand, some C/C++ switch statements need the ability to flow from one case to another, 
you’re translating such a statement from C/C++ to HLA, the C/C++ switch statement format is easier to de
with.  Of course, the purpose of this chapter is not to teach you how to convert a C/C++ Windows prog
HLA, but rather to help you read and understand C/C++ documentation.  In real life, if you have to conv
C++ switch statement to assembly language you’re probably better off explicitly creating a jump table and
an indirect jump implementation of the switch statement (see The Art of Assembly Language for details).
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3.2.6.5: The WHILE Loop

The HLA while statement uses the basic syntax shown in Figure 3-4.    

Figure 3-4: HLA WHILE Statement Syntax  

The while statement evaluates the boolean expression. If it is false, control immediately transfers to t
statement following the endwhile clause. If the value of the expression is true, then the CPU executes the
of the loop. After the loop body executes, control transfers back to the top of the loop where the while statement
retests the loop control expression. This process repeats until the expression evaluates false.

The C/C++ statement uses a similar syntax and identical semantics.  There are two principle diff
between the HLA while loop and the C/C++ variant: (1) HLA uses “while(expr) do ... endwhile;” where
C++ uses “while(expr) single_statement;”,  as with the C/C++ if statement, if you want to attach more than
single statement to the while you have to create a compound statement (using braces); (2) HLA’s bo
expressions are limited compared to C/C++ boolean expressions (see the discussion in the section on c
boolean expressions from C/C++ to HLA and the section on the if statement for details).

One problem with converting C/C++ statements to HLA is the conversion of complex boolean expre
Unlike an if statement, we cannot simply compute portions of a boolean expression prior to the actual te
while statement, i.e., the following conversion doesn’t work:

// while( (x+y) < z )
// {
//    printf( “x=%d\n”, x );
//    ++x;
//    y = y + x;
// }

mov( x, eax );   // Note: this won’t work!
add( y, eax );
while( eax < z ) do

stdout.put( “x=”, x, nl );
inc( x );
mov( x, eax );
add( eax, y );

endwhile;

The problem with this conversion, of course, is that the computation of “x+y” needed in the boolean e
sion only occurs once, when the loop first executes, not on each iteration as is the case with the origina
code.  The easiest way to solve this problem is to use the HLA forever..endfor loop and a breakif statement:

while( expression ) do

sequence
of one or
more statements

endwhile;

The expression in the WHILE
statement has the same
restrictions as the IF statement.

Loop Body
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// while( (x+y) < z )
// {
//    printf( “x=%d\n”, x );
//    ++x;
//    y = y + x;
// }

forever
mov( x, eax );
add( y, eax );

 breakif( eax < z );
stdout.put( “x=”, x, nl );
inc( x );
mov( x, eax );
add( eax, y );

endfor;

3.2.6.6: The DO..WHILE Loop

The C/C++ do..while loop is similar to the while loop except it tests for loop termination at the bottom
the loop rather than at the top of the loop (i.e., it executes the statements in the loop body at least once, r
of the value of the boolean control expression the first time the program computes it).  Like the while loop, the
do..while loop repeats the execution of the loop body as long as the boolean expression evaluates tru
does not provide an exact equivalent of the do..while loop, but it does provide a repeat..until loop.  The dif-
ference between these two loops is that a do..while loop repeats as long as (while) the expression evalu
true, the repeat..until loop repeats until the expression evaluates true (that is, it repeats the loop as long
expression evaluates false).

The HLA repeat..until statement uses the syntax shown in Figure 3-5.

Figure 3-5: HLA repeat..until Statement Syntax  

To convert a C/C++ do..while statement to an HLA repeat..until statement, you must adjust for th
semantics of the loop termination condition.  Most of the time, the conversion is immediately obvious;  in
few cases where you’ve got a complex boolean expression whose negation is not instantly obvious, 
always use the HLA “!(...)” (not) operator to negate the result of the boolean expression, e.g.,

// do
// {
//    <<some code fragment>>

repeat

sequence
of one or
more statements

until( expression );

The expression in the UNTIL
clause has the same
restrictions as the IF statement.

Loop Body
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// }while( (x < 10) && (y > 5 ));

repeat

<<some code fragments converted to HLA>>

until( !((x<10) && (y>5)) );

One advantage of the do..while loop over C/C++’s while loop is that statements appearing immedia
before the while clause (and after the do clause) will generally execute on each iteration of the loop.  Theref
if you’ve got a complex boolean expression that tests for loop termination, you may place the computa
portions of that expression immediately before the HLA until clause, e.g.,

// do
// {
//    printf( “x=%d\n”, x );
//    ++x;
//    y = y + x;
// }while( (x+y) < z )

repeat
stdout.put( “x=”, x, nl );
inc( x );
mov( x, eax );
add( eax, y );

mov( x, eax );
add( y, eax );

until( !(eax < z) );

The only time this will not work is if there is a continue (or an HLA continueif) statement in the loop.  The
continue statement directly transfers control to the loop termination test in the until clause.  Since continue
statements in C/C++ appear so infrequently, the best solution is to replace the continue with a jmp instruction
that transfers control the first statement that begins the execution of the termination test expression.

3.2.6.7: The C/C++ FOR Loop

The C/C++ statement for statement is a specialized form of the while loop.  It should come as no surpris
then, that the conversion to HLA is very similar to that for the while loop conversion. The syntax for the C/C+
for loop is the following:

for( expression1; expression2; expression3 )
statement;

This C/C++ statement is complete equivalent to the following C/C++ sequence:

expression1;
while( expression2 )
{

statement;
expression3;

}
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Although you can convert a C/C++ for statement to an HLA while loop, HLA provides a for statement that
is syntactically similar to the C/C++ for statement.  Therefore, it’s generally easiest to convert such C/C++ s
ments into HLA for statements. The HLA for loop takes the following general form:

for( Initial_Stmt; Termination_Expression; Post_Body_Statement ) do

<< Loop Body >>

endfor;

The following gives a complete example:

for( mov( 0, i ); i < 10; add(1, i )) do

stdout.put( “i=”, i, nl );

endfor;

// The above, rewritten as a while loop, becomes:

mov( 0, i );
while( i < 10 ) do

stdout.put( “i=”, i, nl );

add( 1, i );

endwhile;

There are a couple of important differences between the HLA for loop and the C/C++ for loop.  First o
course, the boolean loop control expression that HLA supports has the usual restrictions.  If you’ve got a 
boolean expression in a C/C++ loop, your best bet is to convert the for loop into a C/C++ while loop and then
convert that while loop into an HLA forever..endfor loop as the section on the while loop describes.

The other difference between the C/C++ and HLA for loops is the fact that C/C++ supports arbitrary
metic expressions for the first and third operands whereas HLA supports a single HLA statement.  90% o
C++ for loops you’ll encounter will simply assign a constant to a variable in the first expression and inc
(or decrement) that variable in the third expression.  Such for loops are very easy to convert to HLA as
lowing example demonstrates:

// for( i=0; i<10; ++i )
// {
//    printf( “i=%d\n”, i );
// }

for( mov( 0, i ); i<10; inc(i) ) do
stdout.put( “i=”, i , nl );

endfor;

C/C++ allows a bizarre form of the for statement to create an infinite loop.  The C/C++ convention for a
nite loop uses the following syntax:
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for(;;)
statement;

HLA does not allow this same syntax for it’s for loop. Instead, HLA provides an explicit statement for creat
infinite loops: the forever..endfor statement. Figure 3-6 shows the syntax for the forever statement.

Figure 3-6: HLA forever..endfor Loop Syntax

Although for(;;) and forever..endfor, by themselves, create infinite loops, the truth is that most of
time a program that employs these statements also uses a break, breakif, or return statement in order to exit
the loop somewhere in the middle of the loop.  The next section discusses the break and breakif statements.  A
little bit later we’ll look at C/C++’s return statement.

3.2.6.8: Break and Continue

C/C++ supports two specialized forms of the goto statement that immediately exits, or repeats the e
of, the loop containing these statements.  The break statement exits the loop that contains the statement; 
continue statement transfers control to the loop control expression (or simply to the top of the loop in th
of the infinite loop).  As you’ve seen earlier, the break statement also ends a case sequence in the C/C++ s
statement.

HLA also provides the break and continue statements that have the same semantics within a loop.  Th
fore, you can trivially translate these two statements from C/C++ to HLA.  HLA also provides  breakif and
continueif statements that will test a boolean expression and execute the break or continue only if the expres-
sion evaluates true.  Although C/C++ doesn’t provide a direct counterpart to these two HLA statements
often see C/C++ statements like the following that you can immediately translate to an HLA breakif or con-
tinueif statement:

if( C_expression ) break;
if( C_expression ) continue;

3.2.6.9: The GOTO Statement

The C/C++ goto statement translates directly into an 80x86 jmp instruction.  A C/C++ goto statement typi-
cally takes the following form:

goto someLabel;
.
.
.

forever

sequence
of one or
more statements

endfor;

Loop Body
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someLabel:  // The label may appear before the goto statement!

This usually translates to the following HLA code:

jmp someLabel;
.
.
.

someLabel:

The only difference, besides substituting jmp for goto, is the fact that goto labels have their own namespace
in C/C++. In HLA, however, statement labels share the same namespace as other local variables.  There
possible (though rare) that you’ll get a “duplicate name” error if you use the same name in your HLA co
appears in the C/C++ program.  If this happens, make a minor change to the statement label when trans
code to HLA.

3.3: Function Calls, Parameters, and the Win32 Interface

This section begins the second major portion of this chapter and, in fact, represents the most importa
rial in this chapter from the perspective of an assembly language programmer: how C/C++ function call
late into assembly language and how an HLA programmer would call a function written in C/C++. 
information represents the major point of this chapter since all Win32 API calls are calls to C code.  Furth
most Windows documentation that explains the Win32 API explains it in terms of C/C++ function calls, in
to understand how one makes calls to the Win32 API from assembly language, you must understand ho
implements these function calls.  Explaining that is the purpose of this section.

3.3.1: C Versus C++ Functions

There are some very important differences, both semantic and syntactical, between functions written 
functions written in C++.  The Win32 API uses the C calling and naming convention.  Therefore, all the 
API documentation also uses the C calling and naming convention.  Therefore, that’s what we will conc
on in this chapter.

C++ functions do offer several advantages over C functions.  Function overloading is a good example
a feature. However, function overloading (using the same function name for different functions and diffe
ing the actual functions by their parameter lists) requires the use of a facility known as name mangling in order to
generate unique names that the linker can use.  Unfortunately, there is no standard for name manglin
C++ compilers, so every one of them does it differently.  Therefore, you rarely see assembly code (or o
guages for that matter) interfacing with C++ functions.

In order to allow mixed-language programming with C++ (that is, the use of multiple programming
guages on the same project), the C++ language defines a special “C” function syntax that allows you to
compiler to generate C linkage rather than C++.  This is done with the C++ extern attribute:

extern “C”
{

extern char* RetHW( void );
};
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Please consult a C++ reference manual or your compiler’s documentation for more details.  Since the Wi
doesn’t use the C++ calling convention, we won’t consider it any farther here.

Another useful C++ feature that this chapter will discuss, when appropriate, is pass by reference pa
(since HLA also supports this feature).  However, the Win32 API doesn’t use any C++ features, so wh
chapter gets around to discussing pass by reference parameters, it will mainly be for your own edificatio

3.3.2: The Intel 80x86 ABI (Application Binary Interface)

Several years ago, Intel designed what is known as the 80x86 Application Binary Interface, or ABI.  T
pose of the ABI was to provide a standard that compiler designers to use to ensure interoperability betwe
ules written in different languages.  The ABI specifies what registers a function call should preserve (an
registers a function can modify without preserving), where functions return their results, alignment o
objects in structures, and several other conventions.  Since Microsoft’s C/C++ compilers (the ones used
pile Windows) adhere to these conventions, you’ll want to be familiar with this ABI since the Win32 API u

3.3.2.1: Register Preservation and Scratch Registers in Win32 Calls

The Intel 80x86 ABI specifies that functions must preserve the values of certain registers across a 
call.  If the function needs to modify the value of any of those registers, it must save the register’s va
restore it before returning to the caller.  The registers that must be preserved across calls are EBX, ESI, 
EBP. This means two things to an assembly language programmer calling an Win32 function:  first of a
dows preserves the values of these registers across a Win32 API call, so you can place values in these
make an OS call, and be confident that they contain the same value upon return.  The second implicati
do with callback functions.  A callback function is a function you write whose address you pass to Window
various times Windows may choose to call that function directly.  Such callback functions must obey the 
preservation rules of the Intel 80x86 ABI.  In particular, such callback functions must preserve the value
EBX, ESI, EDI, and EBP registers.

On the flip side, the Intel 80x86 ABI specifies that a function may freely modify the values of the EAX,
and EDX registers without preserving them.  This means that you can generally count on Win32 API fu
disturbing the values in these registers; as you’ll see in a moment, most Win32 API functions return a f
result in the EAX register, so it’s almost always wiped out.  However, most Win32 API functions wipe o
values in ECX and EDX as well.  If you need the values of any of these registers preserved across a W
call, you must save their values yourself.

3.3.2.2: The Stack Pointer (ESP)

The ESP register is a special case.  Function calls to the Win32 API generally do not preserve ESP
they remove any parameters from the stack that you push onto the stack prior to calling the API function
ever, you can generally assume that ESP is pointing at an appropriate top of stack  upon return from the 
In particular, any values you push onto the stack before pushing any API parameters (e.g., register va
want to preserve) will still be sitting on the stack when the function returns.  Functions that follow the
80x86 ABI do not arbitrarily mess with the value in the ESP register.

All Win32 API functions assume that the stack is aligned on a double-word boundary (that is, ESP co
value that is an even multiple of four).  If you call a Win32 API function and ESP is not aligned at a double
address, the Win32 API function will fail.  By default, HLA automatically emits code at the beginning of
procedure to ensure that ESP contains a value that is an even multiple of four bytes.  However, many p
Page 218



s make
e calling

ming
ne using
u can

 sure the
is clear

unction
t bytes,
y where

ultiple of
s always
tic objects,
tion is
rough-

ltiple of
mers choose to disable this code (to make their programs slightly more efficient).  If you do this, alway
sure that ESP contains a value whose L.O. two bits contain zeros (that is, an even multiple of four) befor
any Win32 API functions.

3.3.2.3: The Direction Flag

All Win32 functions assume that the direction flag is clear when you call them.  The Win32 program
convention is to set the direction flag when you need it set and then immediately clear it when you are do
it in that state.  Therefore, in all code where you have not explicitly set the direction flag yourself, yo
assume that the direction flag is clear.  You code should adhere to this policy as well (and always make
direction flag is clear when you make a Win32 API call).  You can also assume that the direction flag 
whenever Windows calls one of your callback routines.

3.3.2.4: Function Return Results

Table 3-10 lists the places that functions should return their result (depending on the size of the f
return result). The Win32 API generally adheres to this convention. If a function returns more than eigh
Win32 API functions generally require that you pass a pointer (i.e., the address of) some block of memor
the function will store the final result.

Table 3-10: 80x86 ABI Function Return Result Locations  

3.3.2.5: Data Alignment and Padding

The Intel 80x86 ABI generally expects objects to appear at addresses in memory that are an even m
their natural size up to four bytes in length (i.e.,  byte objects may appear at any address, word object
appear at even addresses, and larger objects are aligned on double-word addresses).  This is true for sta
automatic variables (local variables within a function), and fields within structures.  Although this conven
easily circumvented by setting compiler options, the Win32 API pretty much adheres to this convention th
out.

If an object would normally start at an address that is not an even multiple of it’s natural size14 (up to four
bytes), then the Microsoft C compiler will align that object at the next highest address that is an even mu

Size of Function 
Result in Bytes

Returned Here

1 al

2 ax

4 eax

8 edx:eax

other See Compiler Documentation

14.The natural size of an object is the size of the object if it’s a scalar, the size of an element if it’s an array, or the size of the 
largest field (up to four bytes) if it’s a structure.
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the object’s native size.  For data, the compiler usually fills (pads) the empty bytes with zeros, though you shou
never count on the values (or even presence) of padding bytes.

Parameters passed on the stack to a function are a special case.  Parameters are always an even 
four bytes (this is done to ensure that the stack remains double-word aligned in memory).  If you pass a
ter that is smaller than four bytes to some function, the Microsoft C compiler will pad it out to exactly four 
Likewise, if you pass a larger object that is not an even multiple of four bytes long, the compiler will p
object with extra bytes so its length is an even multiple of four bytes long.

For information on padding within structures, please see the section on the struct data type earlier in this
chapter.

3.3.3: The C, Pascal, and Stdcall Calling Conventions

There are many different function calling conventions in use today.  Of these different calling conve
three are of interest to us, the so-called C, Pascal, and Stdcall calling conventions.  The C and Stdcall calling co
ventions are of interest because they’re the ones that Win32 API calls use.  The Pascal calling conven
interest because that’s the default calling convention that HLA uses.

The Pascal calling convention is probably the most efficient of the three and the easiest to understan
Pascal calling sequence, a compiler (or human programmer writing assembly code) pushes paramete
stack as they are encountered in the parameter list when processing the parameters in a left-to-right
Another nice feature of the Pascal calling sequence is that the procedure/function is responsible for remo
parameters from the stack upon return from the procedure;  so the caller doesn’t have to explicitly do th
return.  As an example, consider the following HLA procedure prototype and invocation:

// Note: the “@pascal” attribute is optional, since HLA generally uses
// the pascal calling convention by default.

procedure proc( i:int32; j:int32; k:int32 ); @pascal; @external;
.
.
.

proc( 5, a, eax );

Whenever HLA encounters the high-level call to proc appearing in this example, it emits the following “pure
assembly code:

pushd( 5 );
push( a );    // Assumption: a is a 32-bit variable that is type compatible with int32
push( eax );
call proc;

Note that you have the choice of using HLA’s high-level calling syntax or manually pushing the para
and calling the procedure directly.  HLA allows either form;  the high-level calling syntax is generally ea
read and understand and it’s less likely you’ll make a mistake (that invariably hangs the program) when u
high level syntax.  Some assembly programmers, however, prefer the low-level syntax since it doesn’t hi
is going on.

The C calling convention does two things differently than the Pascal calling convention.  First of all, C
tions push their parameters in the opposite order than Pascal (e.g., from right to left).  The second diffe
that C functions do not automatically pop their parameters from the stack upon return. The advantage 
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calling convention is that it allows a variable number of parameters (e.g., for C’s printf function).  However, the
price for this extra convenience is reduced efficiency (since the caller has to execute extra instructions to
the parameters from the stack).

Although Windows is mostly written in C, most of the Win32 API functions do not use the C calling co
tion.  In fact, only the API functions that support a variable number of parameters (e.g., wsprintf) use the C call-
ing convention.  If you need to make a call to one of these API functions (or you want to call some other f
that uses the C calling convention), then you’ve got to ensure that you push the parameters on the sta
reverse order of their declaration and you’ve got to remove them from the stack when the function return

// int cProc( int i, int j, int k );
//    .
//    .
//    .
// cProc( a, 5, 2 );

pushd( 2 );     // push last parameter first!
pushd( 5 );
push( a );      //assumes a is a dword variable.
call cProc;
add( 12, esp ); // Remove three dword parameters from stack upon return.

HLA supports the C calling convention using the @cdecl procedure attribute, e.g.,

procedure cProc( i:int32; j:int32; k:int32 ); @cdecl; @external;

HLA’s high-level procedure call syntax will automatically push the actual parameters on the stack in the
priate order (i.e., in reverse).  However, you are still responsible for removing the parameter data from t
upon returning from the procedure call:

cProc( a, 5, 2 );  // Pushes 2, then 5, then a onto the stack
add( 12, esp );    // Remove parameter data from the stack.

Don’t forget that all procedure parameters are an even multiple of four bytes long.  Therefore, when 
ing parameter data from the stack the value you add to ESP must reflect the fact that the Intel ABI round
eter sizes up to the next multiple of four bytes.

The last parameter passing mechanism of immediate interest to us is the Stdcall (standard call) paramete
passing mechanism.  The Stdcall scheme is a combination of the C and Pascal calling sequences.  Like t
ing sequence, the Stdcall scheme pushes the parameters on the stack in the opposite order of their d
Like the Pascal calling sequence, the procedure automatically removes the parameters from the stac
returning.  Therefore, the caller does not have to remove the parameter data from the stack (thus impro
ciency by a small amount).  Most of the Win32 API functions use the Stdcall calling convention.  In HLA
can use the @stdcall procedure attribute to specify the Stdcall calling convention, e.g.,

procedure stdProc( i:int32; j:int32; k:int32 ); @stdcall; @exter-
nal;

HLA’s high level procedure call syntax will automatically push the parameters on the stack in the prope
reverse) order:

stdProc( a, 5, 2 );
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Of course, you can also manually call a Stdcall procedure yourself.  Be sure to push the paramete
reverse order!

pushd( 2 );
pushd( 5 );
push( a );
call stdProc;

Notice that this code does not remove any parameters from the stack.  That is the function’s job.

Some older HLA code (written before the @stdcall facility was added to the language) simulates the
calling convention by reversing the parameters in the procedure declaration (indeed, some of the HLA s
library code takes this one step farther and uses macros to swap the parameters prior to making calls to 
cedures).  Such techniques are obsolete and you shouldn’t employ them;  however, since there is some c
around that does this, you should be aware of why it does this.

3.3.4: Win32 Parameter Types

Almost all Win32 parameters are exactly four bytes long.  This is true even if the formal parameter
byte (e.g., a char object), two bytes (a short int), or some other type that is smaller than four bytes.  Thi
done to satisfy the Intel 80x86 ABI and to keep the stack pointer aligned on a four-byte boundary.  S
parameters are exactly four bytes long, a good question to ask is “how do you pass smaller objects, o
whose size is not an even multiple of four bytes, to a Win32 API function?”  This section will briefly discu
issue.

Whenever you pass a byte parameter to some function, you must pad that byte out to four bytes by pu
extra three bytes onto the stack.  Note that the procedure or function you call cannot assume that those b
tain valid data (e.g., the procedure/function cannot assume those three bytes all contain zeros).  It is perf
sonable to push garbage bytes for the upper three bytes of the parameter.  HLA will automatically gener
that pushes a byte-sized actual parameter onto the stack as a four-byte object.  Most of the time, this cod
tively efficient.  Sometimes, however, HLA may generate slightly less efficient code in the interest of safe
example, if you pass the BH register as a byte-sized parameter (a reasonable thing to do), there is no
HLA can push BH onto the stack as a double word with a single instruction.  Therefore, HLA will emit cod
the following:

sub( 4, esp );    // make room for the parameter
mov( bh, [esp] ); // Save BH in the L.O. byte of the object on top of stack.

Notice that the upper three bytes of this double-word on the stack will contain garbage.  This example, in
ular, demonstrates why you can’t assume the upper three bytes of the double word pushed on the stac
zeros.  In this particular case, they contain whatever happened to be in those three bytes prior to the exe
these two instructions.

Passing the AL, BL, CL, or DL register is fairly efficient on the 80x86.  The CPU provides a single
instruction that will push each of these eight-bite values onto the screen (by passing the entire 32-bit reg
contains these registers:

push( eax );  // Passes al.
push( ebx );  // Passes bl.
push( ecx );  // Passes cl,
push( edx );  // Passes dl
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Passing byte-sized memory objects is a bit more problematic.  Your average assembly language prog
would probably write code like the following:

push( (type dword byteVar) );  // Pushes byteVar plus three following bytes
call funcWithByteParam;

HLA, because it observes safety at the expense of efficiency, will not generate this code.  The problem
there is a tiny chance that this will cause the system to fail.  This situation could occur if byteVar is located in
memory within the last three bytes of a page of memory (4096 bytes) and the next page in memory is n
able.  That would raise a memory access violation.  Quite frankly, the likelihood of this ever occurring
remote that your average programmer would ignore the possibility of it ever happening.  However, co
cannot be so cavalier.  Even if the chance that this problem will occur is remote, a compiler must gene
code (that will never break).  Therefore, HLA actually generates code like the following:

push( eax );            // Make room for parameter on stack.
push( eax );            // Preserve EAX’s value
mov( byteVar, al );
mov( al, [esp+4] );     // Save byteVar’s value into parameter location
pop( eax );             // Restore EAX’s value.
call funcWithByteParam; // Call the function.

As you can see, the code that HLA generates to pass a byte-sized object as a parameter can be pretty
that this is only true when passing variables).

Part of the problem with generating code for less-than-dword-sized parameters is that HLA promises t

mess with register values when passing parameters15.  HLA provides a special procedure attribute, @use, that lets
you tell HLA that it is okay to modify the value of a 32-bit register if doing so will allow HLA to generate b
code.  For example, suppose funcWithByteParam had the following external declaration:

procedure funcWithByteParam( b:byte ); @use EAX; @external;

With this declaration, HLA can generate better code when calling the function since it can assume that i
to wipe out the value in EAX:

// funcWithByteParam( byteVar );

mov( byteVar, eax );
push( eax );
call funcWithByteParam;

Because the Intel ABI specifies that EAX (and ECX/EDX) are scratch registers and any function fol
the Intel ABI is free to modify their values, and because the Win32 functions follow the Intel ABI, and be
most Win32 API functions return a function return result in EAX (thereby guaranteeing that they wipe out 
value on any Win32 API call), you might wonder why you (or the HLA Standard Library) shouldn’t just al
specify “@use EAX;” on every Win32 function declaration.  Well, there is a slight problem with doing this. 
sider the following function declaration and invocation:

15.Indeed, the only time HLA messes with any register value behind your back is when invoking a class method.  Howeve
HLA well-documents that fact that class method and procedure calls may wipe out the values in ESI and EDI.
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procedure func( b:char; c:char; d:boolean ); @use eax; @external;
.
.
.

func( charVar, al, boolVar );

Here’s code similar to what HLA would generate for this function call:

mov( charVar, al );
push( eax );
push( eax );
mov( boolVar, al );
push( eax );
call func;

Do you see the problem?  Passing the first parameter (when using the @pascal calling convention) wipes out the
value this code passes as the second parameter in this function invocation.  Had we specified the @cdecl or
@stdcall calling convention, then passing the third parameter would have done the dirty deed.  For saf
sons, the HLA Standard Library that declares all the Win32 API functions does not attach the @use procedure
attribute to each procedure declaration.  Therefore, certain calls to Win32 API routines (specifically, tho
pass memory variables that are less than four bytes long as parameters) will generate exceedingly medio

If having smaller programs16 is one of your primary goals for writing Windows applications in assembly 
guage, you may want to code calls containing such parameters manually.

If a parameter object is larger than four bytes, HLA will automatically round the size of that object up
next multiple of four bytes in the parameter declaration.  For example, real80 objects only require ten bytes t
represent, but when you pass one as a parameter, HLA sets aside 12 bytes in the stack frame.  When H
ates the code to pass a real80 object to a procedure, it generates the same code it would use to pass two 
word variables and a word variable;  in other words, the code needed to pass the last two bytes could get
the same reasons we’ve just covered).  However, since there aren’t any Win32 API functions that expect areal80

parameter, this shouldn’t be an issue.

Table lists the typical C/C++ data types, their HLA equivalents, and how much space they consume w
pass them as parameters to a Win32 API function.

Table 3-11: Space Consumed by Various C Types When Passed as Parameters  

16.In the big picture, this extra code is not going to affect the running time of your code by a significant factor.  Win32 API
functions are sufficiently slow to begin with that the few extra clock cycles consumed by the “safe” code is insignificant

C Type Corresponding HLA Types Space Consumed on Stack Padding

char char, byte, int8a four bytes three bytes

short word, int16 four bytes two bytes

int dword, int32 four bytes none

long dword, int32 four bytes none

long long qword, int64 eight bytes none
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3.3.5: Pass by Value Versus Pass by Reference

The C programming language only supports pass by value parameters.  To simulate pass by reference par
eters, C requires that you explicitly take the address of the object you wish to pass and then pass thi
through a pass by value parameter that is some pointer type.  The following code demonstrates how this

/* C code that passes some parameter by reference via pointers */

int someFunc( int *ptr )
{

*ptr = 0;
}

.

.

.
/* Invocation of this function, assume i is an int */

someFunc( &i );

This function passes the address of i as the value of the ptr parameter. Within someFunc, the function derefer-
ences this pointer and stores a zero at the address passed in through the pointer variable (since, in this
we’ve passed in the address of i, this code stores a zero into the i variable).

HLA, like the C++ language, directly supports both pass by value and pass by reference paramete17.  So
when coding a prototype for some Win32 API function that has a pointer parameter, you’ve got the ch
specifying a pointer type as a value parameter or the pointer’s base type as a reference parameter in the

unsigned char char, byte, uns8 four bytes none

unsigned short word, uns16 four bytes none

unsigned dword, uns32 four bytes none

unsigned int dword, uns32 four bytes none

unsigned long dword, uns32 four bytes none

unsigned long long qword, uns64 eight bytes none

float real32 four bytes none

double real64 eight bytes none

long double real64  (on some compilers) eight bytes none

real80  (on other compilers) twelve bytes two bytes

a.Some compilers have an option that lets you specify the use of unsigned char as the default.  In this case,  the
corresponding HLA type is uns8.

17.Actually, HLA supports several different parameter passing mechanisms.  However, pass by value and pass by referen
the only ones that are of interest when calling Win32 API functions, so we’ll discuss only those here.  See the HLA refe
ence manual for more details on the more advanced parameter passing mechanisms.

C Type Corresponding HLA Types Space Consumed on Stack Padding
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declarations:

// A “typeless” variable declaration (since pointers are always 32-bit values)
// that passes the parameter by value:

procedure someFunc( ptr:dword );
begin someFunc;

mov( ptr, eax );
mov( 0, (type dword [eax]) );

end someFunc;

// A typed version passing a pointer to an int32 object as a value parameter:

type
pInt32 :pointer to int32;

.

.

.
procedure someFunc( ptr:pInt32 );
begin someFunc;

mov( ptr, eax );
mov( 0, (type dword [eax]) );

end someFunc;

// A version using pass by reference parameters

procedure someFunc( var ptr:int32 );
begin someFunc;

mov( ptr, eax );
mov( 0, (type dword [eax]) );

end someFunc;

Note that the function’s body is exactly the same in all three cases.  The function has to grab the addres
on the stack and store a zero at that memory address (just as the C code does).  If you manually call someFunc

(that is, if you use low-level assembly syntax rather than HLA’s high-level procedure calling syntax), th
code you write to call any of these three versions is also identical.  It is

// someFunc( i );

lea( eax, i );   // Take the address of i, could use “pushd( &i );” if i is static.
push( eax );     // This code assumes that it is okay to wipe out EAX’s value.
call someFunc;   // We’re also assuming @pascal or @stdcall convention here.
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The difference between these procedure declarations is only evident when you use HLA’s high leve
dure calling syntax.  When the parameter is a double word or pointer value, the caller must explicitly w
code to calculate the address of the actual parameter and pass this computed address as the paramete
the following example demonstrates:

// procedure someFunc( ptr:dword );
// -or-
// procedure someFunc( ptr:pInt32 );
//
// call someFunc, passing the address of “i”:

lea( eax, i );
someFunc( eax );

When calling a procedure that has a pass by reference parameter, all you need do is pass the varia
HLA will automatically generate the code that takes the address of the variable:

// procedure someFunc( var ptr:int32 );

someFunc( i );

If i is a static, storage, or readonly variable without any indexing applied to it, then HLA generates the 
lowing code for this statement:

push( &i );
call someFunc;

However, if the actual parameter (i in this case) is an indexed static object, or is a local variable, then H
have to generate code like the following:

push( eax );
push( eax );
lea( eax, i );
mov( eax, [esp+4] );
pop( eax );
call someFunc;

This happens because HLA promises not to mess with register values when passing parameters.  Of co
can improve the quality of the code that HLA generates by using the “@use” procedure attribute, remem
the caveats given earlier:

// procedure someFunc( var i:int32 ); @use EAX;

someFunc( i );  // Assume i is a local (automatic) variable

// is equivalent to

lea( eax, i );
push( eax );
call someFunc;
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HLA’s pass by reference parameter passing mechanism requires that you specify a memory addre
actual reference parameter.  So what happens if you run into a situation when the address you want to p
register and you’ve specified a pass by reference parameter?  If you try to call the function with code like
lowing HLA will complain that you’ve not specified a valid memory address:

someFunc( esi );

The trick is to give HLA what it wants: a memory address.  This is easily achieved by specifying the fol
function call to someFunc:

someFunc( [esi] );

This generates the following assembly code:

push( esi );
call someFunc;

HLA usually requires the type of the actual parameter (the parameter you pass in a procedure call) toexactly
match the type of the formal parameter (the parameter appearing in the declaration of the procedure).  Yo
pass the address of a char variable as a parameter when the original function calls for a boolean variable (even
though both parameter types are one byte in length).  There are a couple of exceptions worth noting.  
pass a byte variable as an actual parameter whenever the formal parameter is one byte in length.  Similar
will allow an actual parameter whose type is word if the formal parameter’s size is two bytes and HLA will allo
an actual dword parameter whenever the formal parameter is four bytes.  Also, if the formal parameter is abyte,

word, or dword type, then HLA will allow you to pass an actual parameter that is one byte long, two bytes
or four bytes long, respectively.  HLA will also allow an anonymous memory object (e.g., “[eax]”) as an 
parameter for any pass by reference parameter; such a parameter will simply pass the value of the speci
ter as the address for the reference parameter.

One feature that HLA supports as a convenience (especially for Win32 API function calls) is that if yo
a pointer variable as an actual pass by reference parameter, where the formal type of the reference pa
the base type of the pointer, HLA will go ahead and pass the value of the pointer rather than returning an
passing the address of the pointer variable), e.g., the following demonstrates this:

type
pi  :pointer to int32;

.

.

.
procedure hasRefParm( var i:int32 );
begin hasRefParm;

.

.

.
end hasRefParm;

static
myInt :int32;
pInt  :pi;

.

.

.
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hasRefParm( myInt );  // Computes and passes address of myInt.
.
.
.

hasRefParm( pInt );   // Passes the value of the pInt pointer variable

The choice of whether to pass a parameter as a pointer by value or as a variable by reference is main
ter of convenience.  If you are usually passing an actual parameter that is a memory variable whose type
the formal parameter’s type, then pass by reference is probably the way to go.  However, if you’re doing
arithmetic or constantly passing the address of objects whose type doesn’t exactly match the formal par
type (and you’re sure you know what you’re doing when you do this), then passing a pointer by value is p
going to be more convenient.

Many Win32 API functions accept the address of some buffer as a parameter.  Often, the prototype
function specifies the pointer type as “void *”.  This means that the caller is supplying the address of a b
memory and the abstract type attached to that block of memory is irrelevant to the compiler.  HLA also p
a special form of the pass by reference parameter passing mechanism that suspends type checking on
parameters you pass to the procedure.  Consider the following HLA procedure prototype:

procedure untypedVarParm( var parm:var ); @external;

Specifying “var” as the parameter’s type tells HLA that this is an untyped pass by reference paramet
caller can supply any memory address as the parameter and HLA will pass that address on to the functi
normal pass by reference parameters, the actual parameter you supply to this function must be a mem
tion, you cannot supply a constant or a register as an operand (though you can specify “[reg32]” as a parameter
and HLA will pass the value of the specified 32-bit general purpose register as the memory address).  T
cial pass by reference form is especially useful when passing Win32 API functions the address of som
where it can place data that Windows returns to the caller. There is, however, one big “gotcha” associa
untyped pass by reference parameters: HLA always passes the address of the variable you pass the func
is true even if the variable you pass as a parameter is a pointer variable.  The following is syntactically ac
to HLA, but probably doesn’t do what the programmer expects:

procedure hasUntypedParm( var i:var );
begin hasUntypedParm;

.

.

.
end hasUntypedParm;

static
myInt :int32;
pInt  :pi;

.

.

.
hasUntypedParm( myInt );  // Computes and passes address of myInt.

.

.

.
hasUntypedParm( pInt );   // Computes and passes address of pInt

In particular, note that this code does not pass the value of the pointer variable in the second call.  Instea
the address of the pointer variable and passes that address on to the hasUntypedParm procedure.  So take car
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when choosing to use untyped pass by reference parameters;  their behavior is slightly different than reg
by reference parameters as this example shows.

There is one important issue that HLA programmers often forget: HLA string variables are pointers!  Most
Win32 API functions that return data via a pass by reference parameter return character (string) data. It
ing to be lazy and just declare all pass by reference parameters as untyped parameters.  However, this 
havoc when calling certain Win32 API functions that return string data.  Consider the following Win32 AP
cedure prototype:

static
GetFullPathName: procedure
(
       lpFileName    : string;
       nBufferLength : dword;
   var lpBuffer      : var;
   var lpFilePart    : var
);
@stdcall; @returns( "eax" ); @external( "__imp__GetFullPathNameA@16" );

This function stores a zero-terminated string into the block of memory pointed at by  lpBuffer. It might be
tempting to call this procedure as follows:
static

s  :string;
fp :pointer to char;

.

.

.
stralloc( 256 );
mov( eax, s );

.

.

.
GetFullPathName( “myfile.data”, 256, s, fp );
mov( s, ebx );                                 // GetFullPathName returns the actual
mov( eax, (type str.strRec [ebx]).length );    // string length in EAX.

The objective of this code is (obviously) to have the call to GetFullPathName place the full path name of the
myfile.data file into the string variable s.  Unfortunately, this code does not work as advertised.  The proble
that the lpBuffer variable is an untyped reference parameter.  As a result, the call to GetFullPathName takes the
address of whatever variable you pass it, even if that variable is a pointer variable.  Since strings are f
pointers (that contain the address of the actual character data), this example code doesn’t do what th
probably intended.  Rather than passing the address of the character string data buffer as you might ex
code passes the address of the four-byte pointer variable s to GetFullPathName as the buffer address.  On retur
this function will have overwritten the pointer value (and probably the values of other variables appea
memory immediately after s).  Notice how the original example of this function call appearing earlier in
chapter handled this situation:

static
fullName :string;
namePtr  :pointer to char;

.

.

.
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stralloc( 256 );       // Allocate sufficient storage to hold the string data.
mov( eax, fullName );

.

.

.
mov( fullName, edx );  // Get the address of the data buffer into EDX!
GetFullPathName
(

“myfile.exe”,                          // File to get the full path for.
(type str.strRec [edx]).MaxStrLen,     // Maximum string size
[edx],                                 // Pointer to buffer
namePtr                                // Address of base name gets stored here

);
mov( fullName, edx );                     // Note: Win32 calls don’t preserve EDX
mov( eax, (type str.strRec [edx]).length  // Set the actual string length

We’ll return to this issue a little later in this chapter when we discuss the conversion of Win32 API functio
totypes from C to HLA.

The C language always passes arrays by reference. Whenever the C language sees the name of 
without an index operator ( “[...]”) attached to it, C substitutes the address of the first element of the array
array.  Similarly, if you specify some array as a formal parameter in a C function declaration, C assumes 

will actually be passing in a pointer to an element of that array type18. 

Structures, on the other hand, C always passes by value (unless, of course, you explicitly take the ad
struct object using the address-of operator and pass that pointer to the struct as your parameter value).  Win3
API functions always pass pointers to structures (that is, they expect you to pass structures by referen
than by value), so when you create a prototype for a Win32 API function call that has a struct as a parameter,
you’ll always specify a pointer to the structure or pass it by reference in the HLA declaration.

3.4: Calling Win32 API Functions

The Windows operating system consists of several dynamic linked library (DLL) modules in memory. 
fore, when you call a Win32 API function, you’re not actually calling that function directly.  Indeed, unles
declare your function in a special way, there may be two levels of indirection involved before you get
actual Win32 kernel code within the DLL. This section will give you a quick primer on Win32 DLLs and ho
design your Win32 API function prototypes in HLA to make them slightly more efficient.

The phrase “dynamic linked library” means that linkage to a library module is done at run-time.  That i
plying the run-time address of the library function in question could, technically, be done after your pr
begins execution.  The linking process normally involves patching the address fields of all the call instr
that reference a given function in some library code being linked.  However, at run-time (that is, after W
has loaded your program into memory and begun its execution), it’s impractical to attempt to locate ever
some function so that you can modify the address field to point at the new location of that function in m
The solution to this problem is to provide a single object that has to be changed in memory to provide t
age, put that object in a known location, and then update that single object whenever dynamically linkin
the function.  By having a “single point of contact” the OS can easily change the address of that contact 

There are two ways to add such a “single point of contact” to a machine code program.  The first way 
a pointer that holds the address of the ultimate routine to call. The application code, when it wants to inv

18.As noted earlier, C does not differentiate pointer or array access syntax.  Both are identical to C, for the most part.  Ths is 
how C gets away with passing all arrays as a pointer to their first element.
Page 231



 this

ct call
er you

le
in order

 inter-
l

nge the

xtra 
e
rec-
ra work.

-

in the

he

able
ution of

yntax.
e.  In a
w the
.

Win32 API function (or any other function in some DLL) would simply issue an indirect call through
pointer.  The second way is to place a jmp instruction at a known location and modify the jmp instruction’s
address operand field to point at the first instruction of the desired function within the DLL.  The indire
mechanism is a little more efficient, but it requires encoding a special form of the call instruction whenev
call a function in the DLL (and many compilers will not generate this special form of the call instruction by
default, if they provide the option to do it at all).  The use of the jmp instruction mechanism is more compatib
with existing software development tools, but this scheme requires the execution of an extra instruction 
to transfer control to the actual function in the DLL (specifically, you have to execute the jmp instruction after
“calling” the function).  Windows, as it turns out, combines both of these mechanisms when providing an
face to the Win32 API functions.  The API interface consists of an indirect jmp instruction that transfers contro
to some location specified by a double-word pointer.  The linking code can use any form of the call (or other
control transfer) instruction to transfer control to the indirect jmp instruction.  Then the indirect jmp transfers
control to the actual function specified by the pointer variable. The operating system can dynamically cha
target address of the function within the DLL by simply changing this pointer value in memory.

Of course, there is an efficiency drawback to this scheme.  Not only must the code execute that ejmp

instruction, but an indirect jmp is typically slower than a direct jmp.  So Windows’ solution is the slowest of th
three forms: you pay the price for the extra jmp instruction and the extra cost associated with the use of indi
tion.  Fortunately, one of the advantages of assembly language is that you can easily circumvent this ext

Consider the following HLA procedure prototype to the Win32 ExitProcess function:

procedure ExitProcess( uExitCode:uns32 ); @stdcall; @external( “_ExitProcess@4” );

The _ExitProcess@4 label is actually the label of an indirect jmp instruction that will be linked in with any pro
gram that calls ExitProcess.  In HLA form, the code at the address specified by the _ExitProcess@4 label
looks something like the following (assuming labels like “_ExitProcess@4” were legal in HLA):

_ExitProcess@4: jmp( _imp__ExitProcess@4 );

The “__imp__ExitProcess@4” symbol is the name of a double word pointer variable that will conta
address of the actual ExitProcess function with the Win32 OS kernel, i.e.,

static
_imp__ExitProcess@4 :dword;  // Assuming “@” was actually legal within an HLA ID.

Note that the library files (e.g., kernel32.lib) that you link your programs with contain definitions for both t
symbols _ExitProcess@4 and _imp__ExitProcess@4.  The “standard” symbols (e.g., _ExitProcess@4) refer
to the indirect jmp instruction.  The symbols with the “_imp_” prefix refer to the double word pointer vari
that will ultimately hold the address of the actual kernel code.  Therefore, you can circumvent the exec
the extra jmp instruction by calling the kernel function indirectly through this pointer yourself, e.g.,

call( _imp__ExitProcess@4 );   // Assuming “@” was actually legal within an HLA ID.

The major problem with this approach is that it doesn’t allow the use of the HLA high level function call s
You would be forced to manually push any parameter(s) on the stack yourself when using this schem
moment, you’ll soon see how to circumvent this problem.  Another minor issue is that HLA doesn’t allo
“@” symbol in an identifier (as all the previous code fragments have noted).  This, too, is easily corrected
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HLA allows you to declare both external procedures and variables.  We’ll use that fact to allow extern
age to both the jmp instruction (that is effectively the Win32 API function’s entry point) and the pointer 
variable.  The following two declarations demonstrate how you can do this:

static
_imp__ExitProcess :dword; @external( “_imp__ExitProcess@4” );

procedure ExitProcess( uExitCode:uns32 ); @stdcall; @external( “_ExitProcess@4” );

HLA also allows the declaration of procedure variables.  A procedure variable is a four-byte pointer to 
procedure.  HLA procedure variables are perfect for Win32 API declarations because they allow you
HLA’s high level syntax for procedure calls while making an indirect call through a pointer.  Consider the f
ing declaration:

static
ExitProcess :procedure( uExitCode:uns32 ); 
             @stdcall; @external( “_imp__ExitProcess@4” );

With this declaration, you can call ExitProcess as follows:

ExitProcess( 0 );

Rather than calling the code beginning with the indirect jmp instruction, this HLA high level procedure call doe
an indirect call through the _imp__ExitProcess@4 pointer.  Since this is both convenient and efficient, this is 
scheme this book will generally employ for all Win32 API function calls.

3.5: Win32 API Functions and Unicode Data

Before discussing how to create HLA procedure prototypes for all the Win32 API functions, a short d
sion is necessary in order to understand certain naming conventions in the Win32 API.  For many yea
were actually two different Win32 OS families: the Windows 95/98/2000ME family and the Windows NT/2
XP family.  The branch starting with Windows 95 was based on Windows 3.1 and MS-DOS to a large 
The OS branch that started with NT was written mostly from scratch without concern about legacy (DOS
patibility.  As such, the internal structure of these two operating system families was quite different.  O
where the difference is remarkable is with respect to character data.  The Windows 95 family uses standa
bit ANSI (ASCII) characters internally while the NT branch uses Unicode internally.  Unicode, if you’re unf
iar with it, uses 16-bit character codes allowing the use of up to 65,536 different characters. The beauty
code is that you can represent most character symbols in use by various languages with a single chara
(unlike ASCII, which only supports 128 different character values and isn’t even really adequate for E
much less English plus dozens of other languages). Since Microsoft was interested in producing an inte
operating system, Unicode seemed like the right way to go.

Unicode has some great advantages when it comes to write applications that work regardless of th
language of the application’s users.  However, Unicode also has some serious disadvantages that preve
immediately taking over the world:

• Few software tools directly support Unicode, so it is difficult to develop Unicode-enabled applica
(though this is changing as time passes).

• Unicode data requires twice as much storage as ANSI data.  This has the effect of doubling the
many databases and other applications that manipulate a considerable amount of character data.
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• Because Unicode characters are twice as long as ANSI characters,  processing Unicode data 
takes twice as long as processing ANSI/ASCII characters (a serious defect to most assembly l
programmers).

• Many programs that manipulate character data use look-up tables and bit maps (character sets) t
on that data.  An ASCII-based look-up table requires 128 bytes, an ANSI look-up table typically re
256 bytes, a Unicode-based look-up table would require 65,536 bytes (making it impractical to
look-up table for all but the most specialized of cases when using Unicode).  Even implementing 
acter set using a power set (i.e., a bit map) would require 8,192 bytes; still too large for most p
purposes.

• There are nowhere near as many Unicode-based string library functions available as there are fo
ANSI based strings.  For example, the HLA Standard Library provides almost no Unicode-based
functions at all (actually, it provides none, but a few routines will work with Unicode-based strings)

• Another problem with using Unicode is that HLA v1.x provides only basic support for Unicode cha

ters19.  At the time this was being written, HLA supported the declaration of wchar and wstring con-
stants and variables as well as Unicode character and string literal constants (of the form u’A’ and
u”AAA”).  You could also initialize wchar and wstring static objects as the following example demo
strates.  However, HLA constant expression parser does not (as of this writing) support Unicode s
operations nor does the HLA Standard Library provide much in the way of Unicode support.  The f
ing is an example of static initialization of Unicode data (see the HLA reference manual for more d

static
wCharVar   :wchar := u’w’;
wStringVar :wstring := u”Unicode String”;

For all these reasons, and many more, Microsoft realized (while designing Windows NT) that they c
expect everyone to switch completely over to Unicode when writing applications for Windows NT (or 

using applications written for Windows NT).  Therefore, Microsoft’s engineers provided duomorphic20 inter-
faces to Windows NT that involve character data: one routine accepts and returns ANSI data, anothe
accepts and returns Unicode data.  Internally, of course, Windows NT doesn’t really have two sets of r
Instead, the ANSI routines simply convert incoming data from ANSI to Unicode and the outgoing data fro
code to ANSI.

In Microsoft Visual C++ (and other high level languages) there is a little bit of macro trickery used to hi
fact that the application has to choose between the Unicode-enabled and the ANSI versions of the Wi
function calls. By simply changing one macro definition in a properly-written C++ program, it’s possib
switch from ANSI to Unicode or from Unicode to ANSI with no other changes to the program.  While the
trick is theoretically possible in assembly language (at least, in HLA), the dearth of a good set of Unicode
functions reduces this to the status of an interesting, but not very useful, trick.  Therefore, this book will c
trate on producing ANSI-compatible applications with a small discussion of how to do Unicode applic
when doing so becomes more practical in assembly language.

Windows duomorphic interface only applies to those functions that accept or return character data. 
example of such a routine is the Win32 API DeleteFile function that has the following two interfaces:

procedure DeleteFile( lpFileName :string ); @stdcall; @external( “_DeleteFileA@4” );

19.Least you use this as an argument against using HLA, note that HLA actually provides some Unicode support.  Most 
assemblers provide no Unicode support whatsoever at all.

20.Two-faced.
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procedure DeleteFile( lpFileName :wstring ); @stdcall; @external( “_DeleteFileW@4” );

If you look closely at these two declarations, you’ll notice that the only difference between the two is a
character appearing in the external name and the type of the parameter.  One of the external names h
(for ANSI) immediately before the “@” while the other has a “W” (for Wide) immediately before the “@” c
acter in the name.  Wide, in this context, means a two-byte character format; so the name with the embed
is the Unicode version of the function’s name.

The presence of the “A” or the “W” at the end of the function’s name in the external declaration (i.e
before the “@”, whose purpose the next section covers) determines whether the function is the ANSI ve
the Unicode version (“A”=ANSI, “W”=Unicode).  There is only one catch: when reading C/C++ documen
about the Windows API, you’ll generally see the function referred to as “DeleteFile” (or whatever), not “D
FileA” or “DeleteFileW”.  So how can you tell whether the function’s external name requires the “A” or “
Well, if any of the parameters involves character or string data, it’s a given that the function will have AN
Unicode counterparts. If you’re still not sure, you can always run Microsoft’s dumpbin.exe utility on one of the
Win32 API interface libraries (e.g., kernel32.lib, gdi32.lib, user32.lib, etc.) to extract all the exported names:

dumpbin /exports kernel32.lib

This command lists all the Win32 API function names that the kernel32.lib library module exports. If you save
the output of this command to a text file (by using I/O redirection) you can search for a particular functio
with nearly any text editor.  Once you find the filename, if there is an “A” or “W” at the end of the name
know that you’ve got a duomorphic function that deals with ANSI or Unicode characters.  If no such ch
appears, then the function only works with binary (non-character) data.

Please note that the official name for a Win32 API function does not include the “A” or “W” suffix.  Th
the Win32 documentation refers only to names like DeleteFile, never to names like DeleteFileA or Delete-
FileW. The assumption is that an application is only going to use one of the two different character types
all character data is ANSI, in which case the application will call those functions with the “A” suffix, or all 
acter data is in Unicode form and the application will call those functions with the “W” suffix.  Although it’s
enough to switch between the two in an assembly language program, it’s probably a good idea to stic
form or another in a given application (less maintenance issues that way).  The examples in this book wi
the ANSI forms of these functions, since assembly language better supports eight-bit character codes.

This book will also adopt the Win32 convention of specifying the API function names without the “A
“W” suffix.  That is, we’ll call functions like DeleteFile and GetFullPathName and not worry about whethe
it’s ANSI or Unicode on each call.  The choice will be handled in the declaration of the prototype for the p
lar Win32 API function.  This makes it easy (well, easier) to change from one character format to another
the need arise in the future. 

For the most part, this book will stick to the ANSI character set because HLA provides much better s
for that character set. If you need to use Unicode in your programs, you’ll need to adjust the Win32 AP
types and HLA char/string declarations accordingly.

Note that the names that have the “A” and “W” suffixes are really external names only.  C/C++ docu
tion doesn’t mention these suffixes.  Again, if you’re unsure whether the suffix is necessary, run the dumpbin pro-
gram to get the actual library name.
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3.6: Win32 API Functions and the Parameter Byte Count

As you’ve seen in a few examples appearing in this chapter, the external Win32 API function names t
have an at-sign (“@”) and a number appended to the end of the function’s external name.  This nume
specifies the number of bytes passed as parameters to the functions.  Since most parameters are exactly
long, this number (divided by four) usually tells you how many parameters the API function requires (note
few API calls have some eight-byte parameters, so this number isn’t always an exact indication of the nu
parameters, but it does hold true the vast majority of the time). 

Note that the names that have the “@nn” suffix are really external names only.  C/C++ docume
doesn’t mention this suffix.  Furthermore, since HLA doesn’t allow you to embed at signs (“@”) into iden
you cannot use these external names as HLA identifiers.  Fortunately, HLA’s @external directive allows you to
specify any arbitrary string as the external symbol name.

This book will also adopt the Win32 convention of specifying the API function names without the “@
suffix.  That is, we’ll call functions like DeleteFile and GetFullPathName and not worry about tacking on th
number of bytes of parameters to the name.  The full name will be handled in the external prototype dec
for the particular Win32 API function.  If you need to determine the exact constant for use in an external d
tion, you can run the Microsoft dumpbin program on the appropriate .LIB file to determine the actual suffix.

3.7: Creating HLA Procedure Prototypes for Win32 API Functions

Although the HLA distribution includes header files that provide prototypes for most of the Win32 API
tions (see the next section for details), there are still some very good reasons why you should be able 
your own HLA external declarations for a Win32 function.  Here is a partial list of those reasons:

• HLA provides most, but not all, of the Win32 API Prototypes (e.g., as Microsoft adds new API ca
Windows, HLA’s header files may become out of date).

• Not every HLA prototype has been thoroughly tested (there are over 1,500 Win32 API function ca
could make and some of those are quite esoteric).  There very well could be a defect in the prot
some function that you want to call.

• The choice of data type for a give API function may not exactly match what you want to use (e.g., i
specify an uns32 type when you’d prefer the more general dword type).

• You may disagree with the choice of passing a parameter by reference versus passing a pointer b

• You may disagree with the choice of an untyped reference parameter versus a typed reference pa

• You may disagree with the choice of an HLA string type versus a character buffer.

There are certainly some other reasons for abandoning HLA’s external prototypes for various Win32 AP
tions.  Whatever the reason, being able to create an HLA prototype for these functions based on docum
that provides a C prototype is a skill you will need.  The following subsections condense the information 
ing in the previous sections, toss out a few new ideas, and discuss the “hows and whys” of Win32 API p
ing in HLA.

3.7.1: C/C++ Naming Conventions Versus HLA Naming Conventions

Before jumping in and describing how to translate C/C++ prototypes into HLA format, a slight digress
necessary.  Sometimes, you’ll run into a minor problem when translating C/C++ code to HLA: identifiers 
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C++ program don’t always map to legal identifiers in an HLA program.  Another area of contention has
with the fact that Microsoft’s programmers have created many user-defined types that the Windows syst
More often than not, these type names are isomorphisms (that is, a different name for the same thing;  f
ple, Microsoft defines dozens, if not hundreds, of synonyms for dword).  However, if you understand Microsoft’s
naming conventions, then figuring out what HLA types to substitute for all these Microsoft names won’t
too difficult.

HLA and C/C++ use roughly the same syntax for identifiers:  identifiers may begin with an alph
(uppercase or lowercase) character or an underscore, and zero or more alphanumeric or underscore 
may follow that initial character.  Given that fact, you’d think that converting C/C++ identifiers to HLA wou
fairly trivial (and most of the time, it is).  There are, however, two issues that prevent the translation from
completely trivial: HLA reserved words and case sensitivity.  We’ll discuss these issues shortly.

Even  when a C/C++ identifier maps directly to a legal HLA identifiers, questions about that identifie
readability, applicability, etc., may arise.  Unfortunately, C/C++ naming conventions that have been creat
the years tend to be rather bad conventions (remember, C was create circa-1970, back in the early day
ware engineering” before people really studied what made one program more readable than another).  
nately, there is a lot of inertia behind these bad programming conventions.  Someone who is not in
familiar with those conventions may question why a book such as this one (which covers a different la
than C/C++) would continue to propagate such bad programming style.  The reason is practical: as this
continues to stress, there is a tremendous amount of documentation written about the Win32 API that is 
While there is  an aesthetic benefit to renaming all the poorly-named identifiers that have become standa
C++ Windows source files, doing so almost eliminates the ability to refer to non-HLA based documenta
the Win32 API.  That would be a much greater loss than having to deal with some poorly named identifie
that reason alone, this book attempts to use standard Windows identifiers (which tend to follow various
naming conventions) whenever referring to those objects represented by the original Windows ide
Changes to the Windows naming scheme are only made where absolutely necessary. However, this b
only use the Windows naming conventions for pre-existing, reknown, Windows (and C/C++) identifiers
book will adopt the standard “HLA naming convention” (given a little later) for new identifiers.

One problem with C/C++ naming conventions is that they are inconsistent.  This is because there isn
gle C/C++ naming convention, but several that have sprung up  over the years. Some of them contain 
exclusive elements, still it isn’t unusual to see several of the conventions employed within the same sou
Since the main thrust of this chapter is to prepare you to read Win32 API documentation, the sections tha
will concentrate on those conventions and problems you’ll find in typical Windows documentation.

3.7.1.1: Reserved Word Conflicts

The HLA language defines hundreds of reserved words (this is reasonable, since there  are hun
machine instructions in the 80x86 instruction set, though there is no arguing against that fact that HL
large number of reserved words above and beyond the machine instructions).  Since not all of HLA’s r
words are reserved words in C/C++, it stands to reason that there are some programs out there than ina
use HLA reserved words as identifiers in their source code.  This fact is just as true for the Win32 API de
appearing in Microsoft’s C/C++ header files as it is for application programs.  There will be some C/C++ 
fiers in the Win32 C/C++ documentation that we will not be able to use simply because they are HLA re
words.  Fortunately, such occurrences are rare.  This book will deal with such issues on a case-by-case b
viding a similar name that is not an HLA reserved word when such a conflict arises.
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3.7.1.2: Alphabetic Case Conflicts

Another point of conflict between HLA identifiers and C/C++ identifiers is the fact that C/C++ is a case sen-
sitive language whereas HLA is a case neutral language.  HLA treats upper and lower case characters as dis
but will not allow you to create an identifier that is the same as a different identifier except for alphabetic c
C++, on the other hand, will gladly let you create two different identifiers whose only difference is the c
alphabetic characters within the symbols.  Worse, some C/C++ programmers have convinced themselve
actually a good idea to take advantage of this “feature” in the language (hint: it’s a terrible idea to do this, it make
programs harder to read and understand).  Regardless of your beliefs of the utility of this particular progr
style, the fact remains that C/C++ allows this (and some programmers take advantage of it) while HLA d
The question is “which identifier do we modify and how do we modify it?”

Most of the time there is a case neutrality violation in a C/C++ program (that is, two identifiers are th
except for alphabetic case), it’s usually the situation where one of the identifiers is either a type definiti
constant definition (the other identifier is usually a function or variable name).  This isn’t true all the time
is true in the majority of the cases where this conflict occurs.  When such a conflict occurs, this book will
following convention (prioritized from first to last):

• If one of the conflicting identifiers is a type name, we’ll convert the name to all lowercase characte
append “_t” to the name (a common Unix convention).

• If one of the conflicting identifiers is a constant (and the other is not a type), we’ll convert the nam
lowercase and append “_c” to the name (an HLA convention, based on the Unix convention).

• If neither of the above conditions hold, we’ll give one of the identifiers a more descriptive name bas
what the identifier represents/contains/specifies rather than on its classification (e.g., type of symb

A good convention to follow with respect to naming identifiers is the “telephone test.” If you can read
of source code over the telephone and have the listener understand what you’re saying without explicitly
out an identifier, then that identifier is probably a decent identifier.  However, if you have to spell out the
fier (especially when using phrases like “upper case” and “lower case” when spelling out the name), th
should consider using a better name. HLA, of course, prevents abusing and misusing alphabetic case in
ers (being a case neutral language), so it doesn’t even allow one to create identifiers that violate the telep
(at least, from an alphabetic case perspective).

3.7.1.3: Common C/C++ Naming Conventions

If you search on the Internet for “C Naming Conventions” you’ll find hundreds of pages extolling the be
of that particular web page author’s favorite C naming scheme. It seems like nearly every C programmer
opinion and a web page is willing to tell the world how identifiers should be designed in C. The really
thing is that almost every one of these pages that specifies some naming convention is mutually exclus
every other such scheme. That is, if you follow the rules for naming C identifiers found at one web site,
invariably break one or more rules at nearly every other site that provides a C naming convention. So m
convention; so much for standards.

Interestingly enough, the one convention that nearly everybody agrees upon is also, perhaps, the worst nam-
ing convention ever invented for programming language identifiers. This is the convention of using all up
characters for identifiers that represent constant values.  The reason everyone agrees on this one con
fairly obvious to someone who has been programming in the C programming language for some time: th
of the few naming conventions proposed by Kernighan and Ritchie in their original descriptive text The C Pro-
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gramming Language.  In Programming in C: A Tutorial by Brian W. Kernighan, Mr. Kernighan describes th
choice thusly:

Good style typically makes the name in the #define upper case; this makes parameters more visi-
ble.

This quote probably offers some insight into why Kernighan and Ritchie proposed the use of all upp
for constants in the first place.  One thing to keep in mind about this naming convention (using all upper 
#define symbols) was that it was developed in the very early 1970s.  At the time, many mainframes and p
ming languages (e.g., FORTRAN) only worked with uppercase alphabetic characters. Therefore, progr
were used to seeing all uppercase alphabetic characters in a source file and lowercase was actuall
(despite the fact that C was developed on an interactive system that supported lower case).  In fact, K
and Ritchie really got it backwards - if they’d wanted the parameters to stand out, they should have made
uppercase and made the #define name lower case.  Another interesting thing to note from this quote wa
all uppercase convention was specifically created for macros, not manifest constants. The “good style” Brian
Kernighan was referring to was an attempt to differentiate the macro name from the macro parameters.  
constants (that is, the typical constants you create with a #define definition) don’t have parameters, so th
tle need to differentiate the name from the macro’s parameter list (unless, of course, Mr. Kernighan was
the remainder of the line as the “parameters” to the #define statement).

Psychologists have long known (long before computer programming languages became popular) tha
case text is much harder to read than lower case text. Indeed, to a large extent, the whole purpose of u
alphabetic text is to slow the reader down and make them take notice of something. All uppercase tex
material harder to read, pure and simple.  Don’t believe this?  Try reading the following:

PSYCHOLOGISTS HAVE LONG KNOWN (LONG BEFORE COMPUTER PROGRAMING
LANGUAGES BECAME POPULAR) THAT UPPERCASE TEXT IS MUCH HARDER TO
READ THAN LOWER CASE TEXT. INDEED, TO A LARGE EXTENT, THE WHOLE PUR-
POSE OF UPPERCASE ALPHBETIC TEXT IS TO SLOW THE READER DOWN AND
MAKE THEM TAKE NOTICE OF SOMETHING. ALL UPPERCASE TEXT MAKES MATE-
RIAL HARDER TO READ, PURE AND SIMPLE.  DON’T BELEVE THIS?  TRY REREAD-
ING THIS PARAGRPH.

There are four intentional spelling mistakes in the previous paragraph.  Did you spot them all the first ti
read this paragraph?  They would have been much more obvious had the text been all lowercase rathe
uppercase.  Reading all upper case text is so difficult, that most readers (when faced with reading a lot o
to “short-circuit” their reading and automatically fill in words once they’ve read enough characters to co
them they’ve recognized the word. That’s one of the reasons it’s so hard to immediately spot the spelli
takes in the previous paragraph. Identifiers that cause a lack of attention to the details are obviously pro
in a programming language and they’re not something you want to see in source code. A C propone
argue that this isn’t really much of a problem because you don’t see as much uppercase text crammed to
you do in the paragraph above.  However, some long identifiers can still be quite hard to read in all upp
consider the following identifier taken from the C/C++ windows.inc header file set:
CAL_SABBREVMONTHNAME1.  Quick, what does it mean?

Sometimes it is useful to make the reader slow down when reading some section of text (be it natu
guage or a synthetic language like C/C++).  However, it’s hard to argue that every occurrence of a cons
source file should cause the reader to slow down and expend extra mental effort just to read the name (th
fully, determining the purpose of the identifier).  The fact that it is a constant (or even a macro) is far mor
conveyed using some other convention (e.g., the “_c” convention that this book will adopt).  

Now some might argue that making all macro identifiers in a program stand out is a good thing. After 
macro preprocessor is not very good and it’s macro expander produces some unusual (non-function-like
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tics in certain cases. By forcing the programmer to type and read an all-uppercase identifier, the macro’s
is making them note that this is not just another function call and that it has special semantics. An argum
this is valid for macros (though a suffix like “_m” is probably a better way to do this than by using all upp
characters in the identifier), but is completely meaningless for simple manifest constants that don’t prov
macro parameter expansion.  All in all, using all uppercase characters for identifiers in a program is a b
and you should avoid it if at all possible.

This text, of course, will continue to use all uppercase names for well-known constants defined in Mic
C/C++ header files. The reason is quite simple: they are documented in dozens and dozens of Windows 
ming books and despite the fact that such identifiers are more difficult to read, changing them in this tex
prove to be a disaster because the information appearing herein would not be compatible with most of t

books on Windows programming in C/C++21.  For arbitrary constant identifiers (i.e., those that are not 
defined in the C/C++ Windows header files), this book will generally adopt the “_c” convention for consta

One C/C++ naming convention that is specified by the original language definition is that identifie
begin and end with an underscore are reserved for use by the compiler.  Therefore, C/C++ programme
not use such identifiers.  This shouldn’t prove to be too onerous for HLA programmers because HLA impo
same restriction (identifiers beginning and ending with an underscore are reserved for use by the com
the HLA Standard Library).

Beyond these two conventions that have existed since the very first operational C compilers, there is
tle standardization among the various “C Naming Conventions” documents you’ll find on the Internet. 
suggestions that one document makes are style violations another document expressedly forbids. So 
standardized conventions!  The problem with these myriad of non-standardized “standards” is that unl
include the style guide in the comments of a source file, the guidelines you’re following are more likely t
fuse someone else reading the source file who is used to operating under a different set of style guidelin

Perhaps one of the most confusing set of style guidelines people come up with for C/C++ programs is
do about alphabetic case. Wise programmers using alphabetic case differences for formatting only.  Th
attach meaning to the case of alphabetic characters within an identifier.  All upper case characters for co
fairly easy to remember (because it is so well ingrained in just about every C/C++ style guide ever writt
how easy is it to remember that “variables must be written in mixed case starting with a lower case ch
and “Names representing types must be in mixed case beginning with an uppercase character”?  There
so-called style guidelines  that list a dozen different ways to use alphabetic case in an identifier to den
thing or another.  Who can remember all that?  What happens when someone comes along and doesn’t 
know the rules?  Fortunately, you see little of this nonsense in Windows header files.

As noted earlier in this document, a common (though not ubiquitous) Unix/C programming conventio
append the suffix “_t” to type identifiers.  This is actually an excellent convention (since it emphasizes the
fication of an identifier rather than its type, scope, or value).  The drawback to this scheme is that you rare
used consistently even within the same source file.  An even bigger drawback is that you almost never
naming convention in use in Windows code (Windows code has a nasty habit of using all uppercase to
type names, as well as constant, macro, and enum identifiers, thus eliminating almost any mnemonic v
use of all uppercase might provide;  about the only thing you can say about an all-uppercase symbol in
dows program is that it’s probably not a variable or a function name). Once again, this book will use s
Windows identifiers when referencing those IDs, but will typically use the Unix convention of the “_t” s
when creating new type names.

21.Note, however, that there is a precedent for changing the Win32 API identifiers around when programming in a langua
other than C/C++. Borland’s documentation for Delphi, for example, changes the spelling of many Windows identifiers 
something more reasonable (note, however, that Pascal is a case insensitive language and some changes were neces
that reason alone).
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Without question, the most common naming convention in use within C/C++ Windows applications
use of Hungarian Notation.  Hungarian notation uses special prefix symbols to denote the type of the ide
Since Hungarian notation is so prevalent in Windows programs, it’s worthwhile to spend some time cover
detail...

3.7.1.4: Hungarian Notation

Hungarian notation is one of those “innovations” that has come out of Microsoft that lots of people lo
lots of people hate.  Originally developed by Charles Simonyi in a technical paper (searching on the Inte
“Hungarian Notation Microsoft Charles Simonyi” is bound to turn up a large number of copies of his pap
links to it), Hungarian notation was adopted internally within Microsoft and the popularized outside Mic
via the Windows include files and Charles Petzold’s “Programming Windows” series of books (which pus
garian notation). As a result of these events, plus the large number of programmers that “cut their t
Microsoft and went on to work at companies elsewhere, Hungarian notation is very a popular naming con
and it’s difficult to read a C/C++ Windows program without seeing lots of examples of this notation.

Hungarian notation is one of those conventions that everyone loves to hate. There are lots of good, t
reasons for not using Hungarian notation. Even many proponents of Hungarian notation will admit that it
problems. However, people don’t use it simply because Microsoft pushes it. In spite of the problems wit
garian notation, the information it provides is quite useful in large programs. Even if the convention was
useful, we’d still need to explore it here because you have to understand it in order to read C/C++ co
because it is somewhat useful, this book will even adopt a subset of the Hungarian notation conventions 
useful” basis.

Hungarian notation is a naming convention that allows someone reading a program to quickly determ
type of a symbol (variable, function, constant, type, etc.) without having to look up the declaration for tha
bol. Well, in theory that’s the idea. To someone accustomed to Hungarian notation, the use of this conven
save some valuable time figuring out what someone else has done. The basic idea behind Hungarian not
add a concise prefix to every identifier that specifies the type of that identifier (actually, full Hungarian n
specifies more than that, but few programmers use the full form of Hungarian notation in their programs).
ory, Hungarian notation allows programmers to create their own type prefixes on an application by app
basis.  In practice, most people stick to the common-predefined type prefixes (tags) let it go at that.

An identifier that employs Hungarian notation usually takes the following generic form:

prefix tag qualifier baseIdentifier

Each of the components of the identifier are optional, subject of course, to the limitation that the identifi
contain something.  Interestingly enough, the baseIdentifier component (the name you’d normally think of a
the identifier) is itself optional.  You’ll often find Hungarian notation “identifiers” in Windows programs that
sist only of a possible prefix, tag, and/or qualifier. This situation, in fact, is one of the common complaint
Hungarian notation - it encourages the use of meaningless identifiers in a source file. The baseIdentifier in
Hungarian notation is the symbol you’d normally use if you weren’t using Hungarian notation. For the s
example, we’ll use Variable in the examples that follow as our base identifier.

The tag component in the Hungarian notation is probably the most important item to consider. Thi
specifies the base type, or use, of the following symbol. Table 3-12 lists many of the basic tags that Windo
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grams commonly use; note that Hungarian notation does not limit a program to these particular types, th
free to create their own tags.

Table 3-12: Basic Tag Values in Hungarian Notation  

In Table 3-12 you see the basic type values commonly associated with symbols employing Hungaria
tion. Table lists some modifier prefixes you may apply to these types (though there is no requirement th

Tag Description

f Flag. This is a true/false boolean variable. Usually one byte in length.  Zero represents fa
anything else is true.

ch Character.  This is a one-byte character variable.

w Word. Back in the days of 16-bit Windows systems (e.g., Windows 3.1), this tag meant a 
bit word.  However, as a perfect demonstration of one of the major problems with Hungar
notation, the use of this prefix became ambiguous when Win32 systems started appearin
Sometimes this tag means 16-bit short, sometimes it means a 32-bit value.  This prefix do
provide much in the way of meaningful information in modern Windows systems.

b Byte. Always a one-byte value.

l Long.  This is generally a long integer (32 bits).

dw Double Word.  Note that this is not necessarily the same thing as an “l” object.  In theory,
usage of this term is as ambiguous as “w”, though in 80x86 Windows source files this is 
almost always a 32-bit double word object.

u Unsigned.  Typically denotes an unsigned integer value (usually 32 bits).  Sometimes you
see this symbol used as a prefix to one of the other integer types, e.g., uw is an unsigned

r Real.  Four-byte single precision real value.

d Double. Eight-byte double precision real value.

bit A single bit.  Typically used with field names that are bit fields within some C struct.

bm Bit map. A collection of bits (e.g., pixel values).

v Void. An untyped object.  Typically used only with the pointer prefix (see the discussion o
prefixes).  Untyped pointers are always 32 bit objects under Win32.

st String.  Object is a Pascal string with a length prefix.

sz String, zero terminated.  Object is a C/C++ zero terminated string object.
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appear after one of the prefixes, a lone prefix followed by the base identifier is perfectly legal, though not 
able as an identifier consisting of a prefix, tag, and base identifier).

Table 3-13: Common Prefix Values in Hungarian Notation  

Here are some examples of names you’ll commonly see (e.g., from the Windows.hhf header file) that
strate the use of these identifiers:

char *lpszString;    // Pointer to zero-terminated string of characters.
int  *pchAnswer;     // Pointer to a single character holding an answer.
HANDLE hFile;        // Handle of a file.

Note all of these prefixes and tags are equally popular in Windows programs.  For example, you’ll rar
the “k” prefix specification in many Windows source files (instead, the programmer will probably use the
mon C/C++ uppercase convention to denote an identifier).  Also, many of the prefix/tag combinations are
uous.  Fortunately, few people (including the Windows header files) push Hungarian notation to the
Usually, you’ll just see a small subset of the possibilities in use and there is little ambiguity.

Prefix Description

p Pointer to some type. 

lp Long pointer to some type.  Today, this is a synonym for “p”.  Back in the days of 16-bit
Windows system, an “lp” object was 32 bits and a “p” object was 16 bits.  Today, both 
pointer types are identical and are 32 bits long.  Although you’ll see this prefixed used 
quite a bit in existing code and header files, you shouldn’t use this prefix in new code.

hp Huge pointer to some type.  Yet another carry-over from 16-bit Windows days.  Today, 
this is synonymous with lp and p.  You shouldn’t use this prefix in new code.

rg Lookup table. Think of an index into an array as a function parameter, the function’s 
result (i.e., the table entry) is the range of that function, hence the designation “rg”.  This 
one is not common in  many Windows programs.

i An index (e.g., into an array). Also commonly employed for for loop control variables.

c A count. cch, for example, might be the number of characters in some array of characte

n A count.  Same as c but more commonly used to avoid ambiguity with ch.

d The difference between two instances of some type.  For example, dX might be the diffe
ence between to x-coordinate values.

h A Handle.  Handles are used through Windows to maintain resources.  Many Win32 AP
functions require or return a handle value.  Handles are 32-bit objects under Win32.

v A global variable.  Many programmers use ‘g’ rather than ‘v’ to avoid confusion with the
‘v’ basic tag specification.

s A static variable (local or global)

k A const object.
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Another component of Hungarian notation, though you’ll rarely see this used in real life, is a qualifier.
often that not, qualifiers (if they appear at all) appear in place of the base identifier name.  Table lists som
common qualifiers used in Hungarian notation.

Table 3-14: Common Qualifiers in Hungarian Notation  

There are many, many different variants of Hungarian notation.  A quick perusal of the Internet will d
strate that almost no one really agrees on what symbols should be tags, prefixes, or qualifiers, much less
individual symbols in each of the classes actually mean.  Fortunately, the Windows header files are fairly
tent with respect to their use of Hungarian notation (at least, where they use Hungarian notation), so the
be much difficulty deciphering the names from the header files that we’ll use in this book.

As for using Hungarian notation in new identifiers appearing in this book, that will only happen whe
really convenient to do so.  In particular, you’ll see the “h” (for Handle) and “p” (for pointer) prefixes used
a bit.  Once in a while, you may see some other bits and pieces of Hungarian notation in use (e.g., b, w
for byte, word, and dword objects).  Beyond that, this book will attempt to use descriptive names, or at 
commonly used names (e.g., i, j, and k for array indexes) rather than trying to explain the identifier with a s
thetic prefix to the identifier.

3.8: The w.hhf Header File

Provided with the HLA distribution is the w.hhf include file that define most of the Win32 API functions, co
stants, types, variables, and other objects you’ll ever want to reference from your assembly language co
all, you’re talking well over 30,000 lines of source code!  It is convenient to simply stick an HLA #include

statement like the following into your program and automatically include all the Windows definitions:

#include( “w.hhf” )

The problem with doing this is that it effectively increases the size of your source file by 30,000 lines o
Fortunately, recent modifications to HLA have boosted the compile speed of this file to about 25,000 lin
ond, so it can process this entire include file in just a few seconds. Most people don’t really care if an a
takes two or three seconds, so including everything shouldn’t be a problem (note that the inclusion of
code does not affect the size of the executable nor does it affect the speed of the final program you’re w
only affects the compile-time of the program). For those who are bothered by even a few seconds of 
time, there is a solution.

Qualifier Description

First The first item in a set, list, or array that the program is working with (this does not necess
indicate element zero of an array). E.g., iFirstElement.

Last The last item in a set, list, or array that the program has worked upon (this does not neces
indicate the last element of an array or list). E.g., pchLastMember. Note that Last index ob
are always valid members of the set, list, or array. E.g., array[ iLastIndex ] is always a val
array element.

Min Denotes the minimum index into a set, list, or array. Similar to First, but First specifies the 
element you’re dealing with rather than the first object actually present.

Max Denotes an upper limit (plus one, usually) into an array or list.
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A large part of the problem with the HLA/Windows header files is that the vast majority of the time 
never use more than about 10% of the information appearing in these header files. Windows defines a tre
number of esoteric types, constants, and API functions that simply don’t get used in the vast majority 
dows applications. If we could pick out the 10% of the definitions that you were actually going to use o
next set of projects, we could reduce the HLA compilation overhead to almost nothing, far more accep
those programmers that are annoyed by a few seconds of delay. To do this, you’ve got to extract the dec
you need and put them in a project-specific include file. The examples in this book won’t bother wi
(because compiling the w.hhf file is fast enough), but feel free to do this if HLA compile times bother you.

3.9: And Now, on to Assembly Language!

Okay, we’ve probably spent enough time discussing C/C++ in a book dedicated to writing Window
grams in assembly language. The aim of this chapter has been to present a firm foundation for those wh
learn additional Windows programming techniques by reading C/C++ based documentation. There is n
single chapter (even one as long as this one) can completely cover all the details, but there should b
information in this chapter to get you well on your way to the point of understanding how to interface with
dows in assembly language by reading C/C++ documentation on the subject. Now, however, it’s time to 
attention to writing actual Windows applications in assembly language.
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