

arning
ams. In
ing:

rt needed
tor, var-
ute the
p to the

 surprise
ssons

 of the

rst
ons and
nes that
 once the

 it
 within
m the

perating
d out the
” that

mulates
mpletely

plication
rogram
rily call
t the
t more
o way of
e key-
tion in

and decide
ich time
plication
not even
Chapter 5: The Event-Oriented Programming Paradigm

5.1: Who Dreamed Up This Nonsense?

A typical programmer begins their programming career in a beginning programming course or by le
programming on their own from some book that teaches them step-by-step how to write simple progr
almost every case, the programming tutorial the student uses begins with a program not unlike the follow

#include <stdio.h>
int main(int argc, char **argv)
{

printf(“Hello world\n”);
}

This program seems so quaint and simple, but keep in mind that there is considerable education and effo
to get this trivial program running. A beginning programmer has to learn how to use the computer, an edi
ious operating system commands, how to invoke the compiler (and possibly linker), and how to exec
resulting executable file. Though the (C language) program code may be quite trivial, the steps leading u
point where the student can compile and run this simple program are not so trivial. It should come as no
then, that the programming projects that immediately follow the “hello world” program build upon the le
before them.

One thing that quickly becomes taken for granted by a programming student’s “programmer’s view
world” is that there is some concept of a main program that takes control of the CPU when the program fi
starts running and this main program drives the application. The main program calls the various functi
subroutines that make up the application and, most importantly, the main program (or functions/subrouti
the main program calls) makes requests for operating system services via calls to the OS, which return
OS satisfies that service request. OS calls are always synchronous; that is, you call an OS function and when
completes, it returns control back to your program. In particular, the OS doesn’t simply call some function
your program without you explicitly expecting this to happen. In fact, in the normal programming paradig
OS never calls a function in your program at all - it simply returns to your program after you’ve called it.

In the Windows operating system, the concept where the user’s application has control and calls the o
system when it needs some service done (like reading a value from the standard input device) is tosse
window (pardon the pun). Instead, the OS takes control of the show. It is, effectively, the “main program
tracks events throughout the system and calls functions within various applications as Windows accu
events (like keypresses or mouse button presses) that it feels the application needs to service. This co
changes the way one writes a program from the application programmer’s perspective. Before, the ap
was in control and knew when things were happening in the application (mainly by virtue of where the p
was executing at any given time). In the Windows programming paradigm, however, the OS can arbitra
any function in the application (well, not really, but you’ll see how this actually works in a little bit) withou
application explicitly requesting that the OS call that function. This makes writing applications quite a bi
complex because any of a set of functions could be called at any one given time - the application has n
predicting the order of invocation. Furthermore, convenient OS facilities like “read a line of text from th
board” or “read an integer value from the keyboard” simply don’t exist. Instead, the OS calls some func
your code every time the user presses a key on the keyboard. Your code has to save up each keystroke
when it has read a full line of text from the keyboard (or when it has read a complete integer value, at wh
the application must convert the string to an integer value and pass it on to whatever section of the ap
needed the integer value). Perhaps even more frustrating is the fact that a Windows GUI application can
Page 286

play and
ng in a
. Even
ne thing
t values
r inputs

for one
 switch
with the
 (i.e., if

es 1, 12,
en writ-
rammer

other sys-
. Once the
ts for the

ost pro-
ecome
ms like
s way

ows

e

jor
g passed
xpects it
ication,

-
d that the

e

yte pay-
ow pro-

,

output data whenever it wants to. Instead, the application needs to save up any output it wishes to dis
wait for Windows to send it an event saying “Okay, now update the display screen.” The days of slippi
quick “printf” statement (or something comparable in whatever language you’re using) are long gone
worse, most programmers learned to write software in an environment where the program is doing only o
at a time; for example, when reading an integer from the user, the program doesn’t have to worry abou
magically appearing in other variables based on user input - no additional input may occur until the use
the current value. In a Windows GUI application, however, the user can actually enter a single digit
numeric value, switch to a different text entry box and enter several digits for a different number, then
back to the original input and continue entering data there. Not only does the program need to deal
simultaneous entry of several different values, but it also has to handle partial inputs in a meaningful way
the user ultimately enters the value 1234, the program has to be able to deal with the partial input valu
123, as well as the file value, 1234). Since few programmers have had to deal with this type of activity wh
ing console (non-GUI) applications, this new programming paradigm requires some time before the prog
becomes comfortable with it.

This programming paradigm is known as the event-oriented programming paradrgm. It’s called event-ori-
ented because the operating system detects events like keypresses, mouse activity, timer timeouts, and
tem events, and then passes control to a program that is expecting one or more of these events to occur
application processes the event, the application transfers control back to the operating system which wai
next event to occur.

The event-oriented programming paradigm presents a perspective that is backwards from the way m
grammers first learned to write software. Although this programming scheme takes a little bit of effort to b
accustomed to, it’s not really that difficult to master. Although it may be frustrating at first, because it see
you’re having to learn how to program all over again, fret not, before too long you’ll adjust to the “Window
of doing things” and it will become second nature to you.

5.2: Message Passing

Windows isn’t actually capable of calling an arbitrary function within your application. Although Wind
does provide a specialized mechanism for calling certain callback functions within your code, most of the tim
Windows communicates between itself and your application by send your application messages. Message pass-
ing is just a fancy term for a procedure call. A message is really nothing more than a parameter list. The ma
difference (from your application’s perspective) between a standard procedure call and a message bein
to your application is that the message often contains some value that tells the application what work it e
to do. That is, rather than having Windows call any of several dozen different subroutines in your appl
Windows simply calls a special procedure (known as the window procedure, or wndproc) and passes it the mes
sage (that is, a parameter list). Part of the message tells the window procedure what event has occurre
window procedure must handle. The window procedure then transfers control (dispatches) to some code that
handles that particular event.

If you’ve ever written a 16-bit DOS application in assembly language, you’ve done some message
passing. The INT 21h instruction that “calls” DOS is equivalent to calling DOS’ “window proce-
dure”. The values you pass in the 80x86 registers correspond to the message and, in particular, th
value in the AH register selects the particular DOS function you wish to invoke. Although the per-
spective is different (Windows is calling you instead of you calling Windows), the basic idea
behind message passing is exactly the same.

The messages that Windows explicitly sends to your applications are actually quite small: just a 16-b
load. Four of those bytes contain the message identification (that is, an integer value that tells your wind
cedure what operation to perform), four bytes form a window handle that various functions you call will need
Page 287

 of mes-
cause it’s

lication
tion and
 Windows
 within
ords that

 main
 applica-

ation is
he appli-
and two double-word data parameters provide message-specific data. Since Windows defines the type
sages it sends to your window procedure, this small message payload (that is, the data) was chosen be
sufficient for the vast majority of messages and it’s efficient to pass between Windows and your app
(Windows memory address space is actually in a different address space on the 80x86 from your applica
copying large amounts of data between address spaces can be expensive). For those few calls where
needs to pass more than eight bytes of data to your application, Windows will allocate a block of memory
your process’ address space and pass a pointer to that block of data in one of the two four-byte double w
comprise the message’s payload.

Figure 5-1 provides a block diagram of a typical Windows application. This diagram shows how the
program and the window procedure are disconnected. That is, the main program doesn’t call the actual
tion code; instead, Windows handles that activity.

Figure 5-1: General Organization of a Windows Program

For those who are comfortable with client-server architectures, another way to view a Windows applic
as a server for Windows’ messages. That is, Windows is a client that needs to have certain work done. T

Application
Initialization
Code

Message Loop

Application
Cleanup and
Exit Code

Windows
Kernel

Application's
"Window
Procedure"

Application-
specific
activities and
operations
Page 288

essages
ld han-
e (service
r rela-
at often
 client/

?” The
cations
am that
just like
 its pro-
rd Win-

you’re
ot con-

o see if
the mes-
“register
t knows

s appli-
ur pre-
o lines

plica-

e
C/Win-
usually

lly a
nfusion,
tions.

s data

k of
 need to

ssible. A

n-
a (or the
n calls,
cated or

ok will

you
tle need
cation is a server that is capable of performing this work. The server (that is, the application) waits for m
to arrive from Windows telling it what services to perform (e.g., what system events the application shou
dle). When such a message comes along, the application handles it and then waits for the next messag
request) from the client (Windows). Of course, calling the Window/application relationship a client/serve
tionship is stretching the point somewhat, because from other perspectives the application is a client th
requests Windows’ services. Nonetheless, from the perspective of an application’s main program, the
server relationship is a useful model.

One question you might have is “how does Windows know the address of your window procedure
short answer is “you tell it.” The discussion in this chapter has given the impression that Windows appli
don’t have a main program. Strictly speaking, this is not true. Windows applications do have a main progr
the operating system calls when you first run the application. In theory, this main program could execute
the old-fashioned programs, taking control of the CPU and making (certain) calls to the OS and doing all
cessing the old fashioned way. The only catch is that such an application wouldn’t behave like a standa
dows GUI application. This is how you write console applications under Windows, but presumably
reading this book to learn how to write Windows GUI apps rather than Windows console apps. So we’ll n
sider this possibility any farther.

The real purpose of a Windows main program is to initialize the application, register the window procedure
with the Windows OS, and then execute an event loop that receives messages from Windows, checks t
Windows has asked the application to terminate, and then calls a Windows OS function that dispatches
sage to whomever it belongs (which is usually your window procedure). Take special note of the phrase
the window procedure...”. This is where you pass Windows the address of your window procedure so i
how to pass messages to that code. As it turns out, the operation of the main program in a typical Window
cation is so standardized that most of the time you will simply “cut and paste” the main program from yo
vious Windows application into your new application. Rarely will you need to change more than one or tw
in this main program.

When writing a Windows GUI application in HLA, you place the code for the main program of your ap
tion between the begin and end associated with the program in HLA (i.e., in the main program section of th
HLA program). This may seem completely obvious to an HLA programmer, but to someone who has
dows programming experience, this is actually unusual. The main program for a Windows application is
called winmain, at least, if you’re writing the application in C/C++. However, the name “winmain” is actua
C/C++ programming convention; the operating system does not require this name at all. To avoid co
we’ll continue to place our main program where HLA expects the main program when writing GUI applica

5.3: Handles

Before discussing actual Windows code, the first thing we must discuss is a very important Window
structure that you’ll use everywhere: the handle. The Windows operating system uses handles to keep trac
objects internal to Windows that are not present in the application’s address space. Since there is often
refer to such internal objects, Windows provides values known as handles to make such reference po
handle is simply a small integer value (held in a 32-bit dword variable) whose value has meaning only to Wi
dows. Undoubtedly, the handle’s value is an index into some internal Windows table that contains the dat
address of the data) to which the handle actually refers. Windows returns handle values via API functio
your application must save these values and use them whenever referring to the object that Windows allo
create via the call.

The Windows C/C++ header files include all kinds of different names for handle object types. This bo
simply declare all handles as dword variables rather than trying to differentiate them by type. The truth is,
don’t do any operations on handles (other than to pass their values to Win32 API functions), so there is lit
Page 289

s of the

ames

ost of
 or two
lication
in pro-
typical
tion that

gister a
r oper-

por-
am is to

you. It
stance

ed
lass” in

pace to

to go to the extreme of creating dozens (if not hundreds) of different types that are all just isomorphism
dword type. This book will adopt the Windows/Hungarian notation of prepending an “h” to handle object n
(e.g., hWnd could be a window handle).

5.4: The Main Program

The main program of a GUI application changes very little from application to application. Indeed, m
the time you’ll simply cut and paste the main program from your previous application and then edit one
lines when creating a new Windows application. One problem with the main program in a Windows app
is that it quickly becomes “out of sight, out of mind” and the knowledge of what is going on inside the ma
gram quickly becomes forgotten. Therefore, it’s worthwhile to spend some time carefully describing the
Windows main program so you’ll have a good idea of what you can (or should) change with each applica
you write.

As noted earlier, one of the most important things the main program of a GUI application does is re
window procedure with the operating system. Actually, registering the window procedure is part of a large
ation: registering a window class with Windows. A window class is simply a data structure that maintains im
tant information about a window associated with an application. One of the main tasks of the main progr
initialize this data structure and then call Windows to register the window class.

Although Microsoft uses the term “class” to describe this data structure, don’t let this term confuse
really has little to do with C++ or HLA class types and objects. This is really just a fancy name for an in
(that is a variable) of a Windows’ w.WNDCLASSEX struct/record. Keep in mind, Windows was originally design
before the days of C++ and before object-oriented programming in C++ became popular. So terms like “c
Windows don’t necessarily correspond to what we think of as a class today.

5.4.1: Filling in the w.WNDCLASSEX Structure and Registering the Window

Here’s what the definition of w.WNDCLASSEX looks like in the HLA windows.hhf header file:

type
 WNDCLASSEX: record
 cbSize : dword;
 style : dword;
 lpfnWndProc : WNDPROC;
 cbClsExtra : dword;
 cbWndExtra : dword;
 hInstance : dword;
 hIcon : dword;
 hCursor : dword;
 hbrBackground : dword;
 lpszMenuName : string;
 lpszClassName : string;
 hIconSm : dword;
 align(4);
 endrecord;

Since the application’s main program must fill in each of these fields, it’s a good idea to take a little s
describe the purpose of each of the fields. The following paragraphs describe these fields.

cbSize is the size of the structure. The main program must initialize this with the size of a w.WNDCLASSEX

structure. Windows uses the value of this field as a “sanity check” on the w.WNDCLASSEX structure (i.e., are you
Page 290

e a vari-

e

 col-
e these
he pre-

reen
ed up
 can

 may
 win-
ume

ry in
where
dow
e bit

ards
mod-

r) to
tions

n the
rally,
em-

ow

t or
reate

enu.

s the

ore

 by
 cer-

ss as
 first
ener-
really passing a reasonable structure to the function that registers a window class?). Assuming you hav
able wc (window class) of type w.WNDCLASSEX, you can initialize the cbSize field using a single statement lik
the following:

mov(@size(w.WNDCLASSEX), wc.cbSize);

The style field specifies the window’s style and how Windows will display the window. This field is a
lection of bits specifying several boolean values that control the window’s appearance. You may combin
styles using the HLA constant expression bitwise OR operator (“|”). The following paragraphs describe t
defined bit values that are legal for this field:

w.CS_BYTEALIGNCLIENT This style tells Windows to align the window’s client area (the part of the sc
where the application can draw) on an even byte boundary in order to spe
redraw operations. Note that the use of this option affects where Windows
place the open window on the screen (i.e., dragging the window around
require the window to jump in discrete steps depending on the bit depth of the
dow). Note that individual pixels on modern video display cards tend to cons
multiple bytes, so this option may not affect anything on a modern PC.

w.CS_BYTEALIGNWINDOW This style tells Windows to align the whole window on an even byte bounda
order to speed up redraw operations. Note that the use of this option affects
Windows can place the open window on the screen (i.e., dragging the win
around may require the window to jump in discrete steps depending on th
depth of the window). Note that individual pixels on modern video display c
tend to consume multiple bytes, so this option may not affect anything on a
ern PC.

w.CS_CLASSDC Allocates a single device context (which this book will discuss in a later chapte
be used by all windows in a class. Generally useful in multithreaded applica
where multiple threads are writing to the same window.

w.CS_DBLCLKS Tells Windows to send double-click messages to the window procedure whe
user double-clicks the mouse within a window belonging to the class. Gene
this option is specified for controls that respond to double-clicks (which are, th
selves, windows); you wouldn’t normally specify this option for the main wind
class of an application.

w.GLOBALCLASS This option is mainly for use by DLLs. We won’t consider this option here.

w.CS_HREDRAW This class style tells Windows to force a redraw of the window if a movemen
size adjustment occurs in the horizontal direction. Most window classes you c
for your main window will specify this style option.

w.CS_NOCLOSE This style option disables the close command for this window on the system m

w.CS_OWNDC Allocates a unique device context for each window in the class. This option i
converse of w.CS_CLASSDC and you wouldn’t normally specify both options.

w.CS_PARENTDC Specifies that child windows inherit their parent window’s device context. M
efficient in certain situations.

w.CS_SAVEBITS Tells Windows to save any portion of a window that is temporarily obscured
another window as a bitmap in Windows’ system memory. This can speed up
tain redraws, and the window procedure for that window won’t have to proce
many redraw operations, but it may take longer to display the window in the
place and it does consume extra memory to hold the bitmap. This option is g
Page 291

n for

size
pli-

tement
again,

n’s
going
e the fol-

 class
 class.
s from
 bytes.
r is usu-

tance
of a sin-
 “win-
the data
l). Win-
tes to
ally useful for small windows and dialog boxes that don’t appear on the scree
long periods of time but may be obscured for brief periods.

w.CS_VREDRAW This option tells Windows to redraw the window if a vertical movement or re
operation occurs. This is another option you’ll usually specify for the main ap
cation’s window that a GUI app creates.

Typically, an application will set the w.CS_HREDRAW and w.CS_VREDRAW style options. A few applications with
special requirements might include one or two of the other styles as well. The following is a typical sta
that you’ll find in a GUI application that sets these two style options for the application’s main window (
assuming that wc is a variable of type w.WNDCLASSEX):

mov(w.CS_HREDRAW | w.CS_VREDRAW, wc.style);

The lpfnWndProc field of w.WNDCLASSEX holds the address of the window procedure for the applicatio
main window. Initializing this field is how you tell Windows where it can find the window procedure that is
to process all the messages that Windows passes to your application. The window procedure must hav
lowing generic prototype:

type
 WNDPROC:
 procedure
 (
 var lpPrevWndFunc :var;
 hWnd :dword;
 Msg :dword;
 _wParam :dword;
 _lParam :dword
);
 @stdcall;
 @returns("eax");

If you’ve got an HLA procedure named WndProc, you can initialize the wc.lpfnWndProc field using the follow-
ing code:

mov(&WndProc, wc.lpfnWndProc);

(note that the type declaration above is in the w namespace, so there isn’t a name conflict between the w.WNDPROC

type and the local WndProc procedure in your program).

The cbClsExtra field specifies the number of bytes of storage to allocate immediately after the window
structure in memory. This provides room for application-specific information associated with the window
Note that if you have more than one instance of this window class (that is, if you create multiple window
this same class), they will all share this same storage. Windows will initialize this extra storage with zero
Most applications don’t need any extra storage associated with their main window class, so this paramete
ally zero. However, you must still explicitly initialize it with zero if you don’t need the extra storage:

mov(0, wc.cbClsExtra);

The cbWndExtra field specifies the number of bytes of extra storage Windows will allocate for each ins
of the window that you create. As you see before too long, it’s quite possible to create multiple instances
gle window class; this is unusual for the main window of an application, but it’s very common for other
dows” in the system like pushbuttons, text edit boxes, and other controls. This extra storage could hold
associated with that particular control (e.g., possibly the text associated with a text manipulation contro
dows will allocate this storage in memory immediately following the window instance and initializes the by
Page 292

itialize

 will

t Win-
her pur-
corner of
ver, we

ow-
o specify
a refer-

te that
s will
ure, for

raw

fically,
ver the

cursor

dow.
con-
s the cre-
zeros. Few main application windows need this extra storage, so most Windows’ main programs will in
this field to zero in the window class object for the main window, e.g.,

mov(0, wc.cbWndExtra);

The hInstance field is a handle that identifies the window instance for this application. Your program
have to get this value from Windows by making the w.GetModuleHandle API call (which returns the hInstance
handle value in the EAX register). You can initialize the hInstance field using the following code:

w.GetModuleHandle(NULL); // NULL tells Windows to return this process’ handle.
mov(eax, wc.hInstance); // Save handle away in wc structure so Windows knows
 // which process owns this window.

The hIcon field is a handle to a Windows icon resource. The icon associated with this handle is wha
dows will draw whenever you minimize the application on the screen. Windows also uses this code for ot
poses throughout the system (e.g., showing a minimized icon on the task bar and in the upper left hand
the Window). Later, this book will discuss how to create your own custom icons. For the time being, howe
can simply request that Windows use a “stock icon” as the application’s icon by calling the w.LoadIcon API func-
tion and passing a special value as the icon parameter:

w.LoadIcon(NULL, val w.IDI_APPLICATION);
mov(eax, wc.hIcon);

The second parameter to w.LoadIcon is usually a string containing the name of the icon resource to use. H
ever, Windows also accepts certain small integer values (values that string pointers are never equal to) t
certain “canned” or “stock” icons. Normally, you cannot pass such a constant where HLA is expecting
ence parameter, however, by prefixing the parameter with the HLA val keyword, you can tell HLA to pass the
value of the constant as the address for the reference parameter. The value of w.IDI_APPLICATION is a Windows
predefined constant that tells Microsoft Windows to use the stock application icon for this application. No
if you pass NULL as the value of the second parameter (e.g., rather than w.IDI_APPLICATION), Window
tell the application to draw the icon whenever the user minimizes the application. You could use this feat
example, if you want a dynamic icon that changed according to certain data the application maintains.

The hCursor field of the w.WNDCLASSEX record holds a handle to a cursor resource that Windows will d
whenever the user moves the cursor over the top of the window. Like the hIcon field discussed previously, this
handle must be a valid handle that Windows has given you. And just like the initialization of the hIcon field,
we’re going to call a Windows API function to get a stock cursor we can use for our application. Speci
we’re going to ask Windows to give us the handle of an arrow cursor that will draw an arrow cursor whene
user moves the cursor over our window. Here’s the code to do that:

w.LoadCursor(NULL, val w.IDC_ARROW);
mov(eax, wc.hCursor);

The w.IDC_ARROW constant is a special Windows-defined value that we supply instead of a pointer to a
name to tell Windows to use the standard arrow cursor. Like the w.LoadIcon function, if you pass NULL (e.g.,
rather than w.IDC_ARROW) as the second parameter to w.LoadCursor, Windows will expect the application to
draw the cursor whenever the mouse moves over the application’s window.

The hbrBackground field specifies the “brush” that Windows will use to paint the background of a win
A Windows’ brush is simply a color and pattern to draw. Generally, you’ll specify one of the following color
stants as this handle value (though you could create a custom brush and use that; this book will discus
ation of brushes later on):
Page 293

-

 the
e menu

name
.g.,

sed in
claims
ULL
• w.COLOR_ACTIVEBORDER

• w.COLOR_ACTIVECAPTION

• w.COLOR_APPWORKSPACE

• w.COLOR_BACKGROUND

• w.COLOR_BTNFACE

• w.COLOR_BTNSHADOW

• w.COLOR_BTNTEXT

• w.COLOR_CAPTIONTEXT

• w.COLOR_GRAYTEXT

• w.COLOR_HIGHLIGHT

• w.COLOR_HIGHLIGHTTEXT

• w.COLOR_INACTIVEBORDER

• w.COLOR_INACTIVECAPTION

• w.COLOR_MENU

• w.COLOR_MENUTEXT

• w.COLOR_SCROLLBAR

• w.COLOR_WINDOW

• w.COLOR_WINDOWFRAME

• w.COLOR_WINDOWTEXT

Actually, the value you must supply for the hbrBackground value is one of the above constants plus one. This is
just a Windows idiosyncrasy you’ll have to keep in mind. w.COLOR_WINDOW (a solid white background) is the typ
ical window color you’ll probably use. The following code demonstrates this assignment:

mov(w.COLOR_WINDOW+1, wc.hbrBackground);

The lpszMenuName field contains the address of a string specifying the resource name of the class’ main
menu, as the name appears in a resource file. This book will discuss menus and resource files a little later. In
meantime, if your window class doesn’t have a main menu associated with it (or you want to assign th
later), simply set this field to NULL:

mov(NULL, wc.lpszMenuName);

The lpszClassName field is a string that specifies the class name for this window. This is an important
that you’ll use in a couple of other places. Generally, you’ll specify the application’s name as this string, e

readonly
myAppClassName :string := “MyAppName”;

.

.

.
mov(myAppClassName, eax);
mov(eax, wc.lpszClassName);

The hIconSm is a handle to a small icon associated with the window class. This handle was u
Windows 95, but was ignored by Win NT (and later versions of Windows). The Windows documentation
that you should initialize this field to NULL in NT and later OSes (and that Windows will set this field to N
Page 294

nto the

so you

e differ-
ws, and

ted with

of a
 ta
upon return). Most applications, however, seem to initialize this field with the same value they shove i
hIcon field; probably not a bad idea, even if Windows does set this field to NULL later.

Once you fill in all the fields of the w.WNDCLASSEX structure (i.e., wc), you register the window class with
Windows by calling the w.RegisterClassEx API function, passing the window class object (wc) as the single
parameter, e.g.,

w.RegisterClassEx(wc);

The following is all the code appearing throughout this section collected into a contiguous fragment
can see the complete initialization of the wc variable and the registration of the window class:

readonly
myAppClassName :string := “MyAppName”;

.

.

.
mov(@size(w.WNDCLASSEX), wc.cbSize);
mov(w.CS_HREDRAW | w.CS_VREDRAW, wc.style);
mov(&WndProc, wc.lpfnWndProc);
mov(0, wc.cbClsExtra);
mov(0, wc.cbWndExtra);

w.GetModuleHandle(NULL);
mov(eax, hInstance); // Save in a global variable for future use
mov(eax, wc.hInstance);

mov(w.COLOR_WINDOW+1, wc.hbrBackground);
mov(NULL, wc.lpszMenuName);
mov(myAppClassName, eax);
mov(eax, wc.lpszClassName);

w.LoadIcon(NULL, val w.IDI_APPLICATION);
mov(eax, wc.hIcon);
mov(eax, wc.hIconSm);

w.LoadCursor(NULL, w.IDC_ARROW);
mov(eax, wc.hCursor);

w.RegisterClass(wc);

5.4.2: “What is a ‘Window Class’ Anyway?”

This chapter has made considerable use of the Windows’ term window class with only a cryptic discussion of
the fact that window classes are not the same thing as C++ or HLA classes. This section will explain th
ence between classes in traditional object-oriented programming languages, window classes in Windo
instances of window classes.

In a language like HLA, a class is a data type. As a general rule, there is no run-time memory associa

a class definition1. It’s only when you allocate storage for an instance of that class, that is create an object vari-

1. One could argue that virtual method table and static class data is associated with the class, not an individual instance
class, but unless you have at least one instance (object) of a class, there is no need for the static data or virtual methodble
in memory.
Page 295

s
rogram

-
f that sec-
he very
: storage.

in mind
dvent of

-
autiful

ultiple
window
r why
y times

 they do,
o infre-

would
ndreds
maller
edit
 window
ny, dif-
ure and
e type)
 to do is

ss struc-

lasses
o initial-
w win-

ss, you

ication
).
 quite
n

able, that there is storage associated with that class. A class, therefore, is a layout of how an object actually use
the memory allocated to it; that is, like a record or structure definition, a class simply defines how the p
should treat blocks of memory cells at some offset from the object’s base address.

Window classes, on the other hand, do have memory allocated for them. The wc variable of the previous sec
tion is a good example of a window class that has storage associated with it (indeed, the main purpose o
tion was to describe how to initialize the memory storage associated with that window class). So from t
start, we see the major difference between classes in an object-oriented language and windows class
Lest you wonder what Microsoft’s engineers were thinking when they created this terminology, just keep
that Windows was designed long before object-oriented programming became popular (i.e., before the a
C++, HLA, and many other popular OOP languages) and terminology like objects versus classes was not as
well-known as it is today.

So, then, exactly what is a window class? Well, a window class is a template2 that describes a common struc
ture in memory that programs will often duplicate when creating multiple copies of a window. The be
thing about a window class is that it lets you initialize the window class record just once and then make m
copies of that window without having to initialize the data structure associated with each instance of that
class. Now, perhaps, it’s a bit difficult to understand why you would want multiple copies of a window o
this is even important based upon the one example we’ve had in this book to this point. After all, how man
does an application need more than one copy of the application’s window (and in the few cases where
who really cares about the extra work needed to initialize the window class record, since this is done s
quently?). Well, if the application’s main window were the only window an application would use, there
be little need for window classes. However, a typical Windows GUI application will use dozens, if not hu
of different windows. This is because Microsoft Windows supports a hierarchical window structure with s
(child) windows appearing within larger (parent) windows. Most user interface components (buttons, text
boxes, lists, etc.) are examples of windows in and of themselves. Each of these windows has its own
class. Although an application may have but a single main window, that application may have many, ma
ferent buttons. Each button appearing on the screen is a window in and of itself, having a window proced
all the other information associated with a window class. However, all the buttons (at least, of the sam
within a given application share the same windows class. Therefore, to create a new button all you have
create a new window based on the button window class. There is no need to initialize a new window cla
ture for each button if that button shares the attributes common to other buttons the application uses.

Another nice thing about window classes is that Microsoft pre-initializes several common window c
(e.g., the common user interface objects like buttons, text edit boxes, and lists) so you don’t even have t
ize the window class for such objects. If you want a new button in your application, you simply create a ne
dow specifying the “button” window class. Since Windows has already registered the button’s window cla
don’t have to do this. Therein lies the whole purpose of the w.RegisterWindow API call: it tells Microsoft Win-
dows about this new window class. Once you register a window class with Microsoft Windows, your appl
can create instances of that window via the w.CreateWindowEx API call (which the next section describes
Although your application will typically create only a single instance of the main application’s window, it is
likely you’ll create other window classes that represent custom controls that appear within your application. The
your application can create multiple instances of those custom controls by simply calling the w.CreateWindowEx

API for each instance of the control.

2. The use of the term template, in this context, is generic. This has nothing to do with C++ templates.
Page 296

li-
e for the
indow.

eter is

riate bit.

present at
 for more
 prefer
vel

ou’re

 values
of the
alue, if
ing object
5.4.3: Creating and Displaying a Window

Registering a window with the w.RegisterWindowEx API call does not actually create a window your app
cation can use, nor does it display the window on your video screen. All this API does is create a templat
window and let Microsoft Windows know about the template so future calls can create instances of that w
The API function that actually creates the window is called (obviously enough) w.CreateWindowEx.

The w.CreateWindowEx prototype (appearing in the user32.hhf header file) is the following:

CreateWindowEx: procedure
(
 dwExStyle :dword;
 lpClassName :string;
 lpWindowName :string;
 dwStyle :dword;
 x :dword;
 y :dword;
 nWidth :dword;
 nHeight :dword;
 hWndParent :dword;
 hMenu :dword;
 hInstance :dword;
 var lpParam :var
);
@stdcall;
@returns("eax");
@external("__imp__CreateWindowExA@48");

The dwExStyle parameter specifies an extended style value for this window (the extended style param
what differentiates the w.CreateWindowEx function from the older w.CreateWindow API call). This parameter is
a bitmap containing up to 32 different style settings that are enabled or disabled by setting the approp
The windows.hhf header file defines a set of constants with names of the form w.WS_EX_* that correspond to the
possible extended styles. There are a few too many of these, and most of them are a bit too complex, to
this time. Please see the user32 reference manual (appearing on the CD-ROM accompanying this book)
details on these extended style values). For the time being, you can initialize this field with zero or, if you
you can use the constant w.WS_EX_APPWINDOW which tells Windows to put an icon on the taskbar for a top-le
instance of this window.

The lpClassName field specifies the name of the window class on which you’re basing the window y
creating. Generally, this is the string you’ve supplied as the class name in the call to w.RegisterWindow. For cer-
tain pre-defined window classes that Windows defines, you can also supply an atom value here. An atom is a
small 16-bit integer value that uniquely specifies an existing window class (e.g., like the cursor and icon
we saw in the last section). Windows differentiates atoms from strings by looking at the H.O. word
lpClassName parameter value. If this H.O. word contains zero, then Windows assumes that it’s an atom v
the H.O. word is non-zero, then Windows assumes that this parameter contains the address of some str
(note that pointer values in Windows always have a H.O. word that is non-zero).

To pass an atom value rather than a string object as this first parameter, you should use the HLA val keyword
as a prefix on the atom value, e.g.,

w.CreateWindowEx
(

0,
Page 297

tring

ermi-
like the

of a string
):

er can

into a
type

 may

 these

in-
 win-
val SomeAtomValue, // Atom values need the “VAL” keyword prefix.
“WindowName”,
w.WS_OVERLAPPEDWINDOW, // We’ll explain the following momentarily...
w.CW_USEDEFAULT,
w.CW_USEDEFAULT,
w.CW_USEDEFAULT,
w.CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL

);

Technically, the lpClassName parameter points at a zero-terminated string. However, since HLA s
objects are upwards compatible with zero-terminated strings, the w.CreateWindowEx prototype specifies an
HLA string variable as this parameter. This turns out to be most convenient because most calls to w.CreateWin-

dowEx will specify a literal string constant or an HLA string variable here. However, if you’ve got a zero-t
nated string that you’d like to use, you don’t need to first convert it to an HLA string, you can use code
following to directly pass the address of that zero-terminated string to w.CreateWindowEx:

lea(eax, SomeZeroTerminatedString);
w.CreateWindowEx
(

0,
(type string eax), // Passes pointer to zstring found in EAX.
“WindowName”,
w.WS_OVERLAPPEDWINDOW, // We’ll explain the following momentarily...
w.CW_USEDEFAULT,
w.CW_USEDEFAULT,
w.CW_USEDEFAULT,
w.CW_USEDEFAULT,
NULL,
NULL,
hInstance,
NULL

);

Here are some constant values that Windows predefines that you may pass as atom values in place
for the lpClassName parameter (an in-depth explanation of these class types will appear later in this book

w.BUTTON This is a small rectangular window that corresponds to a push button the us
click to turn it on or off.

w.COMBOBOX Specifies a control that consists of a list box and a text edit control combined
single control. This control allows the user to select some text from a list or
the text from the keyboard.

w.EDIT This specifies an edit box which is a rectangular window into which the user
type some text.

w.LISTBOX This atom specifies a list of character strings. The user may select one of
strings by clicking on it.

w.MDICLIENT Designates an MDI (multiple document interface) client window. This tells W
dows to send MDI messages to the window procedure associated with this
dow.
Page 298

ports

tion

r con-

 class.
iscus-

 is
 a win-
ring on

erentiate
me typi-
hose that
an con-

ome win-

teness.

 par-

hild
.

ws).
 and
w.RichEdit Specifies a Rich Edit 1.0 control. This provides a rectangular window that sup
text entry and formatting and may include embedded COM objects.

w.RICHEDIT_CLASS Specifies a Rich Edit 2.0 control

w.SCROLL_BAR Specifies a rectangular window used to hold a scroll bar control with direc
arrows at both ends of the scroll bar.

w.STATIC Specifies a text field, box, or rectangle used to label, box, or separate othe
trols.

For the main application’s window, you would not normally specify one of these atoms as a window
Instead, you’d supply a string specifying a name for the application’s window class. We’ll return to the d
sion of controls in a later chapter in this book.

The third w.CreateWindowEx parameter, lpWindowName, is a string that holds the window’s name. This
caption that is associated with the window’s title bar. Some applications will also identify an instance of
dow on the screen by using this string. Typically, if you have multiple instances of a window class appea
the screen at the same time, you will give each instance a unique window name so you can easily diff
them. Generally, the class name and the window name are similar, but not exactly the same. A class na
cally looks like a program identifier (i.e., no embedded spaces and the characters in the name would be t
are legal in a program source file). The window name, on the other hand, is usually formatted for hum
sumption.

The fourth parameter, dwStyle, specifies a set of window styles for the window. Like the dwExStyle param-
eter, this object is a bitmap containing a set of boolean values that specify the presence or absence of s
dow attribute. The following is a partial list of values you may logically OR together for form the dwStyle value.
We’ ll explain the terminology and specifics later in this book. These are thrown out here just for comple
We’ ll actually only use a single window style for our application’s main window.

w.WS_BORDER Specifies a thin border around the window.

w.WS_CAPTION Creates a window that has a title bar (also sets the w.WS_BORDER attribute).

w.WS_CHILD Creates a child window. Mutually exclusive to the w.WS_POPUP attribute.

w.WS_CHILDWINDOW Same as w.WS_CHILD attribute.

w.WS_CLIPCHILDREN Excludes the area occupied by child windows when drawing occurs within the
ent window. Use this style when creating a parent window.

w.WS_CLIPSIBLINGS Clips child windows relative to one another. Specify this when creating a c
window when you have several child windows that could overlap one another

w.WS_DISABLED Creates a window that is initially disabled.

w.WS_DLGFRAME Creates a window with a border designed for a dialog box.

w.WS_GROUP Specifies the first control of a group of controls (remember, controls are windo
The next control that has the w.WS_GROUP style ends the current group
begins the next group.

w.WS_HSCROLL Creates a window with a horizontal scroll bar.

w.WS_ICONIC Creates a window that is initially minimized.

w.WS_MAXIMIZE Creates a window that is initially maximized.

w.WS_MAXIMIZEBOX Creates a window that has a maximize button.

w.WS_MINIMIZE Creates a window that is initially minimized (same as w.WS_ICONIC).

w.WS_MINIMIZEBOX Creates a window that has a minimize button.
Page 299

s the

pecify

 window
 list box
eir own
en we

ds,
e

he
hen you
ters is to
 ran the
pplica-
) don’t
’t like
pply the

 the
n’s size.

 of the
nically
ider the
 on your
 the

 win-
’s main
w.WS_OVERLAPPED Creates an overlapped window.

w.WS_OVERLAPPEDWINDOW This is a combination of several styles include w.WS_OVERLAPPED, w.WS_CAPTION,
w.WS_SYSMENU, w.WS_SIZEBOX, w.WS_MINIMIZEBOX, and w.WS_MAXIMIZEBOX.
This is the typical style an application’s window will use.

w.WS_POPUP Creates a popup window. Mutually exclusive to the w.WS_CHILD window style.

w.WS_POPUPWINDOW Creates a pop-up window with the following styles: w.WS_BORDER, w.WS_POPUP,
w.WS_SYSMENU. The w.WS_POPUPWINDOW and w.WS_CAPTION styles must both be
active to make the system menu visible.

w.WS_SIZEBOX Creates a window that has a sizing border. This style is the same a
w.WS_THICKFRAME style.

w.WS_SYSMENU Creates a window that has a system menu box in its title bar. You must also s
the w.WS_CAPTION style when specifying this attribute.

w.WS_THICKFRAME Same as w.WS_SIZEBOX style.

w.WS_TILED Save as the w.WS_OVERLAPPED style.

w.WS_TILEDWINDOW Same as the w.WS_OVERLAPPEDWINDOW style.

w.WS_VISIBLE Creates a window that is initially visible.

w.WS_VSCROLL Creates a window that has a vertical scroll bar.

These styles are appropriate for generic windows. Certain window classes have their own specific set of
styles. In particular, the button window class, the combobox window class, the text edit window class, the
window class, the scroll bar window class, the static window class, and the dialog window class have th
set of window style values you can supply for this parameter. We’ll cover this specific window styles wh
discuss those controls later in this book.

For generic windows, the w.WS_OVERLAPPEDWINDOW style is a good style to use. Depending on your nee
you may want to merge in the w.WS_HSCROLL and w.WS_VSCROLL styles as well. You can also specify th
w.WS_VISIBLE style if you like, but we’ll be making a call to make the window visible soon after calling w.Cre-

ateWindowEx, so merging in this style isn’t necessary.

The next four parameters, x, y, nWidth and nHeight specify the position and size of the window on t
display. If your window must be a certain size and it must appear at a certain location on the screen, t
may fill in this parameter with appropriate screen coordinate values. Another good use of these parame
automatically restore the application window’s position and size from their values the last time the user
application (presumably, you’ve saved the values in a file or in the system registry before quitting if your a
tion is going to do this). Most applications (particularly, those that allow the user to resize the window
really care about the initial size and position of the main application window. After all, if the user doesn
what comes up, the user can move or resize the window to their liking. In such situations, a user can su
generic constant w.CW_USEDEFAULT that tells Windows to place the window at an appropriate point on
screen. Windows will typically center such windows and have them consume approximate half the scree

If you decide to supply explicit coordinates and dimensions for the application’s window, be cognizant
fact that Windows runs on a wide variety of machines with window sizes ranging from 640x480 (and, tech
even smaller) to very large. When choosing a screen position and size for your window, be sure to cons
fact that someone may be running your application on a machine with a smaller screen than the one
machine. This is why using w.CW_USEDEFAULT, if possible, is a good idea. Windows can automatically adjust
window dimensions as appropriate for the machine on which the application is running.

The hWndParent parameter supplies the handle of a parent window whenever you’re creating a child
dow. Buttons, text edit boxes, and other controls are good examples of child windows. An application
Page 300

 the

ntifier
n place

via the
is
 handle
is

 this

 will
le into a
e

 value).

lizes it
calls and

r
n

 the
it is
 your
g you
ortant
 to tell
 actually

our
rawing

r your
is point,
sages,
window, however, isn’t a child window. So you’ll normally supply NULL for this parameter when creating
main window for an application.

The hMenu parameter provides the handle for a menu to be used with a window or a child window ide
for the child window style. We’ll come back to the discussion of menus in a later chapter. For now, you ca
a NULL in this field to tell windows that your application’s window doesn’t have a menu.

The hInstance parameter is where you pass the module (application) handle. You obtain this value
w.GetModuleHandle API call. Note that the window class variable (wc in the previous section) also requires th
handle, when the application’s main program initialized the class variable it also saved the application’s
into a global variable hInstance for use by w.CreateWindowEx API calls. Because future calls will need th
value as well, having it available in a global variable is a good idea (of course, it’s also present in the wc.hIn-

stance field, but it’s still convenient to keep it in a global variable).

The last w.CreateWindowEx parameter is used to specify the address of a w.CREATESTRUCT object for MDI
windows. If you’re not creating an MDI window (and most applications don’t), you can specify NULL for
field.

The w.CreateWindowEx API function returns a handle to the window it creates in the EAX register. You
use this handle whenever referencing the window. Therefore, it’s a good idea to save away this variab
global variable immediately upon return from w.CreateWindowEx (you’ll want to use a global variable becaus
lots of different procedures and functions through out the application will need to reference this variable’s

The w.CreateWindowEx API function creates an actual instance of some window class and initia
appropriately. It does not, however, actually put the window on the screen. That takes another couple of
some extra work. To tell windows to show your window (i.e., make it visible), you use the w.ShowWindow API

call thusly3:

w.ShowWindow(hwnd, w.SW_SHOWNORMAL);

The first parameter to this function is the window handle that w.CreatWindowEx returns. The second paramete
specifies how Windows should display the window, the w.SW_SHOWNORMAL is the appropriate value to use whe
displaying the window for the first time.

Despite its name, w.ShowWindow doesn’t actually make your window visible on the display. It simply sets
“show state” for this particular window. Although Windows will draw the frame of your window for you,
your responsibility to actually fill in the “client area” of the window. That is done by having Windows send
application a message telling it to paint itself. Although you currently have control of the CPU, one thin
cannot arbitrarily do is draw to the screen without Windows telling you to do so (this is especially imp
because your window isn’t even on the screen at this point). In order to draw your window, you’ve got
Windows to send your window procedure a message and then your window procedure can do the job of
filling in the screen information. You can do this with a w.UpdateWindow call as follows:

w.UpdateWindow(hwnd);

Again, remember, w.UpdateWindow does not actually draw the window. It simply tells Windows to send y
application a message that will cause it to draw the window (inside the window procedure). The actual d
does not take place in your application’s main program.

Once you’ve told Windows to update your window so it can be drawn for the first time, all that’s left fo
main program to do is to process Windows’ messages. The next section describes that activity. At th
you’ve created your window and told Windows to display it. Once you begin processing Windows’ mes

3. Despite its name, you actually use the w.ShowWindow API function to show or hide a window. See the API documenta-
tion for more details.
Page 301

 telling

 win-
s mes-
the whole

is

lls

 key-
am), Win-
e

essages

u can

ition

 com-
essage
you’ll actually display the window (since one of the first messages that will come along is the message
your application to draw its window).

5.4.4: The Message Processing Loop

After you initialize, register, and create your application’s main window and tell Windows to display the
dow, the last major piece of work your application’s main program must do is begin processing Window
sages. The message processing loop is actually a small piece of code, so short that we’ll just reproduce
thing in one chunk:

forever

w.GetMessage(msg, NULL, 0, 0); // Get a message from Windows
breakif(EAX = 0); // When GetMessage returns zero, time to quit
w.TranslateMessage(msg); // Converts keyboard codes to ASCII
w.DispatchMessage(msg); // Calls the appropriate window procedure

endfor;

mov(msg.wParam, eax); // Get this program’s exit code
w.ExitProcess(eax); // Quit the application

This code repeatedly calls w.GetMessage until w.GetMessage returns false (zero) in the EAX register. Th
is a signal from Windows that the user has decided to terminate our amazing program. If w.GetMessage returns
true, then the message loop calls w.TranslateMessage (which mainly processes keystrokes) and then it ca
w.DispatchMessage (which passes the messages on to the window procedure, if appropriate).

The w.GetMessage function transfers control from your program to Windows so Windows can process
strokes, mouse movements, and other events. When such an event occurs (and is directed at your progr
dows returns from w.GetMessage after having filled in the msg variable with the appropriate messag
information. The filter parameters should contain zero (so w.GetMessage will return all messages from the
queue). The second parameter normally contains NULL which means that the program will process all m
sent to any window in the program. If you put a window handle here, then w.GetMessage will only return those
messages directed at the specified window.

On return, the msg parameter contains the message information returned by Windows. Normally, yo
ignore the contents of this message variable, all you really need to do is pass the message on to the w.Trans-

lateMessage and w.DispatchMessage functions. However, just in case you’re interested, here’s the defin
of the w.MSG type in the windows.hhf header file:

type
 MSG: record
 hwnd : dword;
 message : dword;
 wParam : dword;
 lParam : dword;
 time : dword;
 pt : POINT;
 endrecord;

The w.TranslateMessage API function takes messages containing keyboard virtual scan codes and
putes the ASCII/ANSI code associated with that keystroke. By placing this function call in the main m
Page 302

ith a

de
this

proce-

loop as
e OS

ly small)
on pro-
 before
passing loop, Microsoft effectively provides a “hook” allowing you to replace this translation operation w
function of your own choosing. The w.TranslateMessage takes scan codes of the form shift down, shift up, ‘A’
key down, ‘A’ key up, control key down, and control key up and decides whether a virtual key code like the co
for the ‘A’ key should be converted to the character ‘a’, ‘A’, control-A, Alt-A, etc. Normally, you’ll want
default translation to take place, so you’ll leave in the call to w.TranslateMessage. However, by breaking out
the call in this fashion, Windows allows you to replace w.TranslateMessage entirely, or inject some code to
handle a specific keystroke sequence that you want to handle specially within your application.

The w.DispatchMessage API function takes the translated message and calls the appropriate window
dures, passing along the (translated) message. Upon return from w.DispatchMessage, every application window
that has reason to deal with that message will have done so.

At first blush, it might seem weird that Microsoft would even make you write the message processing
part of your main program. After all, the loop simply makes three calls to Win32 API functions; surely th
could bury this code inside the operating system and spare the application’s main program the (admitted
expense of dealing with this operation. However, the main reason for requiring this code in the applicati
gram is explicitly to provide the application with the ability to hook into the message processing loop both
and after the call to w.DispatchMessage.

5.4.5: The Complete Main Program

Here’s the source code for a complete Windows’ main program, collected into one spot:

program main;
#include(“wpa.hhf”) // Abridged version of windows.hhf/w.hhf

storage
hInstance :dword; // Application’s module handle
hwnd :dword; // Main application window handle
msg :w.MSG; // Message data passed in from Windows
wc :w.WNDCLASSEX; // Windows class for main app window

readonly
myAppClassName :string := “MyAppName”;

<< Other declarations and procedures would go here... >>

begin main;

mov(@size(w.WNDCLASSEX), wc.cbSize);
mov(w.CS_HREDRAW | w.CS_VREDRAW, wc.style);
mov(&WndProc, wc.lpfnWndProc);
mov(0, wc.cbClsExtra);
mov(0, wc.cbWndExtra);

w.GetModuleHandle(NULL);
mov(eax, hInstance); // Save in a global variable for future use
mov(eax, wc.hInstance);

mov(w.COLOR_WINDOW+1, wc.hbrBackground);
mov(NULL, wc.lpszMenuName);
mov(myAppClassName, eax);
mov(eax, wc.lpszClassName);
Page 303

e read-
code in

 proce-
the
 value that
rform in
re all the
w.LoadIcon(NULL, val w.IDI_APPLICATION);
mov(eax, wc.hIcon);
mov(eax, wc,hIconSm);

w.LoadCursor(NULL, w.IDC_ARROW);
mov(eax, wc.hCursor);

w.RegisterClass(wc);

w.CreateWindowEx
(
 0, // No specific extended styles
 myAppClassName, // This application’s class name.
 “My First App”, // Window caption
 w.WS_OVERLAPPEDWINDOW, // Draw a normal app window.
 w.CW_USEDEFAULT, // Let Windows choose the initial
 w.CW_USEDEFAULT, // size and position for this window.
 w.CW_USEDEFAULT,
 w.CW_USEDEFAULT,
 NULL, // This is the parent window.
 NULL, // This window has no default menu.
 hInstance, // Application’s handle.
 NULL // We’re not a child window.
);

w.ShowWindow(hwnd, w.SW_SHOWNORMAL);
w.UpdateWindow(hwnd);

forever

w.GetMessage(msg, NULL, 0, 0); // Get a message from Windows
breakif(EAX = 0); // When GetMessage returns zero, time to quit
w.TranslateMessage(msg); // Converts keyboard codes to ASCII
w.DispatchMessage(msg); // Calls the appropriate window procedure

endfor;

mov(msg.wParam, eax); // Get this program’s exit code
w.ExitProcess(eax); // Quit the application

end main;

5.5: The Window Procedure

Since the application’s main program doesn’t call any other functions within the application, someon
ing the source code to a Windows application for the first time may very well wonder how the rest of the
the application executes. As this chapter notes in several places, Windows automatically calls the window
dure whose address appears in the lpfnWndProc field of the window class variable when it needs to send
application a message. Part of the message package that Windows passes to the window procedure is a
specifies the message type. The window procedure interprets this value to determine what activity to pe
response to the message. The window procedure (or subroutines called by the window procedure) is whe
activity takes place in a typical windows application.

The prototype for a window procedure takes the following form:
Page 304

ver,

 named
say,

 win-
 window
instance
edure
indow
cted at a

’s win-

 sending
plication.
in with

ire list
at could

ed, they

ince few
just use a
 a typ-
procedure WndProc(hwnd: dword; uMsg:dword; wParam:dword; lParam:dword);
@stdcall;
@nodisplay;
@nostackalign;

The traditional name for this procedure is WndProc and that’s the name you’ll see most programs use. Howe
you may use any name you like here. All that Windows cares about is that you initialize the lpfnWndProc field
of the window class variable with the address of this procedure prior to registering the window. So if you
this procedure MyWindowProcedure it would work fine as long as you initialized the window class variable (
wc) with its address as follows:

mov(&MyWindowProcedure, wc.lpfnWndProc);

The hwnd parameter is a handle to the window at which this message is explicitly directed. All of the
dows instantiated from the same window class share the same window procedure. This allows a single
procedure to process messages for several different windows. Of course, typically there is only a single
of the main application’s window class (that is, the main application’s window) so your main window proc
typically handles messages for only one window. However, if you create multiple instances of some w
class (e.g., you’re creating a component like a button), you can explicitly test to see if the message is dire
specific instance of that window class by comparing the hwnd parameter against the handle value that w.Cre-

ateWindowEx returns. In this chapter, we’ll assume that there is only one instance of the main application
dow, so we’ll just ignore the hwnd parameter.

The uMsg parameter is an unsigned integer value that specifies the type of the message Windows is
the window procedure. There are, literally, hundreds of different messages that Windows can send an ap
You can find their values in the windows header files by searching for the constant definitions that beg
“WM_” (the WM, obviously, stands for “Windows Message”). There are far too many to present the ent
here, but the following constant declarations provide examples of some common Windows messages th
be sent to your application’s window procedure:

const
 WM_CREATE := $1;
 WM_DESTROY := $2;
 WM_MOVE := $3;
 WM_SIZE := $5;
 WM_ACTIVATE := $6;

 WM_PAINT := $0F;
 WM_CLOSE := $10;

 WM_CUT := $300;
 WM_COPY := $301;
 WM_PASTE := $302;
 WM_CLEAR := $303;
 WM_UNDO := $304;

The important thing to notice is that commonly used message values aren’t necessarily contiguous (inde
can be widely spaced apart) and there are a lot of them. This pretty much precludes using a switch/case state-
ment (or an assembly equivalent - a jump table) because the corresponding jump table would be huge. S
window procedures process more than a few dozen messages, many application’s window procedures
if..else if chain to compare uMsg against the set of messages the window procedure handles; therefore,
ical window procedure often looks somewhat like the following:
Page 305

p pro-

 program
window
 proce-

 linear
s linear
cedures
sually com-
 not too
r using a
 a linear
ocessing
m. How-
r search
procedure WndProc(hwnd: dword; uMsg:dword; wParam:dword; lParam:dword);
@stdcall;
@nodisplay;
@nostackalign;

begin WndProc;

 // uMsg contains the current message Windows is passing along to
 // us. Scan through the "Dispatch" table searching for a handler
 // for this message. If we find one, then call the associated
 // handler procedure. If we don't have a specific handler for this
 // message, then call the default window procedure handler function.

 mov(uMsg, eax);
 if(eax = w.WM_DESTROY) then

 w.PostQuitMessage(0); // Do this to quit the application

 elseif(eax = w.WM_PAINT) then

 << At this point, do whatever needs to be done to draw the window >>

 else

 // If an unhandled message comes along,
 // let the default window handler process the
 // message. Whatever (non-zero) value this function
 // returns is the return result passed on to the
 // event loop.

 w.DefWindowProc(hwnd, uMsg, wParam, lParam);

 endif;

end WndProc;

There are two problems with this approach. The major problem with this approach is that you wind u
cessing all your application’s messages in a single procedure. Although the body of each if statement could, in
theory, call a separate function to handle that specific message, in practice what really happens is the
winds up putting the code for a lot of the messages directly into the window procedure. This makes the
procedure really long and more difficult to read and maintain. A better solution would be to call a separate
dure for each message type.

The second problem with this organization for the window procedure is that it is effectively doing a
search using the uMsg value as the search key. If the window procedure processes a lot of messages, thi
search can have a small impact on the performance of the application. However, since most window pro
don’t process more than a couple dozen messages and the code to handle each of these messages is u
plex (often involving several Win32 API calls, which are slow), the concern about using a linear search is
great. However, if you are processing many, many, different types of messages, you may want to conside
binary search or hash table search to speed things up a bit. We’ll not worry about the problem of using
search in this book; however, the cost of getting to the window procedure and the cost associated with pr
the message is usually so great that it swamps any savings you obtain by using a better search algorith
ever, those looking to speed up their applications in certain circumstances may want to consider a bette
Page 306

mp table

d main-

gh the table
re for that

to handle.
ent this:

eters to

ure should

er
ompar-

t message
 (e.g.,

 and stick
ce of the
algorithm and see if it produces better results. Of course, another alternative is to go ahead and use a ju
(large though it might be) which can transfer control to an appropriate handler in a fixed amount of time.

There are a couple of solutions to the first problem (organizing the code so that it is easier to read an
tain). The most obvious solution, as noted earlier, is to call a procedure within each if..then body. A possibly
better solution, however, is to use a table of message values and procedure addresses and search throu
until the code matches a message value; then the window procedure can call the corresponding procedu
message. This scheme has a couple of big advantages over the if..then..elseif chain. First of all, it allows
you to write a generic window procedure that doesn’t change as you change the set of messages it has
Second, adding new messages to the system is very easy. Here’s the data structures we’ll use to implem

type
 MsgProc_t: procedure(hwnd:dword; wParam:dword; lParam:dword);

 MsgProcPtr_t:
 record

 MessageValue: dword;
 MessageHndlr: MsgProc_t;

 endrecord;

MsgProc_t is the generic prototype for the message handler procedures we’re going to write. The param
this function almost mirror the parameters Windows passes to the window procedure; the uMsg parameter is
missing because, presumably, each different message value invokes a different procedure so the proced
trivially know the message value. MsgProcPtr_t is a record containing two entries: a message number (Messa-

geValue) and a pointer to the message handler procedure (MessageHndlr) to call if the current message numb
matches the first field of this record. The window procedure will loop through an array of these records c
ing the message number passed in by Windows (in uMsg) against the MessageValue field. If a match is made,
then the window procedure calls the function specified by the MessageHndlr field. Here’s what a typical table
(named Dispatch) of these values looks like in HLA:

readonly

 Dispatch: MsgProcPtr_t; @nostorage;

 MsgProcPtr_t
 MsgProcPtr_t:[w.WM_DESTROY, &QuitApplication],
 MsgProcPtr_t:[w.WM_PAINT, &Paint],

 // Insert new message handler records here.

 MsgProcPtr_t:[0, NULL]; // This marks the end of the list.

Each entry in the table consists of a record constant (e.g., MsgProcPtr_t:[w.WM_DESTROY,&QuitApplica-

tion]) containing a message number constant and the address of the procedure to call when the curren
number matches that constant. The end of the list contains zeros (NULL) in both entries
MsgProcPtr_t:[0,NULL]).

To handle a new message in this system, all you have to do is write the message handling procedure
a new entry into the table. No changes are necessary in the window procedure. This makes maintenan
Page 307

 a win-
window procedure very easy. The window procedure itself is fairly straight-forward, here’s an example of
dow procedure that processes the entries in the Dispatch table:

// The window procedure.
//
// This is actually a function that returns a return result in
// EAX. If this function returns zero in EAX, then the event
// loop terminates program execution.

procedure WndProc(hwnd: dword; uMsg:dword; wParam:dword; lParam:dword);
@stdcall;
@nodisplay;
@nostackalign;

begin WndProc;

 // uMsg contains the current message Windows is passing along to
 // us. Scan through the "Dispatch" table searching for a handler
 // for this message. If we find one, then call the associated
 // handler procedure. If we don't have a specific handler for this
 // message, then call the default window procedure handler function.

 mov(uMsg, eax);
 mov(&Dispatch, edx);
 forever

 mov((type MsgProcPtr_t [edx]).MessageHndlr, ecx);
 if(ecx = NULL) then

 // If an unhandled message comes along,
 // let the default window handler process the
 // message. Whatever (non-zero) value this function
 // returns is the return result passed on to the
 // event loop.

 w.DefWindowProc(hwnd, uMsg, wParam, lParam);
 break;

 elseif(eax = (type MsgProcPtr_t [edx]).MessageValue) then

 // If the current message matches one of the values
 // in the message dispatch table, then call the
 // appropriate routine. Note that the routine address
 // is still in ECX from the test above. This code manually
 // pushes the parameters and calls the handler procedure (note
 // that the message handler procedure uses the HLA/Pascal calling
 // sequence, so we must push the actual parameters in the same
 // order as the formal parameters were declared).

 push(hwnd); // (type tMsgProc ecx)(hwnd, wParam, lParam)
 push(wParam); // This calls the associated routine after
 push(lParam); // pushing the necessary parameters.
 call(ecx);

 sub(eax, eax); // Return value for function is zero.
Page 308

g

s
zero.
the
 mes-

mparison
g proce-

A/Pascal

se reg-
e EAX
ote that
s in EAX,
into the
 you (for

erence the

s-
: “What

s pro-
ontinue

 got to

ed
-

LA
 break;

 endif;
 add(@size(MsgProcPtr_t), edx); // Move on to next table entry.

 endfor;

end WndProc;

This code uses EDX to step through the table of MsgProcPtr_t records. This procedure begins by initializin
EDX to point at the first element of the Dispatch array. This code also loads the uMsg parameter into EAX where
the procedure can easily compare it against the MessageValue field pointed at by EDX. A zero routine addres
marks the end of the Dispatch list, so this code first moves the value of that field into ECX and checks for
When the code reaches the end of the Dispatch list without finding a matching message number, it calls
Windows API w.DefWindowProc function that handles default message handling (that is, it handles any
sages that the window procedure doesn’t explicitly handle).

If the window procedure dispatch loop matches the value in EAX with one of the Dispatch table’s message
values, then this code calls the associated procedure. Since the address is already in ECX (from the co
against NULL for the end of the list), this code manually pushes the parameters for the message handlin
dure onto the stack (in the order of their declaration, since the message handling functions using the HL
calling convention) and then calls the handler procedure via the address in ECX.

This routine chose EAX, ECX, and EDX because the Intel ABI (and Windows) allows you to trash the
isters within a procedure call. The Intel ABI also specifies that functions should return 32-bit results in th
register, which is another reason for using EAX - it’s going to get trashed by the return result anyway. N
the message handler procedures must also follow these rules. That is, they are free to disturb the value
ECX, and EDX, but they must preserve any other registers that they modify. Also note that upon entry
message handling procedures, EAX contains the message number. So if having this value is important to
example, if you use the same message handler procedure for two separate messages), then just ref
value in EAX.

Once we have the Dispatch table and the WndProc procedure, all that’s left to do is write the individual me
sage handling procedures and we’ll have a complete Windows application. The question that remains is
applications shall we write?” Well, historically, most programming books (including almost every Window
gramming book) has started off with the venerable “Hello World” program. So it makes perfect sense to c
that fine tradition here.

5.6: Hello World

To create a complete Windows GUI application based on the code we’ve written thus far, we’ve only
add two procedures: QuitApplication and Paint. A minimal Windows GUI application (like HelloWorld) will
have to handle at least two messages: w.WM_DESTROY (which tells the application to destroy the window creat
by the main program and terminate execution) and w.WM_PAINT (which tells the application to draw its main win
dow).

The QuitApplication is a fairly standard procedure; almost every Windows GUI app you write with H
will use the same code. Here is a sample implementation:

// QuitApplication:
//
// This procedure handles the "wm.Destroy" message.
Page 309

o the
 message
r-

main
ass that

fic
and clos-
a dialog

reen.
 and
So
// It tells the application to terminate. This code sends
// the appropriate message to the main program's message loop
// that will cause the application to terminate.

procedure QuitApplication(hwnd: dword; wParam:dword; lParam:dword);
@nodisplay;
begin QuitApplication;

 w.PostQuitMessage(0);

end QuitApplication;

The w.PostQuitMessage API function does just what its name implies - it sends (“posts”) a message t
main message loop that tells the message loop to terminate the program. On the next iteration of the
loop in the main program, the w.GetMessage function will return zero in EAX which tells the application to te
minate (look back at the main program example for details). The parameter you pass to w.PostQuitMessage

winds up in the msg.wParam object in the main program, this is the program’s return code. By convention,
programs return a zero when they successfully terminate. If you wanted to return an error code, you’d p
error code as the parameter to w.PostQuitMessage.

One embellishment you could make to the QuitApplication procedure is to add any application-speci
code needed to clean up the execution state before the program terminates. This could include flushing
ing files, releasing system resources, freeing memory, etc. Another possibility is that you could open up
box and ask the user if they really want to quit the program.

The other procedure you’ll need to supply to have a complete, functional, HelloWorld program is the Paint
procedure. The Paint procedure in our Win32 application is responsible for drawing window data on the sc
Explaining exactly what goes into the Paint procedure is actually the subject of much of the rest of this book
it would be foolish to try and explain everything that Paint must do in the few words available in this section.
rather than try and anticipate questions with a lot of premature explanation, here’s the Paint procedure without
too much ado:

// Paint:
//
// This procedure handles the "wm.Paint" message.
// For this simple "Hello World" application, this
// procedure simply displays "Hello World" centered in the
// application's window.

procedure Paint(hwnd: dword; wParam:dword; lParam:dword); @nodisplay;
var
 hdc: dword; // Handle to video display device context
 ps: w.PAINTSTRUCT; // Used while painting text.
 rect: w.RECT; // Used to invalidate client rectangle.

begin Paint;

 // When Windows requests that we draw the window,
 // fill in the string in the center of the screen.
 // Note that all GDI calls (e.g., w.DrawText) must
 // appear within a BeginPaint..EndPaint pair.

 w.BeginPaint(hwnd, ps);
Page 310

put
ave a
ment in

area
the cli-
utline of

: this is

object).
ll does)

ori-
 mov(eax, hdc);
 w.GetClientRect(hwnd, rect);
 w.DrawText
 (
 hdc,
 "Hello World!",
 -1,
 rect,
 w.DT_SINGLELINE | w.DT_CENTER | w.DT_VCENTER
);

 w.EndPaint(hwnd, ps);

end Paint;

The w.BeginPaint and w.EndPaint procedure calls must bracket all the drawing that takes place in the Paint

procedure. These procedures set up a device context (hdc) that Windows uses to determine where the out
should wind up (typically, the video display, but it could wind up somewhere else like on a printer). We’ll h
lot more to say about these functions in the very next chapter, for now just realize that they’re a require
order to draw on the window.

The w.GetClientRect API function simply returns the x- and y-coordinates of the outline of the client
of the window. The client area of a window is that portion of the window where the application can draw (
ent area, for example, does not include the scroll bars, title bar, and border). This function returns the o
the client area in a w.RECT object (the rect parameter, in this case). The Paint function retrieves this informa-
tion so it can print a string centered within the client area.

The w.DrawText function is what does the real work as far as the nature of this program is concerned
the call that actually displays “Hello World!” within the window. The w.DrawText function uses the following
prototype:

 DrawText: procedure
 (
 hDC :dword;
 lpString :string;
 nCount :dword;
 var lpRect :RECT;
 uFormat :dword
);
 @stdcall;
 @returns("eax");
 @external("__imp__DrawTextA@20");

The hDC parameter is a handle to the device context where w.DrawText is to put the text. In the call to
w.DrawText appearing earlier, the Paint procedure passes in the hdc value returned by w.BeginPaint. The
lpString parameter is a pointer to a zero-terminated sequence of ASCII characters (e.g., an HLA string
The nCount parameter specifies the number of characters to print from the string; if you pass -1 (as this ca
then w.DrawText will display all the characters up to the zero-terminating byte. The lpRect parameter specifies
a pair of (X,Y) coordinates that form a rectangle in the client area; w.DrawText will draw the text within this
rectangular area based on the value of the uFormat parameter. The w.DT_SINGLELINE, w.DT_CENTER, and
w.VCENTER parameters tell w.DrawText to place a single line of text in the window, centered vertically and h
zontally within the rectangle supplied as the lpRect parameter.
Page 311

e that all

raw
t chap-
After the call to w.DrawText, the Paint procedure calls the w.EndPaint API function. This completes the
drawing sequence and it is at this point that Windows actually renders the text on the display device. Not
drawing must take place between the w.BeginPaint and w.EndPaint calls. Additional calls to functions like
w.DrawText are not legal once you call w.EndPaint. There are many additional functions you can use to d
information in the client area of the window; we’ll start taking a look at some of these functions in the nex
ter.

Here’s the complete HelloWorld application:
// HelloWorld.hla:
//
// The Windows "Hello World" Program.

program HelloWorld;
#include("wpa.hhf") // Standard windows stuff.

static
 hInstance: dword; // "Instance Handle" supplied by Windows.

 wc: w.WNDCLASSEX; // Our "window class" data.
 msg: w.MSG; // Windows messages go here.
 hwnd: dword; // Handle to our window.

readonly

 ClassName: string := "HWWinClass"; // Window Class Name
 AppCaption: string := "Hello World Program"; // Caption for Window

// The following data type and DATA declaration
// defines the message handlers for this program.

type
 MsgProc_t: procedure(hwnd:dword; wParam:dword; lParam:dword);

 MsgProcPtr_t:
 record

 MessageValue: dword;
 MessageHndlr: MsgProc_t;

 endrecord;

// The dispatch table:
//
// This table is where you add new messages and message handlers
// to the program. Each entry in the table must be a tMsgProcPtr
// record containing two entries: the message value (a constant,
// typically one of the wm.***** constants found in windows.hhf)
// and a pointer to a "tMsgProc" procedure that will handle the
// message.

readonly

Page 312

 Dispatch: MsgProcPtr_t; @nostorage;

 MsgProcPtr_t
 MsgProcPtr_t:[w.WM_DESTROY, &QuitApplication],
 MsgProcPtr_t:[w.WM_PAINT, &Paint],

 // Insert new message handler records here.

 MsgProcPtr_t:[0, NULL]; // This marks the end of the list.

/**/
/* A P P L I C A T I O N S P E C I F I C C O D E */
/**/

// QuitApplication:
//
// This procedure handles the "wm.Destroy" message.
// It tells the application to terminate. This code sends
// the appropriate message to the main program's message loop
// that will cause the application to terminate.

procedure QuitApplication(hwnd: dword; wParam:dword; lParam:dword);
@nodisplay;
begin QuitApplication;

 w.PostQuitMessage(0);

end QuitApplication;

// Paint:
//
// This procedure handles the "wm.Paint" message.
// For this simple "Hello World" application, this
// procedure simply displays "Hello World" centered in the
// application's window.

procedure Paint(hwnd: dword; wParam:dword; lParam:dword); @nodisplay;
var
 hdc: dword; // Handle to video display device context
 ps: w.PAINTSTRUCT; // Used while painting text.
 rect: w.RECT; // Used to invalidate client rectangle.

begin Paint;

 // When Windows requests that we draw the window,
 // fill in the string in the center of the screen.
 // Note that all GDI calls (e.g., w.DrawText) must
 // appear within a BeginPaint..EndPaint pair.

 w.BeginPaint(hwnd, ps);

 mov(eax, hdc);
 w.GetClientRect(hwnd, rect);
Page 313

 w.DrawText
 (
 hdc,
 "Hello World!",
 -1,
 rect,
 w.DT_SINGLELINE | w.DT_CENTER | w.DT_VCENTER
);

 w.EndPaint(hwnd, ps);

end Paint;

/**/
/* End of Application Specific Code */
/**/

// The window procedure. Since this gets called directly from
// windows we need to explicitly reverse the parameters (compared
// to the standard STDCALL declaration) in order to make HLA's
// Pascal calling convention compatible with Windows.
//
// This is actually a function that returns a return result in
// EAX. If this function returns zero in EAX, then the event
// loop terminates program execution.

procedure WndProc(hwnd:dword; uMsg:uns32; wParam:dword; lParam:dword);
 @stdcall;
 @nodisplay;
 @noalignstack;

begin WndProc;

 // uMsg contains the current message Windows is passing along to
 // us. Scan through the "Dispatch" table searching for a handler
 // for this message. If we find one, then call the associated
 // handler procedure. If we don't have a specific handler for this
 // message, then call the default window procedure handler function.

 mov(uMsg, eax);
 mov(&Dispatch, edx);
 forever

 mov((type MsgProcPtr_t [edx]).MessageHndlr, ecx);
 if(ecx = 0) then

 // If an unhandled message comes along,
 // let the default window handler process the
 // message. Whatever (non-zero) value this function
 // returns is the return result passed on to the
 // event loop.

 w.DefWindowProc(hwnd, uMsg, wParam, lParam);
 exit WndProc;
Page 314

 elseif(eax = (type MsgProcPtr_t [edx]).MessageValue) then

 // If the current message matches one of the values
 // in the message dispatch table, then call the
 // appropriate routine. Note that the routine address
 // is still in ECX from the test above.

 push(hwnd); // (type tMsgProc ecx)(hwnd, wParam, lParam)
 push(wParam); // This calls the associated routine after
 push(lParam); // pushing the necessary parameters.
 call(ecx);

 sub(eax, eax); // Return value for function is zero.
 break;

 endif;
 add(@size(MsgProcPtr_t), edx);

 endfor;

end WndProc;

// Here's the main program for the application.

begin HelloWorld;

 // Set up the window class (wc) object:

 mov(@size(w.WNDCLASSEX), wc.cbSize);
 mov(w.CS_HREDRAW | w.CS_VREDRAW, wc.style);
 mov(&WndProc, wc.lpfnWndProc);
 mov(NULL, wc.cbClsExtra);
 mov(NULL, wc.cbWndExtra);
 mov(w.COLOR_WINDOW+1, wc.hbrBackground);
 mov(NULL, wc.lpszMenuName);
 mov(ClassName, wc.lpszClassName);

 // Get this process' handle:

 w.GetModuleHandle(NULL);
 mov(eax, hInstance);
 mov(eax, wc.hInstance);

 // Get the icons and cursor for this application:

 w.LoadIcon(NULL, val w.IDI_APPLICATION);
 mov(eax, wc.hIcon);
 mov(eax, wc.hIconSm);

 w.LoadCursor(NULL, val w.IDC_ARROW);
 mov(eax, wc.hCursor);

Page 315

ion of
 // Okay, register this window with Windows so it
 // will start passing messages our way. Once this
 // is accomplished, create the window and display it.

 w.RegisterClassEx(wc);

 w.CreateWindowEx
 (
 NULL,
 ClassName,
 AppCaption,
 w.WS_OVERLAPPEDWINDOW,
 w.CW_USEDEFAULT,
 w.CW_USEDEFAULT,
 w.CW_USEDEFAULT,
 w.CW_USEDEFAULT,
 NULL,
 NULL,
 hInstance,
 NULL
);
 mov(eax, hwnd);

 w.ShowWindow(hwnd, w.SW_SHOWNORMAL);
 w.UpdateWindow(hwnd);

 // Here's the event loop that processes messages
 // sent to our window. On return from GetMessage,
 // break if EAX contains false and then quit the
 // program.

 forever

 w.GetMessage(msg, NULL, 0, 0);
 breakif(!eax);
 w.TranslateMessage(msg);
 w.DispatchMessage(msg);

 endfor;

 // The message handling inside Windows has stored
 // the program's return code in the wParam field
 // of the message. Extract this and return it
 // as the program's return code.

 mov(msg.wParam, eax);
 w.ExitProcess(eax);

end HelloWorld;

5.7: Compiling and Running HelloWorld From the Command Line

The hla.exe command-line program automatically runs several different programs during the compilat
an HLA source file. It runs the HLA compiler, proper (hlaparse.exe), it runs the ml.exe (MASM, the Microsoft
Page 316

o

appli-
 com-

got to

te
de this

you
ur
tion’s

and
ample.
cations.
k; with

uild the
World”
bility to
plica-

of

u

ns
Macro Assembler) program to assemble the .asm file that HLA produces4, it optionally runs the rc.exe (resource
compiler) program if you specify any .rc files on the HLA command line, and it runs the link.exe program to link
all the object files together to produce an executable. The hla.exe program is so flexible, it is all you will need t

use for small projects5. However, there is one issue that you must consider when compiling GUI Windows
cations with HLA: by default, HLA generates console applications, not Windows applications. Since we’re
piling actual Windows applications, we need to tell HLA about this.

Telling HLA to compile Windows applications rather than console applications is very easy. All you’ve

do is include the “-w” command line option as follows6:

hla -w helloWorld.hla

This command line option passes some information to the link.exe program so that it generates appropria
object code for a Windows app versus a console app. That’s all there is to it! However, don’t forget to inclu
option or your application may misbehave.

To run the helloWorld.exe application, you can either type “helloWorld” at the command line prompt or
can double-click on the helloWorld.exe application’s icon. This should bring up a window in the middle of yo
display screen heralding the phrase “Hello World!” You can quit the program by clicking on the applica
close box in the upper right hand corner of the window.

Although it is a relatively trivial matter to compile the “Hello World” program directly from the comm
line, this book will always provide a makefile that you can use to completely compile any full program ex
That way, you can always use the same command to compile trivial as well as complex Windows appli
The accompanying CD-ROM contains all the source code for each major project appearing in this boo
each project appearing in its own subdirectory and each subdirectory containing a makefile that will b
executable for that project. Following the plan from Chapters one and three, the makefile for the “Hello
application provide several options that interface with RadASM (see the next section) and provide the a
do several different types of compiles from the command line. Here’s a makefile for the “Hello World” ap
tion:

build: HelloWorld.exe

buildall: clean HelloWorld.exe

compilerc:
 echo No Resource Files to Process!

syntax:
 hla -s HelloWorld.hla

run: HelloWorld.exe
 HelloWorld

clean:
 delete /F /Q tmp

4. HLA can produce code for other assemblers like TASM, FASM, and Gas. In this book, however, we’ll assume the use
MASM.

5. For larger projects, you will probably want to consider using a “make” program like Microsoft’s NMAKE.EXE in order to speed p the
development process and ease maintenance of your code. This text will generally avoid the use of makefiles so that there is one less thing you
have to be concerned about.
6. This book assumes that you’ve properly installed HLA and you’ve been able to compile small console-mode applicatio

like a text-based “Hello World” program. See the HLA documentation for more details on setting up HLA if you haven’t
done this already.
Page 317

dall”

eems

t more
 other
minimize,
hat they
 “Hello
em like
mmer.
nds of

oject)

ver
, we’ll
ed
 delete *.exe
 delete *.obj
 delete *.link
 delete *.inc
 delete *.asm
 delete *.map

HelloWorld.obj: HelloWorld.hla wpa.hhf
 hla -p:tmp -w -c HelloWorld

HelloWorld.exe: HelloWorld.hla wpa.hhf
 hla -p:tmp -w HelloWorld

By default (that is, if you just type “make” at the command line) this makefile will build the executable for the
HelloWorld.exe program, if it is currently out of date. You may also specify command line options like “buil
or “clean” to do other operations. See Chapters one and three for more details on these options.

Whenever you consider the text-based version of the HLA “Hello World” program, this GUI version s
somewhat ridiculous. After all, the text-based version only requires the following HLA code:

program helloWorldText;
#include(“stdlib.hhf”)
begin helloWorldText;

stdout.put(“Hello World!” nl);

end helloWorldText;

So why must the GUI version be so much larger? Well, for starters, the GUI version does a whole lo
than the text version. The text version prints “Hello World!” and that’s about it. The GUI version, on the
hand, opens up a window that you can move around on the screen, resize, open up a system menu,
maximize, and close. Today, people have been using Windows and Macintosh applications for so long t
take the effort needed to write such “trivial” code for granted. Rest assured, doing what this simple GUI
World” application does would be a tremendous amount of work when running under an operating syst
Microsoft’s old DOS system where all the graphics manipulation was totally up to the application progra
What the GUI “Hello World” application accomplishes in fewer than 300 lines of code would take thousa
lines of code under an OS like DOS.

5.8: Compiling and Running HelloWorld from RadASM

The HelloWorld directory on the accompanying CD-ROM contains the RadASM “.rap” (RadAsm Pr
file and the makefile that RadASM can use to build this file. Just load HelloWorld.rap into RadASM and select
“Build” or “Run” from the “Make” menu.

5.9: Goodbye World!

Well, we’ve just about beat the HelloWorld program into the ground. But that’s good. Because you’ll disco
in the very next chapter than most Windows programs we write will not be written from scratch. Instead
take some other program (usually HelloWorld) and tweak it according to our needs. So if you just skimm
Page 318

k and
through this material and said “uh-huh” and “oh-yeah” but you didn’t really follow everything here, go bac
read it again (and again, and again, and...). This chapter is truly the basis of everything that follows.
Page 319

