Procedures: Advanced Topics Chapter 12

The last chapter described how to create procedures, pass parameters, and allocate
and access local variables. This chapter picks up where that one left off and describes how
to access non-local variables in other procedures, pass procedures as parameters, and
implement some user-defined control structures.

12.0 Chapter Overview

This chapter completes the discussion of procedures, parameters, and local variables
begun in the previous chapter. This chapter describes how block structured languages like
Pascal, Modula-2, Algol, and Ada access local and non-local variables. This chapter also
describes how to implement a user-defined control structure, the iterator. Most of the
material in this chapter is of interest to compiler writers and those who want to learn how
compilers generate code for certain types of program constructs. Few pure assembly lan-
guage programs will use the techniques this chapter describes. Therefore, none of the
material in this chapter is particularly important to those who are just learning assembly
language. However, if you are going to write a compiler, or you want to learn how compil-
ers generate code so you can write efficient HLL programs, you will want to learn the
material in this chapter sooner or later.

This chapter begins by discussing the notion of scope and how HLLs like Pascal access
variables in nested procedures. The first section discusses the concept of lexical nesting
and the use of static links and displays to access non-local variables. Next, this chapter
discusses how to pass variables at different lex levels as parameters. The third section dis-
cusses how to pass parameters of one procedure as parameters to another procedure. The
fourth major topic this chapter covers is passing procedures as parameters. This chapter
concludes with a discussion of iterators, a user-defined control structure.

This chapter assumes a familiarity with a block structured language like Pascal or
Ada. If your only HLL experience is with a non-block structured language like C, C++,
BASIC, or FORTRAN, some of the concepts in this chapter may be completely new and
you will have trouble understanding them. Any introductory text on Pascal or Ada will
help explain any concept you don’t understand that this chapter assumes is a prerequisite.

12.1 Lexical Nesting, Static Links, and Displays

In block structured languages like Pascal® it is possible to nest procedures and func-
tions. Nesting one procedure within another limits the access to the nested procedure; you
cannot access the nested procedure from outside the enclosing procedure. Likewise, vari-
ables you declare within a procedure are visible inside that procedure and to all proce-
dures nested within that procedurez. This is the standard block structured language
notion of scope that should be quite familiar to anyone who has written Pascal or Ada pro-
grams.

There is a good deal of complexity hidden behind the concept of scope, or lexical nest-
ing, in a block structured language. While accessing a local variable in the current activa-
tion record is efficient, accessing global variables in a block structured language can be
very inefficient. This section will describe how a HLL like Pascal deals with non-local
identifiers and how to access global variables and call non-local procedures and functions.

1. Note that C and C++ are not block structured languages. Other block structured languages include Algol, Ada,
and Modula-2.
2. Subject, of course, to the limitation that you not reuse the identifier within the nested procedure.

Page 639

Chapter 12

1211

Scope

Scope in most high level languages is a static, or compile-time concept®. Scope is the
notion of when a name is visible, or accessible, within a program. This ability to hide
names is useful in a program because it is often convenient to reuse certain (non-descrip-
tive) names. The i variable used to control most for loops in high level languages is a per-
fect example. Throughout this chapter you’ve seen equates like xyz_i, xyz_j, etc. The reason
for choosing such names is that MASM doesn’t support the same notion of scoped names
as high level languages. Fortunately, MASM 6.x and later does support scoped names.

By default, MASM 6.x treats statement labels (those with a colon after them) as local
to a procedure. That is, you may only reference such labels within the procedure in which
they are declared. This is true even if you nest one procedure inside another. Fortunately, there
is no good reason why anyone would want to nest procedures in a MASM program.

Having local labels within a procedure is nice. It allows you to reuse statement labels
(e.g., loop labels and such) without worrying about name conflicts with other procedures.
Sometimes, however, you may want to turn off the scoping of names in a procedure; a
good example is when you have a case statement whose jump table appears outside the
procedure. If the case statement labels are local to the procedure, they will not be visible
outside the procedure and you cannot use them in the case statement jump table (see
“CASE Statements” on page 525). There are two ways you can turn off the scoping of
labels in MASM 6.x. The first way is to include the statement in your program:

option noscoped

This will turn off variable scoping from that point forward in your program’s source file.
You can turn scoping back on with a statement of the form

option scoped
By placing these statements around your procedure you can selectively control scoping.

Another way to control the scoping of individual names is to place a double colon
(“:) after a label. This informs the assembler that this particular name should be global to
the enclosing procedure.

MASM, like the C programming language, supports three levels of scope: public, glo-
bal (or static), and local. Local symbols are visible only within the procedure they are
defined. Global symbols are accessible throughout a source file, but are not visible in other
program modules. Public symbols are visible throughout a program, across modules.
MASM uses the following default scoping rules:

= By default, statement labels appearing in a procedure are local to that
procedure.

= By default, all procedure names are public.

= By default, most other symbols are global.

Note that these rules apply to MASM 6.x only. Other assemblers and earlier versions of
MASM follow different rules.

Overriding the default on the first rule above is easy — either use the option noscoped
statement or use a double colon to make a label global. You should be aware, though, that
you cannot make a local label public using the public or externdef directives. You must
make the symbol global (using either technique) before you make it public.

Having all procedure names public by default usually isn’t much of a problem. How-
ever, it might turn out that you want to use the same (local) procedure name in several dif-
ferent modules. If MASM automatically makes such names public, the linker will give you
an error because there are multiple public procedures with the same name. You can turn
on and off this default action using the following statements:

option proc: private ; procedures are gl obal

3. There are languages that support dynamic, or run-time, scope; this text will not consider such languages.

Page 640

Procedures: Advanced Topics

One:

Two:

locals in Two: J, Parm
Globals in Two: I, Entry, One

Locals in One: Entry, I, J, Two

Figure 12.1 Identifier Scope
option proc: export ; procedures are public

Note that some debuggers only provide symbolic information if a procedure’s name is
public. This is why MASM 6.x defaults to public names. This problem does not exist with
CodeView; so you can use whichever default is most convenient. Of course, if you elect to
keep procedure names private (global only), then you will need to use the public or extern-
def directive to make desired procedure names public.

This discussion of local, global, and public symbols applies mainly to statement and
procedure labels. It does not apply to variables you’ve declared in your data segment,
equates, macros, typedefs, or most other symbols. Such symbols are always global regard-
less of where you define them. The only way to make them public is to specify their names
in a public or externdef directive.

There is a way to declare parameter names and local variables, allocated on the stack,
such that their names are local to a given procedure. See the proc directive in the MASM
reference manual for details.

The scope of a name limits its visibility within a program. That is, a program has
access to a variable name only within that name’s scope. Outside the scope, the program
cannot access that name. Many programming languages, like Pascal and C++, allow you
to reuse identifiers if the scopes of those multiple uses do not overlap. As you’ve seen,
MASM provides some minimal scoping features for statement labels. There is, however,
another issue related to scope: address binding and variable lifetime. Address binding is the
process of associating a memory address with a variable name. Variable lifetime is that
portion of a program’s execution during which a memory location is bound to a variable.
Consider the following Pascal procedures:

procedure One(Entry:integer);

var
i,j:integer;
procedure Two(Parm i nteger);
var j:integer;
begi n
for j:=0to 5 dowiteln(i+);
if Parm< 10 then One(Parnmtl);
end;
begi n {ne}
for i :=1to 5 do Two(Entry);
end;

Figure 12.1 shows the scope of identifiers One, Two, Entry, i, j, and Parm.
The local variable j in Two masks the identifier j in procedure One while inside Two.

Page 641

Chapter 12

12.1.2

Unit Activation, Address Binding, and Variable Lifetime

Unit activation is the process of calling a procedure or function. The combination of
an activation record and some executing code is considered an instance of a routine. When
unit activation occurs a routine binds machine addresses to its local variables. Address
binding (for local variables) occurs when the routine adjusts the stack pointer to make
room for the local variables. The lifetime of those variables is from that point until the rou-
tine destroys the activation record eliminating the local variable storage.

Although scope limits the visibility of a name to a certain section of code and does not
allow duplicate names within the same scope, this does not mean that there is only one
address bound to a name. It is quite possible to have several addresses bound to the same
name at the same time. Consider a recursive procedure call. On each activation the proce-
dure builds a new activation record. Since the previous instance still exists, there are now
two activation records on the stack containing local variables for that procedure. As addi-
tional recursive activations occur, the system builds more activation records each with an
address bound to the same name. To resolve the possible ambiguity (which address do
you access when operating on the variable?), the system always manipulates the variable
in the most recent activation record.

Note that procedures One and Two in the previous section are indirectly recursive. That
is, they both call routines which, in turn, call themselves. Assuming the parameter to One
is less than 10 on the initial call, this code will generate multiple activation records (and,
therefore, multiple copies of the local variables) on the stack. For example, were you to
issue the call One(9), the stack would look like Figure 12.2 upon first encountering the end
associated with the procedure Two.

As you can see, there are several copies of | and J on the stack at this point. Procedure
Two (the currently executing routine) would access J in the most recent activation record
that is at the bottom of Figure 12.2. The previous instance of Two will only access the vari-
able J in its activation record when the current instance returns to One and then back to
Two.

The lifetime of a variable’s instance is from the point of activation record creation to
the point of activation record destruction. Note that the first instance of J above (the one at
the top of the diagram above) has the longest lifetime and that the lifetimes of all instances
of J overlap.

12.1.3

Page 642

Static Links

Pascal will allow procedure Two access to | in procedure One. However, when there is
the possibility of recursion there may be several instances of i on the stack. Pascal, of
course, will only let procedure Two access the most recent instance of i. In the stack dia-
gram in Figure 12.2, this corresponds to the value of i in the activation record that begins
with “One(9+1) parameter.” The only problem is how do you know where to find the activation
record containing i?

A quick, but poorly thought out answer, is to simply index backwards into the stack.
After all, you can easily see in the diagram above that i is at offset eight from Two’s activa-
tion record. Unfortunately, this is not always the case. Assume that procedure Three also
calls procedure Two and the following statement appears within procedure One:

If (Entry <5) then Three(Entry*2) el se Two(Entry);

With this statement in place, it’s quite possible to have two different stack frames upon
entry into procedure Two: one with the activation record for procedure Three sandwiched
between One and Two’s activation records and one with the activation records for proce-
dures One and Two adjacent to one another. Clearly a fixed offset from Two’s activation
record will not always point at the i variable on One’s most recent activation record.

Procedures: Advanced Topics

Previous Stack Contents

9
One(9) parameter

Return Address

Saved BP Value

'I" Local Variable One Activation Record

"J" Local Variable

9 Two(9) parameter

Return Address

Saved BP Value Two Activation Record

"J" Local Variable

10 One(9+1) parameter

Return Address

Saved BP Value One Activation Record

"I" Local Variable

"J" Local Variable
1

fa}

Return Address

Two(9+1) parameter

Saved BP Value Two Activation Record

"J" Local Variable

Figure 12.2 Indirect Recursion

The astute reader might notice that the saved bp value in Two’s activation record
points at the caller’s activation record. You might think you could use this as a pointer to
One’s activation record. But this scheme fails for the same reason the fixed offset technique
fails. Bp’s old value, the dynamic link, points at the caller’s activation record. Since the
caller isn’t necessarily the enclosing procedure the dynamic link might not point at the
enclosing procedure’s activation record.

What is really needed is a pointer to the enclosing procedure’s activation record.
Many compilers for block structured languages create such a pointer, the static link. Con-
sider the following Pascal code:

procedure Parent;
var i,j:integer;
procedure Chil di;

var j:integer;
begi n

for j
end {Childil};

procedure Chil d2;
var i:integer;
begi n

0to 2 dowiteln(i);

for i
end {Child2};

0to 1l do hildi,

Page 643

Chapter 12

Previous Stack Contents

Activation record for Parent

Activation record for Child2

Activation record for Child1

| SP

Figure 12.3 Activation Records after Several Nested Calls

begi n {Parent}

Chi | d2;
Chi | d1;

end;

Just after entering Child1 for the first time, the stack would look like Figure 12.3. When
Child1 attempts to access the variable i from Parent, it will need a pointer, the static link, to
Parent’s activation record. Unfortunately, there is no way for Child1, upon entry, to figure
out on it’s own where Parent’s activation record lies in memory. It will be necessary for the
caller (Child2 in this example) to pass the static link to Child1. In general, the callee can treat
the static link as just another parameter; usually pushed on the stack immediately before
executing the call instruction.

To fully understand how to pass static links from call to call, you must first under-
stand the concept of a lexical level. Lexical levels in Pascal correspond to the static nesting
levels of procedures and functions. Most compiler writers specify lex level zero as the
main program. That is, all symbols you declare in your main program exist at lex level
zero. Procedure and function names appearing in your main program define lex level one,
no matter how many procedures or functions appear in the main program. They all begin a new
copy of lex level one. For each level of nesting, Pascal introduces a new lex level.
Figure 12.4 shows this.

During execution, a program may only access variables at a lex level less than or equal to
the level of the current routine. Furthermore, only one set of values at any given lex level
are accessible at any one time* and those values are always in the most recent activation
record at that lex level.

Before worrying about how to access non-local variables using a static link, you need
to figure out how to pass the static link as a parameter. When passing the static link as a
parameter to a program unit (procedure or function), there are three types of calling
seqguences to worry about:

= Aprogram unit calls a child procedure or function. If the current lex level
is n, then a child procedure or function is at lex level n+1 and is local to

4. There is one exception. If you have a pointer to a variable and the pointer remains accessible, you can access the
data it points at even if the variable actually holding that data is inaccessible. Of course, in (standard) Pascal you
cannot take the address of a local variable and put it into a pointer. However, certain dialects of Pascal (e.g.,
Turbo) and other block structured languages will allow this operation.

Page 644

Procedures: Advanced Topics

| | I:l Lex Level Zero

I:l Lex Level One

I:l Lex Level Two

Note: Each rectangle
represents a procedure
or function.

Figure 12.4 Procedure Schematic Showing Lexical Levels

Previous Stack Contents

Parameters

Static Link

Return Address

Dynamic Link (Old BP)

Local variables

Any Registers Saved on Stack

Figure 12.5 Generic Activation Record

the current program unit. Note that most block structured languages do
not allow calling procedures or functions at lex levels greater than n+1.

= A program unit calls a peer procedure or function. A peer procedure or
function is one at the same lexical level as the current caller and a single
program unit encloses both program units.

= A program unit calls an ancestor procedure or function. An ancestor unit
is either the parent unit, a parent of an ancestor unit, or a peer of an ances-
tor unit.

Calling sequences for the first two types of calls above are very simple. For the sake of this
example, assume the activation record for these procedures takes the generic form in
Figure 12.5.

When a parent procedure or function calls a child program unit, the static link is noth-
ing more than the value in the bp register immediately prior to the call. Therefore, to pass
the static link to the child unit, just push bp before executing the call instruction:

Page 645

Chapter 12

Lex Level 0

Lex Level 1

Lex Level 2 Eac h box represents an
activation record.

Lex Level 3

Lex Level 3 Each arror represents
a static link.

Lex Level 4

Lex Level 5

ERILEXIRIE

Lex Level 5

Lex Level 5

Figure 12.6 Static Links

Page 646

<Push Gt her Paraneters onto the stack>
push bp
call Chi | duni t

Of course the child unit can process the static link off the stack just like any other parame-
ter. In this case, that the static and dynamic links are exactly the same. In general, how-
ever, this is not true.

If a program unit calls a peer procedure or function, the current value in bp is not the
static link. It is a pointer to the caller’s local variables and the peer procedure cannot
access those variables. However, as peers, the caller and callee share the same parent pro-
gram unit, so the caller can simply push a copy of its static link onto the stack before call-
ing the peer procedure or function. The following code will do this, assuming all
procedures and functions are near:

<Push Gther Paraneters onto the Stack>
push [bp+4] ;Push static link onto stk.
call Peer Uni t

If the procedure or function is far, the static link would be two bytes farther up the stack,
so you would need to use the following code:

<Push Gther Paraneters onto the Stack>
push [bp+6] ; Push static link onto stk.
call Peer Uni t

Calling an ancestor is a little more complex. If you are currently at lex level n and you
wish to call an ancestor at lex level m (m < n), you will need to traverse the list of static
links to find the desired activation record. The static links form a list of activation records.
By following this chain of activation records until it ends, you can step through the most
recent activation records of all the enclosing procedures and functions of a particular pro-
gram unit. The stack diagram in Figure 12.6 shows the static links for a sequence of proce-
dure calls statically nested five lex levels deep.

If the program unit currently executing at lex level five wishes to call a procedure at
lex level three, it must push a static link to the most recently activated program unit at lex
level two. In order to find this static link you will have to traverse the chain of static links.
If you are at lex level n and you want to call a procedure at lex level m you will have to
traverse (n-m)+1 static links. The code to accomplish this is

Procedures: Advanced Topics

Qurrent lex level is 5 This code |locates the static link for,
and then calls a procedure at lex level 2. Assune all calls are
near:

<Push necessary paranet er s>

nov bx, [bp+4] ;Traverse static link to LL 4.
nov bx, ss:[bx+4] ;To Lex Level 3.

nov bx, ss:[bx+4] ;To Lex Level 2.

push ss: [bx+4] ;Ptr to nost recent LL1 AR
cal l ProcAt LL2

Note the ss: prefix in the instructions above. Remember, the activation records are all in
the stack segment and bx indexes the data segment by default.

12.1.4 Accessing Non-Local Variables Using Static Links

In order to access a non-local variable, you must traverse the chain of static links until
you get a pointer to the desired activation record. This operation is similar to locating the
static link for a procedure call outlined in the previous section, except you traverse only
n-m static links rather than (n-m)+1 links to obtain a pointer to the appropriate activation
record. Consider the following Pascal code:

procedure Quter;
var i:integer;

procedure M ddl e;
var j:integer;

procedure | nner;
var Kk:integer;
begi n

k :=3;
writeln(i+j +k);

end;
begi n {m ddl e}

j =2
witeln(i+);
I nner;
end; {m ddl e}
begin {Quter}
=1
M ddl e;
end; {Quter}

The Inner procedure accesses global variables at lex level n-1 and n-2 (where n is the lex
level of the Inner procedure). The Middle procedure accesses a single global variable at lex
level m-1 (where m is the lex level of procedure Middle). The following assembly language
code could implement these three procedures:

Quter proc near
push bp
nov bp, sp
sub sp, 2 ; Make roomfor I.
nov word ptr [bp-2],1 ;Set | to one.
push bp ;Static link for Mddle.
cal l M ddl e
nov sp, bp ; Renove | ocal vari abl es.
pop bp S
ret 2 ; Remove static link on ret.
Qut er endp
M ddl e proc near

Page 647

Chapter 12

push bp ; Save dynam c |ink

nov bp, sp ; Set up activation record.

sub sp, 2 ; Make roomfor J.

nov word ptr [bp-2],2 ;) J =2

nov bx, [bp+4] ;CGet static link to prev LL.

nov ax, ss:[bx-2] ;CGet |'s val ue.

add ax, [bp-2] ;Add to J and then

puti ; print the sum

put cr

push bp ;Static link for Inner.

cal | I nner

nov sp, bp

pop bp

ret 2 ; Remove static link on RET.
M ddl e endp
I nner proc near

push bp ; Save dynam c |ink

nov bp, sp ; Set up activation record.

sub sp, 2 ; Make roomfor K

nov word ptr [bp-2],2 ;K= 3;

nov bx, [bp+4] ;CGet static link to prev LL.

nov ax, ss:[bx-2] ;Get J's val ue.

add ax, [bp-2] ;Add to K

nov bx, ss:[bx+4] ;CGet ptr to Quter’s Act Rec.

add ax, ss:[bx-2] ;Add in I's value and then

puti ; print the sum

put cr

nov sp, bp

pop bp

ret 2 ; Remove static link on RET.
I nner endp

As you can see, accessing global variables can be very inefficient®.

Note that as the difference between the activation records increases, it becomes less
and less efficient to access global variables. Accessing global variables in the previous acti-
vation record requires only one additional instruction per access, at two lex levels you
need two additional instructions, etc. If you analyze a large number of Pascal programs,
you will find that most of them do not nest procedures and functions and in the ones
where there are nested program units, they rarely access global variables. There is one
major exception, however. Although Pascal procedures and functions rarely access local
variables inside other procedures and functions, they frequently access global variables
declared in the main program. Since such variables appear at lex level zero, access to such
variables would be as inefficient as possible when using the static links. To solve this
minor problem, most 80x86 based block structured languages allocate variables at lex
level zero directly in the data segment and access them directly.

12.1.5

The Display

After reading the previous section you might get the idea that one should never use
non-local variables, or limit non-local accesses to those variables declared at lex level zero.
After all, it’s often easy enough to put all shared variables at lex level zero. If you are
designing a programming language, you can adopt the C language designer’s philosophy
and simply not provide block structure. Such compromises turn out to be unnecessary.
There is a data structure, the display, that provides efficient access to any set of non-local
variables.

5. Indeed, perhaps one of the main reasons the C programming language is not block structured is because the
language designers wanted to avoid inefficient access to non-local variables.

Page 648

Procedures: Advanced Topics

Lex Level 0

Lex Level 1

Display Lex Level 2

Lex Level 3

Lex Level 3

1\

Lex Level 4

O WNEO

?27?77? Lex Level 5

Lex Level 5

Lex Level 5

Figure 12.7 The Display

A display is simply an array of pointers to activation records. Display[0] contains a
pointer to the most recent activation record for lex level zero, Display[1] contains a pointer
to the most recent activation record for lex level one, and so on. Assuming you’ve main-
tained the Display array in the current data segment (always a good place to keep it) it only
takes two instructions to access any non-local variable. Pictorially, the display works as
shown in Figure 12.7.

Note that the entries in the display always point at the most recent activation record for a
procedure at the given lex level. If there is no active activation record for a particular lex
level (e.g., lex level six above), then the entry in the display contains garbage.

The maximum lexical nesting level in your program determines how many elements
there must be in the display. Most programs have only three or four nested procedures (if
that many) so the display is usually quite small. Generally, you will rarely require more
than 10 or so elements in the display.

Another advantage to using a display is that each individual procedure can maintain
the display information itself, the caller need not get involved. When using static links the
calling code has to compute and pass the appropriate static link to a procedure. Not only
is this slow, but the code to do this must appear before every call. If your program uses a
display, the callee, rather than the caller, maintains the display so you only need one copy
of the code per procedure. Furthermore, as the next example shows, the code to handle
the display is short and fast.

Maintaining the display is very easy. Upon initial entry into a procedure you must
first save the contents of the display array at the current lex level and then store the
pointer to the current activation record into that same spot. Accessing a non-local variable
requires only two instructions, one to load an element of the display into a register and a
second to access the variable. The following code implements the Outer, Middle, and Inner
procedures from the static link examples.

; Assume Quter is at lex level 1, Mddle is at lex level 2, and
Inner is at lex level 3. Keep in mnd that each entry in the

; display is two bytes. Presumably, the variable Display is defined
in the data segment.

Quter proc near
push bp
nmov bp, sp
push D spl ay[2] ; Save current Display Entry
sub sp, 2 ; Make roomfor |I.

Page 649

Chapter 12

nov word ptr [bp-4],1 ;Set | to one.
cal | M ddl e
add sp, 2 ; Renove | ocal vari abl es
pop D spl ay[2] ; Restore previous val ue.
pop bp
ret
Qut er endp
M ddl e proc near
push bp ; Save dynam c |ink.
nov bp, sp ; Set up our activation
record.
push D spl ay[4] ; Save ol d Display val ue.
sub sp, 2 ; Make roomfor J.
nov word ptr [bp-2],2 ;J =2
nov bx, Display[2] ;Get static link to prev LL.
nov ax, ss:[bx-4] ;CGet |'s val ue.
add ax, [bp-2] ;Add to J and then
puti ; print the sum
put cr
cal I nner
add sp, 2 ; Rermove | ocal vari abl e.
pop D spl ay[4] ;Restore old D splay val ue.
pop bp
ret
M ddl e endp
I nner proc near
push bp ; Save dynam c |ink
nov bp, sp ; Set up activation record.
push D spl ay[6] ; Save ol d display val ue
sub sp, 2 ; Make room for K
nov word ptr [bp-2],2 K= 3;
nov bx, Display[4] ;Get static link to prev LL.
nov ax, ss:[bx-4] ;Get J's val ue.
add ax, [bp-2] ;Add to K
nov bx, Display[2] ;CGet ptr to Quter’s Act Rec.
add ax, ss:[bx-4] ;Add in I's value and then
puti ; print the sum
put cr
add sp, 2
pop D spl ay [6]
pop bp
ret
I nner endp

Although this code doesn’t look particularly better than the former code, using a display
is often much more efficient than using static links.

12.1.6

Page 650

The 80286 ENTER and LEAVE Instructions

When designing the 80286, Intel’s CPU designers decided to add two instructions to
help maintain displays. Unfortunately, although their design works, is very general, and
only requires data in the stack segment, it is very slow; much slower than using the tech-
niques in the previous section. Although many non-optimizing compilers use these
instructions, the best compilers avoid using them, if possible.

The leave instruction is very simple to understand. It performs the same operation as
the two instructions:

nov sp, bp

pop bp
Therefore, you may use the instruction for the standard procedure exit code if you have an
80286 or later microprocessor. On an 80386 or earlier processor, the leave instruction is

Procedures: Advanced Topics

shorter and faster than the equivalent move and pop sequence. However, the leave
instruction is slower on 80486 and later processors.

The enter instruction takes two operands. The first is the number of bytes of local stor-
age the current procedure requires, the second is the lex level of the current procedure.

The enter instruction does the following:

ENTER Local s, LexLeve

push bp ; Save dynam c |ink
nov tenpreg, sp ;Save for later.
cnp LexLevel, O ;Done if this is lex |evel zero
je Lex0

| p: dec LexLeve
jz Done ;Quit if at last lex |evel
sub bp, 2 ;Index into display in prev act rec
push [bp] and push each el enent there.
jmp I'p ; Repeat for each entry.

Done: push tenpreg ;Add entry for current |ex |evel

Lex0: nov bp, tenpreg ;Ptr to current act rec.
sub sp, Locals ;A locate |ocal storage

As you can see from this code, the enter instruction copies the display from activation
record to activation record. This can get quite expensive if you nest the procedures to any
depth. Most HLLs, if they use the enter instruction at all, always specify a nesting level of
zero to avoid copying the display throughout the stack.

The enter instruction puts the value for the display[n] entry at location BP-(n*2). The
enter instruction does not copy the value for display[0] into each stack frame. Intel assumes that
you will keep the main program’s global variables in the data segment. To save time and
memory, they do not bother copying the display[0] entry.

The enter instruction is very slow, particularly on 80486 and later processors. If you
really want to copy the display from activation record to activation record it is probably a
better idea to push the items yourself. The following code snippets show how to do this:

enter n, 0 ; 14 cycles on the 486
push bp ;1 cycle on the 486
sub sp, n ;1 cycle on the 486
enter n, 1 ; 17 cycles on the 486
push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
nov bp, sp ;1 cycle on the 486
add bp, 2 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486
enter n, 2 ; 20 cycles on the 486
push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
push [bp- 4] ;4 cycles on the 486
nov bp, sp ;1 cycle on the 486
add bp, 4 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486
enter n, 3 ; 23 cycles on the 486
push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
push [bp- 4] ;4 cycles on the 486
push [bp- 6] ;4 cycles on the 486
nov bp, sp ;1 cycle on the 486
add bp, 6 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486

Page 651

Chapter 12

; enter n, 4 ; 26 cycles on the 486
push bp ;1 cycle on the 486
push [bp-2] ;4 cycles on the 486
push [bp- 4] ;4 cycles on the 486
push [bp- 6] ;4 cycles on the 486
push [bp- 8] ;4 cycles on the 486
nov bp, sp ;1 cycle on the 486
add bp, 8 ;1 cycle on the 486
sub sp, n ;1 cycle on the 486

; etc

If you are willing to believe Intel’s cycle timings, you can see that the enter instruction
is almost never faster than a straight line sequence of instructions that accomplish the
same thing. If you are interested in saving space rather than writing fast code, the enter
instruction is generally a better alternative. The same is generally true for the leave
instruction as well. It is only one byte long, but it is slower than the corresponding
mov bp,sp and pop bp instructions.

Accessing non-local variables using the displays created by enter appears in the exer-
cises.

12.2 Passing Variables at Different Lex Levels as Parameters.

Accessing variables at different lex levels in a block structured program introduces
several complexities to a program. The previous section introduced you to the complexity
of non-local variable access. This problem gets even worse when you try to pass such vari-
ables as parameters to another program unit. The following subsections discuss strategies
for each of the major parameter passing mechanisms.

For the purposes of discussion, the following sections will assume that “local” refers
to variables in the current activation record, “global” refers to variables in the data seg-
ment, and “intermediate” refers to variables in some activation record other than the cur-
rent activation record. Note that the following sections will not assume that ds is equal to
ss. These sections will also pass all parameters on the stack. You can easily modify the
details to pass these parameters elsewhere.

12.2.1

Passing Parameters by Value in a Block Structured Language

Passing value parameters to a program unit is no more difficult than accessing the
corresponding variables; all you need do is push the value on the stack before calling the
associated procedure.

To pass a global variable by value to another procedure, you could use code like the
following:

push d obal Var ;Assune “@obal Var” is in DSEG
cal | Pr ocedur e

To pass a local variable by value to another procedure, you could use the following code®:

push [bp-2] ;Local variable in current activation
cal | Pr ocedur e ; record.

To pass an intermediate variable as a value parameter, you must first locate that inter-
mediate variable’s activation record and then push its value onto the stack. The exact
mechanism you use depends on whether you are using static links or a display to keep
track of the intermediate variable’s activation records. If using static links, you might use

6. The non-global examples all assume the variable is at offset -2 in their activation record. Change this as appro-
priate in your code.

Page 652

Procedures: Advanced Topics

code like the following to pass a variable from two lex levels up from the current proce-

dure:
nov bx, [bp+4] ;Assume S.L. is at offset 4.
nov bx, ss:[bx+4] ;Traverse two static |inks
push ss: [bx-2] ; Push vari abl es val ue.
cal | Procedure

Passing an intermediate variable by value when you are using a display is somewhat
easier. You could use code like the following to pass an intermediate variable from lex

level one:
nov bx, Display[1*2] ;Get Display[1] entry.
push ss: [bx-2] ; Push the variabl e’ s val ue.
cal Procedure

12.2.2

Passing Parameters by Reference, Result, and Value-Result in a Block
Structured Language

The pass by reference, result, and value-result parameter mechanisms generally pass
the address of parameter on the stack’. If global variables reside in the data segment, acti-
vation records all exist in the stack segment, and ds#ss, then you must pass far pointers to
access all possible variables®.

To pass a far pointer you must push a segment value followed by an offset value on
the stack. For global variables, the segment value is found in the ds register; for non-global
values, ss contains the segment value. To compute the offset portion of the address you
would normally use the lea instruction. The following code sequence passes a global vari-
able by reference:

push ds ; Push segment adrs first.
| ea ax, @ obal Var ; Conpute of fset.

push ax ; Push of fset of Q obal Var
cal | Procedure

Global variables are a special case because the assembler can compute their run-time
offsets at assembly time. Therefore, for scalar global variables only, we can shorten the code
sequence above to

push ds ; Push segnent adrs.
push of fset Q obal Var ; Push of fset portion.
cal | Procedure

To pass a local variable by reference you code must first push ss’s value onto the stack
and then push the local variable’s offset. This offset is the variable’s offset within the stack seg-
ment, not the offset within the activation record! The following code passes the address of a
local variable by reference:

push ss ; Push segment address.

| ea ax, [bp-2] ; Conpute of fset of |ocal
push ax ; variable and push it.
cal | Procedure

To pass an intermediate variable by reference you must first locate the activation
record containing the variable so you can compute the effective address into the stack seg-
ment. When using static links, the code to pass the parameter’s address might look like
the following:

7. As you may recall, pass by reference, value-result, and result all use the same calling sequence. The differences
lie in the procedures themselves.

8. You can use near pointers if ds=ss or if you keep global variables in the main program’s activation record in the
stack segment.

Page 653

Chapter 12

push ss ; Push segment portion.

nov bx, [bp+4] ;Assume S.L. is at offset 4.
nov bx, ss:[bx+4] ;Traverse two static |inks

| ea ax, [bx-2] ; Conpute effective address
push ax ; Push of fset portion.

cal Procedure

When using a display, the calling sequence might look like the following:

push ss ; Push segment portion.

nov bx, Display[1*2] ;Get Display[1] entry.

| ea ax, [bx-2] ;CGet the variable s offset
push ax ; and push it.

cal l Procedure

As you may recall from the previous chapter, there is a second way to pass a parame-
ter by value-result. You can push the value onto the stack and then, when the procedure
returns, pop this value off the stack and store it back into the variable from whence it
came. This is just a special case of the pass by value mechanism described in the previous
section.

12.2.3

Passing Parameters by Name and Lazy-Evaluation in a Block Structured
Language

Since you pass the address of a thunk when passing parameters by name or by
lazy-evaluation, the presence of global, intermediate, and local variables does not affect
the calling sequence to the procedure. Instead, the thunk has to deal with the differing
locations of these variables. The following examples will present thunks for pass by name,
you can easily modify these thunks for lazy-evaluation parameters.

The biggest problem a thunk has is locating the activation record containing the vari-
able whose address it returns. In the last chapter, this wasn’t too much of a problem since
variables existed either in the current activation record or in the global data space. In the
presence of intermediate variables, this task becomes somewhat more complex. The easi-
est solution is to pass two pointers when passing a variable by name. The first pointer
should be the address of the thunk, the second pointer should be the offset of the activa-
tion record containing the variable the thunk must access®. When the procedure calls the
thunk, it must pass this activation record offset as a parameter to the thunk. Consider the
following Panacea procedures:

Test Thunk: procedure(nane iteminteger; var j:integer);
begi n Test Thunk;

for j in0..9doitem:= 0;
end Test Thunk;

Cal | Thunk: procedur e;

var
A array[0..9] : integer;
I: integer;

endvar ;

begi n Cal | Thunk;

Test Thunk(A 1], 1);
end Cal | Thunk;
The assembly code for the above might look like the following:
; Test Thunk AR

BP+10- Address of thunk

9. Actually, you may need to pass several pointers to activation records. For example, if you pass the variable
“Ali,j,k]” by name and A, i, j, and k are all in different activation records, you will need to pass pointers to each
activation record. We will ignore this problem here.

Page 654

; BP+8-
; BP+4-

Test Thunk

For Loop:

For Done:

Test Thunk

Cal | Thunk

Thunk

Thunk

Qver Thunk:

Cal | Thunk

Procedures: Advanced Topics

Ptr to ARfor Itemand J paraneters (nmust be in the sane AR .

Far ptr to J.

proc near

push bp

nov bp, sp

push ax

push bx

push es

I es bx, [bp+4] ;Get ptr to J.

nov word ptr es:[bx], O ;J = 0;

cnp word ptr es:[bx], 9 ls J > 9?

ja For Done

push [bp+8] ; Push AR passed by caller.
call word ptr [bp+10] ;Call the thunk.
nov word ptr ss:[bx], O ; Thunk returns adrs in BX
I es bx, [bp+4] ;CGet ptr to J.

inc word ptr es:[bx] ;Add one to it.
jmp For Loop

pop es

pop bx

pop ax

pop bp

ret 8

endp

proc near

push bp

nov bp, sp

sub sp, 12 ; Make room for |ocals.

jmp Over Thunk

proc

push bp

nov bp, sp

nov bp, [bp+4] ; Get AR address.

nov ax, [bp-22] ;CGet I's value.

add ax, ax ; Doubl e, since Ais a word array.
add bx, -20 ;OFfset to start of A

add bx, ax ; Conput e address of All] and
pop bp ; returnit in BX

ret 2 ; Renove paraneter from stack.
endp

push of fset Thunk ;Push (near) address of thunk
push bp ;Push ptr to A'1’s AR for thunk
push ss ; Push address of | onto stack.
| ea ax, [bp-22] ; Ofset portion of I.

push ax

call Test Thunk

nov sp, bp

ret

endp

12.3 Passing Parameters as Parameters to Another Procedure

When a procedure passes one of its own parameters as a parameter to another proce-
dure, certain problems develop that do not exist when passing variables as parameters.
Indeed, in some (rare) cases it is not logically possible to pass some parameter types to
some other procedure. This section deals with the problems of passing one procedure’s
parameters to another procedure.

Pass by value parameters are essentially no different than local variables. All the tech-
niques in the previous sections apply to pass by value parameters. The following sections

Page 655

Chapter 12

deal with the cases where the calling procedure is passing a parameter passed to it by ref-
erence, value-result, result, name, and lazy evaluation.

12.3.1 Passing Reference Parameters to Other Procedures

Passing a reference parameter though to another procedure is where the complexity
begins. Consider the following (pseudo) Pascal procedure skeleton:

procedure HasRef (var refparminteger);
procedure ToProc(???? parmi nteger);
begi n
end;

begi n {HasRef}

ToProc(refParm;

end;

The “????” in the ToProc parameter list indicates that we will fill in the appropriate param-
eter passing mechanism as the discussion warrants.

If ToProc expects a pass by value parameter (i.e., ???? is just an empty string), then Has-
Ref needs to fetch the value of the refparm parameter and pass this value to ToProc. The fol-
lowing code accomplishes this®C:

| es bx, [bp+4] ; Fetch address of refparm
push es: [bx] ; Push integer pointed at by refparm
cal ToPr oc

To pass a reference parameter by reference, value-result, or result parameter is easy —
just copy the caller’s parameter as-is onto the stack. That is, if the parm parameter in ToProc
above is a reference parameter, a value-result parameter, or a result parameter, you would
use the following calling sequence:

push [bp+6] ; Push segment portion of ref parm
push [bp+4] ; Push of fset portion of ref parm
cal ToPr oc

To pass a reference parameter by name is fairly easy. Just write a thunk that grabs the
reference parameter’s address and returns this value. In the example above, the call to
ToProc might look like the following:

j mp Ski pThunk
ThunkO proc near
| es bx, [bp+4] ; Assurme BP points at HasRef’'s AR
ret
ThunkO endp
Ski pThunk: push of fset ThunkO ; Address of thunk.
push bp ;AR containing thunk’s vars.
cal ToPr oc

Inside ToProc, a reference to the parameter might look like the following:

push bp ; Save our AR ptr.

nov bp, [bp+4] ;Ptr to Parnis AR
call near ptr [bp+6] ;Call the thunk.

pop bp ;Retrieve our AR ptr.

nov ax, es:[bx] ; Access vari abl e.

10. The examples in this section all assume the use of a display. If you are using static links, be sure to adjust all
the offsets and the code to allow for the static link that the caller must push immediately before a call.

Page 656

Procedures: Advanced Topics

To pass a reference parameter by lazy evaluation is very similar to passing it by name. The
only difference (in ToProc’s calling sequence) is that the thunk must return the value of the
variable rather than its address. You can easily accomplish this with the following thunk:

Thunkl1 proc near
push es
push bx
| es bx, [bp+4] ; Assurme BP points at HasRef’'s AR
nov ax, es:[bx] ;Return value of ref parmin ax
pop bx
pop es
ret
Thunkl1 endp

12.3.2 Passing Value-Result and Result Parameters as Parameters

Assuming you’ve created a local variable that holds the value of a value-result or
result parameter, passing one of these parameters to another procedure is no different
than passing value parameters to other code. Once a procedure makes a local copy of the
value-result parameter or allocates storage for a result parameter, you can treat that vari-
able just like a value parameter or a local variable with respect to passing it on to other
procedures.

Of course, it doesn’t make sense to use the value of a result parameter until you’ve
stored a value into that parameter’s local storage. Therefore, take care when passing result
parameters to other procedures that you’ve initialized a result parameter before using its
value.

12.3.3 Passing Name Parameters to Other Procedures

Since a pass by name parameter’s thunk returns the address of a parameter, passing a
name parameter to another procedure is very similar to passing a reference parameter to
another procedure. The primary differences occur when passing the parameter on as a
name parameter.

When passing a name parameter as a value parameter, you first call the thunk, deref-
erence the address the thunk returns, and then pass the value to the new procedure. The
following code demonstrates such a call when the thunk returns the variable’s address in
es:bx (assume pass by name parameter’s AR pointer is at address bp+4 and the pointer to
the thunk is at address bp+6):

push bp ; Save our AR ptr.

nov bp, [bp+4] ;Ptr to Parnis AR

call near ptr [bp+6] ;Call the thunk

push word ptr es:[bx] ; Push paraneter’s val ue
pop bp ;Retrieve our AR ptr.

call ToProc ;Call the procedure.

Passing a hame parameter to another procedure by reference is very easy. All you
have to do is push the address the thunk returns onto the stack. The following code, that is
very similar to the code above, accomplishes this:

push bp ; Save our AR ptr.

nov bp, [bp+4] ;Ptr to Parnis AR

call near ptr [bp+6] ;Call the thunk

pop bp ;Retrieve our AR ptr.

push es ; Push seg portion of adrs.
push bx ; Push of fset portion of adrs

call ToProc ;Call the procedure.

Page 657

Chapter 12

Passing a name parameter to another procedure as a pass by name parameter is very
easy; all you need to do is pass the thunk (and associated pointers) on to the new proce-
dure. The following code accomplishes this:

push [bp+6] ; Pass Thunk’s address.
push [bp+4] ; Pass adrs of Thunk’s AR
cal ToPr oc

To pass a name parameter to another procedure by lazy evaluation, you need to create
a thunk for the lazy-evaluation parameter that calls the pass by name parameter’s thunk,
dereferences the pointer, and then returns this value. The implementation is left as a pro-
gramming project.

12.3.4 Passing Lazy Evaluation Parameters as Parameters
Lazy evaluation parameters typically consist of three components: the address of a
thunk, a location to hold the value the thunk returns, and a boolean variable that deter-
mines whether the procedure must call the thunk to get the parameter’s value or if it can
simply use the value previously returned by the thunk (see the exercises in the previous
chapter to see how to implement lazy evaluation parameters). When passing a parameter
by lazy evaluation to another procedure, the calling code must first check the boolean
variable to see if the value field is valid. If not, the code must first call the thunk to get this
value. If the boolean field is true, the calling code can simply use the data in the value
field. In either case, once the value field has data, passing this data on to another proce-
dure is no different than passing a local variable or a value parameter to another proce-
dure.
12.3.5 Parameter Passing Summary
Table 48: Passing Parameter s as Parametersto Another Procedure
Pass as Pass as Pass as Lazy
Pass as Value Reference Value-Result PassasResult | Pass as Name Evaluation
Vaue Pass the value Pass addressof | Passaddressof | Passaddressof | Create athunk Create a thunk
the value the value the value that returnsthe | that returnsthe
parameter parameter parameter address of the value
value parameter
Reference Dereference Passtheaddress | Passtheaddress | Passtheaddress | Create athunk Create athunk
parameter and (value of the (value of the (value of the that passesthe that deferences
pass the value reference reference reference address (value the reference
it points at parameter) parameter) parameter) of thereference | parameter and
parameter) returnsits value
Value-Result Pass the local Passtheaddress | Passtheaddress | Passtheaddress | Create athunk Create athunk
vaue asthe of thelocal of thelocal of the local that returnsthe | that returnsthe
value parameter | vaue asthe value asthe valueasthe address of the valuein the
parameter parameter parameter local value of local value of
thevalue-result | thevalue-result
parameter parameter
Result Pass the local Passtheaddress | Passtheaddress | Passtheaddress | Create athunk Create athunk
value asthe of the local of the local of the local that returnsthe | that returnsthe
value parameter | vaue asthe value asthe valueasthe address of the valuein the
parameter parameter parameter local value of local value of
the result the result
parameter parameter

Page 658

Table 48: Passing Parameter s as Parametersto Another Procedure

Procedures: Advanced Topics

Pass as Pass as Pass as Lazy
Pass as Value Reference Value-Result PassasResult | Pass as Name Evaluation
Name Call the thunk, Call the thunk Call the thunk Call the thunk Passtheaddress | Write athunk
dereferencethe | and passthe and pass the and passthe of thethunk and | that calsthe
pointer, and addressit address it addressit any othervalues | name parame-
passthevalueat | returnsasthe returns as the returns as the associated with | ter’sthunk,
the addressthe | parameter parameter parameter the name dereferencesthe
thunk returns parameter addressit
returns, and
then returns the
value at that
address
Lazy If necessary, If necessary, If necessary, If necessary, If necessary, Create athunk
Evaluation cal thethunkto | call thethunkto | call thethunkto | call thethunkto | call thethunkto | that checksthe
obtaintheLazy | obtainthelLazy | obtainthelLazy | obtainthelLazy | obtainthelLazy | boolean field of
Eval parame- Eval parame- Eval parame- Eval parame- Eval parame- thecaler's
ter'svalue. ter'svalue. ter'svalue. ter'svalue. ter’'svalue. Lazy Eva
Pass the local Passtheaddress | Passtheaddress | Passtheaddress | Create athunk parameter. It
value asthe of the local of the local of the local that returnsthe | should call the
value parameter | vaue asthe value asthe valueasthe address of the corresponding
parameter parameter parameter Lazy Evd’s thunk if this
valuefield variableisfalse.
It should set the
boolean field to
true and then
return the data
inthe value
field

12.4 Passing Procedures as Parameters

Many programming languages let you pass a procedure or function name as a param-
eter. This lets the caller pass along various actions to perform inside a procedure. The clas-
sic example is a plot procedure that graphs some generic math function passed as a
parameter to plot.

Standard Pascal lets you pass procedures and functions by declaring them as follows:

procedure DoCal | (procedure Xx);

begi n
X,

end;

The statement DoCall(xyz); calls DoCall that, in turn, calls procedure xyz.

Passing a procedure or function as a parameter may seem like an easy task — just pass
the address of the function or procedure as the following example demonstrates:

procedure PassMe;

begi n

Witel n(' PassMe was called');

end;

procedure Cal | PassMe(procedure X);

begi n
X;
end;

begi n {mai n}
Cal | PassMe(PassMe) ;

end.

Page 659

Chapter 12

Page 660

The 80x86 code to implement the above could look like the following:

PassMe proc near
print
byt e "PassMe was called",cr,If,0
ret
Passhe endp
Cal | PassMe proc near
push bp
nov bp, sp
call word ptr [bp+4]
pop bp
ret 2
Cal | PassMe endp
Mai n proc near
| ea bx, PassMe ;Pass address of PassMe to
push bx ; Cal | PassMe
cal Cal | PassMe
Exi t Pgm
Mai n endp

For an example as simple as the one above, this technique works fine. However, it
does not always work properly if PassMe needs to access non-local variables. The follow-
ing Pascal code demonstrates the problem that could occur:

pr ogram nai n;

procedure dummy;
begi n end;

procedure Recursel(i:integer; procedure X);

procedure Print;

begi n
witeln(i);
end;
procedure Recurse2(j:integer; procedure y);
begi n
if (j=1) theny
else if (j=5) then Recursel(j-1, Print)
el se Recursel(j-1, vy);
end;

begi n {Recursel}
Recurse2(i, Xx);
end;
begi n {Mai n}
Recur sel(5, dumy);
end.
This code produces the following call sequence:

Recursel(5,dummy) - Recurse2(5,dummy) - Recursel(4,Print) -
Recurse2(4,Print) — Recursel(3,Print) —» Recurse2(3,Print) -
Recursel(2,Print) — Recurse2(2,Print) - Recursel(1,Print) -
Recurse2(1,Print) - Print

Print will print the value of Recursel’s i variable to the standard output. However, there are
several activation records present on the stack that raises the obvious question, “which
copy of i does Print display?” Without giving it much thought, you might conclude that it
should print the value “1” since Recurse2 calls Print when Recursel’s value for i is one.
Note, though, that when Recurse2 passes the address of Print to Recursel, i’s value is four.
Pascal, like most block structured languages, will use the value of i at the point Recurse2

Procedures: Advanced Topics

passes the address of Print to Recursel. Hence, the code above should print the value four,
not the value one.

This creates a difficult implementation problem. After all, Print cannot simply access
the display to gain access to the global variable i — the display’s entry for Recursel points
at the latest copy of Recursel’s activation record, not the entry containing the value four
which is what you want.

The most common solution in systems using a display is to make a local copy of each
display whenever calling a procedure or function. When passing a procedure or function
as a parameter, the calling code copies the display along with the address of the procedure
or function. This is why Intel’s enter instruction makes a copy of the display when build-
ing the activation record.

If you are passing procedures and functions as parameters, you may want to consider
using static links rather than a display. When using a static link you need only pass a sin-
gle pointer (the static link) along with the routine’s address. Of course, it is more work to
access non-local variables, but you don’t have to copy the display on every call, which is
quite expensive.

The following 80x86 code provides the implementation of the above code using static
links:

wp textequ <word ptr>
Dumy proc near

ret
Dumy endp

Printlt; (Use the nane Printlt to avoid conflict).

st ack:
bp+4: static |ink.
Printlt proc near
push bp
nov bp, sp
nov bx, [bp+4] ;CGet static link
nov ax, ss:[bx-10] ;CGet i’s val ue.
puti
pop bp
ret 2
Printlt endp

Recursel(i:integer; procedure Xx);

st ack:
bp+10: i
bp+8: x's static link
bp+6: x's address
Recur sel proc near
push bp
nov bp, sp
push wp [bp+10] ; Push value of i onto stack.
push wp [bp+8] ;Push x's static |ink.
push wp [bp+6] ; Push x' s address.
push bp ; Push Recursel’s static |ink.
call Recur sel
pop bp
ret 6
Recur sel endp

Recurse2(i:integer; procedure y);
st ack:
bp+10: j
bp+8: y's static link.

Page 661

Chapter 12

Page 662

bp+6: y's address.
bp+4: Recurse2’'s static |ink.

Recur se2 proc near
push bp
nov bp, sp
cnp wp [bp+10], 1 ils j=1?
j ne TryJeqg5
push [bp+8] ;y's static link.
call wp [bp+6] ;Cll y.
jmp R2Done
TryJeq5: cnp wp [bp+10], 5 ;s j=5?
j ne Calll
nov ax, [bp+10]
dec ax
push ax
push [bp+4] ; Push static link to RL.
| ea ax, Printlt ; Push address of print.
push ax
cal Recursel
jmp R2Done
Call 1: nov ax, [bp+10]
dec ax
push ax
push [bp+8] ; Pass al ong existing
push [bp+6] ; address and i nk.
call Recur sel
RzeDone: pop bp
ret 6
Recur sel endp
nmai n proc
push bp
nov bp, sp
nov ax, 5 ; Push first parameter.
push ax
push bp ;Dummy static |ink.
| ea ax, Dummy ; Push address of dunmy.
push ax
call Recur sel
pop bp
Exi t Pgm
nai n endp

There are several ways to improve this code. Of course, this particular program
doesn’t really need to maintain a display or static list because only Printlt accesses
non-local variables; however, ignore that fact for the time being and pretend it does. Since
you know that Printlt only accesses variables at one particular lex level, and the program
only calls Printlt indirectly, you can pass a pointer to the appropriate activation record; this
is what the above code does, although it maintains full static links as well. Compilers
must always assume the worst case and often generate inefficient code. If you study your
particular needs, however, you may be able to improve the efficiency of your code by
avoiding much of the overhead of maintaining static lists or copying displays.

Keep in mind that thunks are special cases of functions that you call indirectly.
They suffer from the same problems and drawbacks as procedure and function parame-
ters with respect to accessing non-local variables. If such routines access non-local vari-
ables (and thunks almost always will) then you must exercise care when calling such
routines. Fortunately, thunks never cause indirect recursion (which is responsible for the
crazy problems in the Recursel / Recurse2 example) so you can use the display to access
any non-local variables appearing within the thunk.

Procedures: Advanced Topics

12.5 lterators

An iterator is a cross between a control structure and a function. Although common
high level languages do not often support iterators, they are present in some very high
level languages™®. Iterators provide a combination state machine/function call mechanism
that lets a function pick up where it last left off on each new call. Iterators are also part of a
loop control structure, with the iterator providing the value of the loop control variable on
each iteration.

To understand what an iterator is, consider the following for loop from Pascal:
for | :=1 to 10 do <sone st at erment >;

When learning Pascal you were probably taught that this statement initializes i with one,
compares i with 10, and executes the statement if i is less than or equal to 10. After execut-
ing the statement, the for statement increments i and compares it with 10 again, repeating
the process over and over again until | is greater than 10.

While this description is semantically correct, and indeed, it’s the way that most Pas-
cal compilers implement the for loop, this is not the only point of view that describes how
the for loop operates. Suppose, instead, that you were to treat the “to” reserved word as an
operator. An operator that expects two parameters (one and ten in this case) and returns
the range of values on each successive execution. That is, on the first call the “to” operator
would return one, on the second call it would return two, etc. After the tenth call, the “to”
operator would fail which would terminate the loop. This is exactly the description of an
iterator.

In general, an iterator controls a loop. Different languages use different names for iter-
ator controlled loops, this text will just use the name foreach as follows:

foreach variable in iterator() do
statenents;
endfor;

Variable is a variable whose type is compatible with the return type of the iterator. An
iterator returns two values: a boolean success or failure value and a function result. As
long as the iterator returns success, the foreach statement assigns the other return value to
variable and executes statements. If iterator returns failure, the foreach loop terminates and
executes the next sequential statement following the foreach loop’s body. In the case of fail-
ure, the foreach statement does not affect the value of variable.

Iterators are considerably more complex than normal functions. A typical function
call involves two basic operations: a call and a return. Iterator invocations involve four
basic operations:

1) Initial iterator call

2) Yielding a value

3) Resumption of an iterator
4 Termination of an iterator.

To understand how an iterator operates, consider the following short example from
the Panacea programming language':

Range:iterator(start, stop:integer):integer;
begi n range;

while (start <= stop) do

yield start;
start := start + 1;

endwhi | e;

11. Ada and PL/1 support very limited forms of iterators, though they do not support the type of iterators found
in CLU, SETL, Icon, and other languages.
12. Panacea is a very high level language developed by Randall Hyde for use in compiler courses at UC Riverside.

Page 663

Chapter 12

end Range;

In the Panacea programming language, iterator calls may only appear in the foreach state-
ment. With the exception of the yield statement above, anyone familiar with Pascal or C++
should be able to figure out the basic logic of this iterator.

An iterator in the Panacea programming language may return to its caller using one
of two separate mechanisms, it can return to the caller, by exiting through the end
Range; statement or it may yield a value by executing the yield statement. An iterator
succeeds if it executes the yield statement, it fails if it simply returns to the caller. Therefore,
the foreach statement will only execute its corresponding statement if you exit an iterator
with a yield. The foreach statement terminates if you simply return from the iterator. In the
example above, the iterator returns the values start..stop via a yield and then the iterator ter-
minates. The loop

foreach i in Range(1,10) do
wite(i);
endfor;

is comparable to the Pascal statement:
for i :=1to 10 do wite(i);

When a Panacea program first executes the foreach statement, it makes an initial call to
the iterator. The iterator runs until it executes a yield or it returns. If it executes the yield
statement, it returns the value of the expression following the yield as the iterator result
and it returns success. If it simply returns, the iterator returns failure and no iterator
result. In the current example, the initial call to the iterator returns success and the value
one.

Assuming a successful return (as in the current example), the foreach statement
assigns the iterator return value to the loop control variable and executes the foreach loop
body. After executing the loop body, the foreach statement calls the iterator again. How-
ever, this time the foreach statement resumes the iterator rather than making an initial call.
An iterator resumption continues with the first statement following the last yield it executed. In
the range example, a resumption would continue execution at the start := start + 1; state-
ment. On the first resumption, the Range iterator would add one to start, producing the
value two. Two is less than ten (stop’s value) so the while loop would repeat and the itera-
tor would yield the value two. This process would repeat over and over again until the
iterator yields ten. Upon resuming after yielding ten, the iterator would increment start to
eleven and then return, rather than yield, since this new value is not less than or equal to
ten. When the range iterator returns (fails), the foreach loop terminates.

1251

Page 664

Implementing Iterators Using In-Line Expansion

The implementation of an iterator is rather complex. To begin with, consider a first
attempt at an assembly implementation of the foreach statement above:

push 1 ; Assurme 286 or better

push 10 ; and parns passed on stack.

call Range_I niti al ;Make initial call toiter.

jc Fail ure ; C=0, 1 neans success, fail.
For Loop: puti ;Assurme result is in AX

call Range_Resune ;Resurre iterator.

jnc For Loop ;Carry clear is success!

Fai l ure:

Although this looks like a straight-forward implementation project, there are several
issues to consider. First, the call to Range_Resume above looks simple enough, but there is
no fixed address that corresponds to the resume address. While it is certainly true that this
Range example has only one resume address, in general you can have as many yield state-
ments as you like in an iterator. For example, the following iterator returns the values 1, 2,
3,and 4:

Procedures: Advanced Topics

OneToFour:iterator:integer;
begi n CnheToFour ;

yield 1;
yield 2;
yield 3;
yield 4;
end nheToFour;

The initial call would execute the yield 1; statement. The first resumption would execute
the yield 2; statement, the second resumption would execute yield 3;, etc. Obviously there
is no single resume address the calling code can count on.

There are a couple of additional details left to consider. First, an iterator is free to call
procedures and functions'. If such a procedure or function executes the yield statement
then resumption by the foreach statement continues execution within the procedure or
function that executed the yield. Second, the semantics of an iterator require all local vari-
ables and parameters to maintain their values until the iterator terminates. That is, yield-
ing does not deallocate local variables and parameters. Likewise, any return addresses left
on the stack (e.g., the call to a procedure or function that executes the yield statement) must
not be lost when a piece of code yields and the corresponding foreach statement resumes
the iterator. In general, this means you cannot use the standard call and return sequence to
yield from or resume to an iterator because you have to preserve the contents of the stack.

While there are several ways to implement iterators in assembly language, perhaps
the most practical method is to have the iterator call the loop controlled by the iterator and
have the loop return back to the iterator function. Of course, this is counter-intuitive. Nor-
mally, one thinks of the iterator as the function that the loop calls on each iteration, not the
other way around. However, given the structure of the stack during the execution of an
iterator, the counter-intuitive approach turns out to be easier to implement.

Some high level languages support iterators in exactly this fashion. For example,
Metaware’s Professional Pascal Compiler for the PC supports iterators'*. Were you to cre-
ate a code sequence as follows:

iterator OneToFour:integer;

begi n
yield 1;
yield 2;
yield 3;
yield 4;
end;

and call it in the main program as follows:
for i in meToFour do witeln(i);

Professional Pascal would completely rearrange your code. Instead of turning the iterator
into an assembly language function and call this function from within the for loop body;,
this code would turn the for loop body into a function, expand the iterator in-line (much
like a macro) and call the for loop body function on each yield. That is, Professional Pascal
would probably produce assembly language that looks something like the following:

13. In Panacea an iterator could also call other types of program units, including other iterators, but you can
ignore this for now.
14. Obviously, this is a non-standard extension to the Pascal programming language provided in Professional Pas-

cal.

Page 665

Chapter 12

; The followi ng procedure corresponds to the for | oop body
; With a single paranmeter (1) corresponding to the | oop
control variabl e:

For LoopCode proc near

push bp

nov bp, sp

nov ax, [bp+4] ;Get loop control val ue and

puti ;oprint it.

put cr

pop bp

ret 2 ;Pop loop control value off stk.
For LoopCode endp

; The follow code would be emtted in-line upon encountering the
; for loop in the main program it corresponds to an in-line

; expansion of the iterator as though it were a macro,

; substituting a call for the yield instructions:

push 1 ;On 286 and | ater processors only.
call For LoopCode

push 2

call For LoopCode

push 3

call For LoopCode

push 4

call For LoopCode

This method for implementing iterators is convenient and produces relatively effi-
cient (fast) code. It does, however, suffer from a couple drawbacks. First, since you must
expand the iterator in-line wherever you call it, much like a macro, your program could
grow large if the iterator is not short and you use it often. Second, this method of imple-
menting the iterator completely hides the underlying logic of the code and makes your
assembly language programs difficult to read and understand.

12.5.2

Page 666

Implementing Iterators with Resume Frames

In-line expansion is not the only way to implement iterators. There is another method
that preserves the structure of your program at the expense of a slightly more complex
implementation. Several high level languages, including Icon and CLU, use this imple-
mentation.

To start with, you will need another stack frame: the resume frame. A resume frame
contains two entries: a yield return address (that is, the address of the next instruction
after the yield statement) and a dynamic link, which is a pointer to the iterator’s activation
record. Typically the dynamic link is just the value in the bp register at the time you exe-
cute the yield instruction. This version implements the four parts of an iterator as follows:

1) A call instruction for the initial iterator call,

2) A call instruction for the yield statement,

3) A ret instruction for the resume operation, and
4) A ret instruction to terminate the iterator.

To begin with, an iterator will require two return addresses rather than the single
return address you would normally expect. The first return address appearing on the
stack is the termination return address. The second return address is where the subroutine
transfers control on a yield operation. The calling code must push these two return
addresses upon initial invocation of the iterator. The stack, upon initial entry into the iter-
ator, should look something like Figure 12.8.

As an example, consider the Range iterator presented earlier. This iterator requires
two parameters, a starting value and an ending value:

foreach i in Range(1,10) do witeln(i);

Procedures: Advanced Topics

Previous Stack Contents

/4 Parameters for Iterator
/]

If this is a

/]

Termination Return Address

Yield Return Address

/7 NEAR lterator

Figure 12.8 Iterator Activation Record

The code to make the initial call to the Range iterator, producing a stack like the one

above, could be the following:

push
push
push
cal

1

10

of f set For Done
Range

; Push start paraneter val ue.
; Push stop paraneter val ue.

; Push term nation address.

; Pushes yield return address.

ForDone is the first statement immediately following the foreach loop, that is, the instruc-
tion to execute when the iterator returns failure. The foreach loop body must begin with
the first instruction following the call to Range. At the end of the foreach loop, rather than
jumping back to the start of the loop, or calling the iterator again, this code should just
execute a ret instruction. The reason will become clear in a moment. So the implementa-
tion of the above foreach statement could be the following:

push
push
push
cal
nov
puti
put cr
ret
For Done:

1

10

of f set For Done
Range

bp, [bp]

;Cbviously, this requires a
; 80286 or |ater processor.

Explained a little later.

Granted, this doesn’t look anything at all like a loop. However, by playing some major
tricks with the stack, you’ll see that this code really does iterate the loop body (puti and

putcr) as intended.

Now consider the Range iterator itself, here’s the code to do the job:

Range_Start
Range_St op
Range_Yi el d

equ
equ
equ

Range proc
push
nov
nov
cnp
ja

RangelLoop:

;. Ckay,

push
cal |
pop
inc
jnp
RangeDone: pop
add
ret

Range endp

word ptr <[bp+8]>
word ptr <[bp+6]>
word ptr <[bp+2]>

near
bp

bp, sp

ax, Range_Start
ax, Range_Stop
RangeDone

build the resune frane:

bp

Range_Yi el d
bp

Range_St art
RangeLoop

bp
sp, 2
4

; Address of Start paraneter.
; Address of Stop paraneter.
;Yield return address.

; Get start parameter and
; conpare against stop.
;Termnate if start > stop

; Save dynamic |ink.

;Do YI ELD operati on.

; Restore dynamc |ink.

; Bunp up start val ue
;Repeat until start > stop.

;Restore old BP

; Pop YIELD return address
;Termnate iterator.

Page 667

Chapter 12

10 Previous Stack Contents If this is a
NEAR lIterator

8 Value of Start Parameter (1)

6 | Value of Stop Parameter (10)

4 Termination Return Address

2 Yield Return Address

0 Original BP Value

- SP, BP

Offset from BP

Figure 12.9 Range Activation Record

Page 668

Although this routine is rather short, don’t let its size deceive you; it’s quite complex.
The best way to describe how this iterator operates is to take it a few instructions at a time.
The first two instructions are the standard entry sequence for a procedure. Upon execu-
tion of these two instructions, the stack looks like that in Figure 12.9.

The next three statements in the Range iterator, at label RangeLoop, implement the ter-
mination test of the while loop. When the Start parameter contains a value greater than the
Stop parameter, control transfers to the RangeDone label at which point the code pops the
value of bp off the stack, pops the yield return address off the stack (since this code will
not return back to the body of the iterator loop) and then returns via the termination
return address that is immediately above the yield return address on the stack. The return
instruction also pops the two parameters off the stack.

The real work of the iterator occurs in the body of the while loop. The push, call, and
pop instructions implement the yield statement. The push and call instructions build the
resume frame and then return control to the body of the foreach loop. The call instruction
is not calling a subroutine. What it is really doing here is finishing off the resume frame
(by storing the yield resume address into the resume frame) and then it returns control
back to the body of the foreach loop by jumping indirect through the yield return address
pushed on the stack by the initial call to the iterator. After the execution of this call, the
stack frame looks like that in Figure 12.9.

Also note that the ax register contains the return value for the iterator. As with functions,
ax is a good place to return the iterator return result.

Immediately after yielding back to the foreach loop, the code must reload bp with the
original value prior to the iterator invocation. This allows the calling code to correctly
access parameters and local variables in its own activation record rather than the activa-
tion record of the iterator. Since bp just happens to point at the original bp value for the
calling code, executing the mov bp, [bp] instruction reloads bp as appropriate. Of course,
in this example reloading bp isn’t necessary because the body of the foreach loop does not
reference any memory locations off the bp register, but in general you will need to restore
bp.

At the end of the foreach loop body the ret instruction resumes the iterator. The ret
instruction pops the return address off the stack which returns control back to the iterator
immediately after the call. The instruction at this point pops bp off the stack, increments
the Start variable, and then repeats the while loop.

Procedures: Advanced Topics

Previous Stack Contents

Value of Start Parameter (1)

Value of Stop Parameter (10)

Iterator
Termination Return Address Activation
Record
Yield Return Address
Original BP Value
-« BP

Dynamic Link (old BP)

Resume Frame
Resume Return Address

- SP

Figure 12.10 Range Resume Record

Of course, this is a lot of work to create a piece of code that simply repeats a loop ten
times. A simple for loop would have been much easier and quite a bit more efficient that
the foreach implementation described in this section. This section used the Range iterator
because it was easy to show how iterators work using Range, not because actually imple-
menting Range as an iterator is a good idea.

12.6 Sample Programs

The sample programs in this chapter provide two examples of iterators. The first
example is a simple iterator that processes characters in a string and returns the vowels
found in that string. The second iterator is a synthetic program (i.e., written just to demon-
strate iterators) that is considerably more complex since it deals with static links. The sec-
ond sample program also demonstrates another way to build the resume frame for an
iterator. Take a good look at the macros that this program uses. They can simplify the user
of iterators in your programs.

12.6.1

An Example of an Iterator

The following example demonstrates a simple iterator. This piece of code reads a
string from the user and then locates all the vowels (a, €, i, 0, U, w, y) on the line and prints
their index into the string, the vowel at that position, and counts the occurrences of each
vowel. This isn’t a particularly good example of an iterator, however it does serve to dem-
onstrate an implementation and use.

First, a pseudo-Pascal version of the program:
pr ogr am DoVowel s(i nput, out put) ;
const

‘

Vowels = ['a’,

var

Page 669

Chapter 12

Page 670

Thi sVowel : integer;
Vowel Cnt : array [char] of integer;
iterator GetVowel (s:string) : integer;
var

Qurlndex : integer;
begi n

for Qurindex := 1 to length(s) do
if (s [Qurindex] in Vowels) then begin

{ If we have a vowel, bunp the cnt by 1}
Vowel s[s[Qurindex]] := Vowel s[s[CQurlndex]]+1;

(Return index into string of current vowel }
yi el d Qurl ndex;

end;
end;

begi n {mai n}
{ First, initialize our vowel counters }

Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt
Vowel Cnt

C O oo
oo

et bt b e b bt bt bt bd b b b b beed

— — — — — — —) — — — — —

PRl

<sca

{ Read and process the input string}

Wite('Enter a string: ‘);
ReadLn(|l nput Str);
foreach Thi sVowel in GetVowel (I nputStr) do
WitelLn(*Vowel ‘,lnputStr [ThisVowel],
‘ at position ‘, ThisVowel);

{ Qutput the vowel counts }

WiteLn(‘# of A’s:’,VowelOnt[‘a’] + Vowel Ont[*A]);
WiteLn(‘# of E’s:’,VowelOnt[‘e’'] + Vowel Ont[‘'E]);
WiteLn(‘# of 1""s:", Vownel Ont[‘i’] + Vowel Ont[‘1']);
WiteLn(‘# of O’'s:’,VowelOnt[‘0’] + Vowel Ont[* O]);
Witeln(‘# of U’s:’,VowelOnt[‘u’'] + Vownel Ont[‘U]);
WiteLn(‘# of W’'s:’,Vowel Ont[‘wW] + Vowel Ont[*W]);
WiteLn(‘# of Y ’'s:’, Vowel Ont['y’'] + Vownel Ont[' Y]);
end.
Here’s the working assembly language version:
. 286 ;For PUSH imminstr.

.xlist

include stdlib.a
includelib stdlib.lib
st

; Some “cute” equates:

I'terator textequ <proc>
endi textequ <endp>
wp textequ <word ptr>

; Necessary gl obal vari abl es:

dseg segment para public ‘data’

Procedures: Advanced Topics
; As per UCR StdLib instructions, InputStr rmust hol d
; at least 128 characters.
I nput Str byt e 128 dup (?)

; Note that the followi ng statenent initializes the
; Vowel Ont array to zeros, saving us fromhaving to
; do this in the main program

Vovel Ont word 256 dup (0)
dseg ends
cseg segment para public ‘code’

assune cs: cseg, ds:dseg

;. Get Vowel - This iterator searches for the next vowel in the
; input string and returns the index to the val ue
; as the iterator result. On entry, ES:D points

; at the string to process. On yield, AX returns

; the zero-based index into the string of the

; current vowel .

; GWYield- Address to call when performng the yield.
; GVStrPtr- A local variable that points at our string.
GQvyiel d textequ <word ptr [bp+2]>
GVStrPtr textequ <dword ptr [bp-4]>
Get Vowel Iterator

push bp

nov bp, sp

; Oeate and initialize G/StrPtr. This is a pointer to the
; next character to process in the input string.

push es
push di

; Save original ES: D values so we can restore themon Yl ELD
; and on ternination.

push es
push di

; kay, here’s the nain body of the iterator. Fetch each
; character until the end of the string and see if it is
; avowel. If it is avowel, yield the index toit. If

; it is not a vowel, move on to the next character.

GvLoop: les di, G/StrPtr ;Ptr to next char.
nov al, es:[di] ;Get this character.
cnp al, 0 ; End of string?
je GvDone

; The following statement will convert all |ower case

; Ccharacters to upper case. It will also translate other
; characters to who knows what, but we don’t care since
; weonly look at A, E I, O U W and Y.

and al, 5fh

; See if this character is a vowel. This is a disgusting
; set menbership operation.

cnp al, ‘A
je | sAVowel
cnp al, ‘E
je | sAVowel
cnp al, ‘1’
je | sAVowel
cnp al, ‘0O
je | sAVowel
cnp al, ‘U
je | sAVowel
cnp al, ‘W
je | sAVowel

Page 671

Chapter 12

Page 672

cnp al, 'Y
j ne Not Avowel

If we've got a vowel we need to yield the index into
the string to that vowel. To conpute the index, we
restore the original ES: D values (which points at
the begi nning of the string) and subtract the current
position (nowin AX) fromthe first position. This
produces a zero-based index into the string.

This code nust also increnent the corresponding entry
inthe Vonel Ont array so we can print the results
later. Unlike the Pascal code, we’ve converted | ower
case to upper case so the count for upper and | ower
case characters will appear in the upper case slot.

| sAVowel : push bx ; Bunp the vowel
nov ah, 0 ; count by one.
nov bx, ax
shl bx, 1
inc Vowel Ot [bx]
pop bx
nov ax, di
pop di ;Restore original D
sub ax, di ; Conput e i ndex.
pop es ;Restore original ES
push bp ; Save our frame pointer
cal GYield ;Yield to caller
pop bp ;Restore our frane pointer
push es ;Save ES: D again
push di

Wiether it was a vowel or not, we' ve now got to nove
on to the next character in the string. |ncrenent
our string pointer by one and repeat the process
over again.

Not AVowel : inc wp GVStrPtr

j mp GvLoop

If we’ve reached the end of the string, termnate
the iterator here. W need to restore the original
ES: D val ues, renove |ocal variables, pop the YIELD
address, and then return to the termnation address.

GvDone: pop di ; Restore ES: D
pop es
nov sp, bp ; Renove | ocal s
add sp, 2 ; Pop YI ELD address
pop bp
ret
Get Vovel endi
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
print
byt e “Enter a string: “,0
| esi I nput Str
gets ; Read input line.

The following is the foreach | oop. Note that the |abel
“FCREACH' is present for docunentation purpose only.
In fact, the foreach | oop always begins with the first
instruction after the call to GetVowel.

One other note: this assenbly | anguage code uses

zer 0- based i ndexes for the string. The Pascal version
uses one-based indexes for strings. So the actual
nunbers printed will be different. If you want the
val ues printed by both prograns to be identical,

Procedures: Advanced Topics

uncomment the INC instruction bel ow

push of fset For Done ; Term nation address.
cal l Get Vowel ;Start iterator
FOREACH nov bx, ax
print
byt e “Vowel “,0
nov al, InputStr[bx]
put c
print
byt e “ at position “,0
nov ax, bx
i nc ax
puti
put cr
ret ;lterator resune.
For Done: printf
byt e “# of As: %\n”
byt e “# of Es: %\n”
byt e “# of 1's: %\n”
byt e “# of Os: %\n”
byt e “# of Us: %\n”
byt e “# of Ws: %l\n”
byt e “# of Ys: %\n",0
dwor d Vowel Ont + (“ A *2)
dwor d Vowel Ont + (‘' E *2)
dwor d Vowel Ont + (‘17 *2)
dword Vovel Ont + (1 O *2)
dword Vowel nt + (“ U *2)
dwor d Vowel Ont + (' W*2)
dwor d Vowel Ont + ('Y *2)
Qit: Exi t Pgm ;DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends
zzz7777S€g segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z2z77727seg ends
end Mai n

12.6.2 Another Iterator Example

One problem with the iterator examples appearing in this chapter up to this point is
that they do not access any global or intermediate variables. Furthermore, these examples
do not work if an iterator is recursive or calls other procedures that yield the value to the
foreach loop. The major problem with the examples up to this point has been that the
foreach loop body has been responsible for reloading the bp register with a pointer to the
foreach loop’s procedure’s activation record. Unfortunately, the foreach loop body has to
assume that bp currently points at the iterator’s activation record so it can get a pointer to
its own activation record from that activation record. This will not be the case if the itera-
tor’s activation record is not the one on the top of the stack.

To rectify this problem, the code doing the yield operation must set up the bp register
so that it points at the activation record of the procedure containing the foreach loop before
returning back to the loop. This is a somewhat complex operation. The following macro
accomplishes this from inside an iterator:

Yield nacr o
nov dx, [BP+2] ;Place to yield back to.
push bp ;Save lterator link
nov bp, [bp] ;Get ptr tocaller's AR

Page 673

Chapter 12

Page 674

call dx ; Push resunme address and rtn.
pop bp ;Restore ptr to our A R
endm

Note an unfortunate side effect of this code is that it modifies the dx register. Therefore, the
iterator does not preserve the dx register across a call to the iterator function.

The macro above assumes that the bp register points at the iterator’s activation record.
If it does not, then you must execution some additional instructions to follow the static
links back to the iterator’s activation record to obtain the address of the foreach loop proce-
dure’s activation record.

| TERS. ASM

Roughl y corresponds to the exanple in Ghezzi & Jazayeri's
" Programm ng Language Concepts" text.

Randal | Hyde

Thi s program dermonstrates an inpl ementation of:

I :=0;
foreach i in range(1,3) do
foreach j initer2() do

witeln(i, ",", j, ",", 1)

iterator range(start, stop):integer;
begi n

while start <= stop do begin

yield start;
start := start+1;
end;

end;

; iterator iter2:integer;

; var k:integer;

;. begin

; foreach k initer3 do
; yield k;
;end;

iterator iter3:integer;
begi n

| =1 + 1;
yield 1;

| =1 + 1;
yield 2;

| =1 + 1;
yield O;
end;

This code will print:

WWWNNNRE R R
oONRPRONRFPONE
©CONOUTAWNR

Procedures: Advanced Topics

.xlist

include stdlib.a
includelibstdlib.lib
st

. 286 ;Allow extra adrs nodes.
dseg segment para stack 'data’'

; Put the stack in the data segnent so we can use the small nenory nodel
; to sinplify addressing:

stk byt e 1024 dup ('stack')
EndSt k wor d 0

dseg ends

cseg segment para public 'code'

assune cs: cseg, ds:dseg, ss:dseg

; Here's the structure of a resume frane. Note that this structure isn't
; actually used in this code. It is only provided to show you what data
; is sitting on the stack when Yield builds a resune frare.

RsnfFrm struct
ResuneAdr s word ?
I teratorLink word ?
RsnfFrm ends

; The following macro builds a resune frame and the returns to the caller
; of aniterator. It assunes that the iterator and whoever called the

; iterator have the standard activation record defined above and that we
; are building the standard resure frane descri bed above.

; This code wipes out the DX register. Woever calls the iterator cannot
; count on DX being preserved, |ikew se, the iterator cannot count on DX
; being preserved across a yield. Presumably, the iterator returns its

; value in AX

Act Rec struct

Dynani cLi nk wor d ? ; Saved BP val ue.

Yi el dAdrs wor d ? ;Return Adrs for proc.

Stati cLi nk wor d ? ;Static link for proc.

Act Rec ends

AR equ [bp] . Act Rec

Yiel d nacr o
nov dx, AR Yiel dAdrs ;Place to yield back to.
push bp ;Save lterator link
nov bp, AR Dynam cLi nk ;CGet ptr to caller's AR
call dx ; Push resume address and rtn.
pop bp ;Restore ptr to our A R
endm

; Range(start, stop) - Yields start..stop and then fails.

; The fol lowing structure defines the activation record for Range:

rngAR struct

Dynam cLi nk wor d ? ; Saved BP val ue.

Yi el dAdrs wor d ? ;Return Adrs for proc.
Stati cLi nk wor d ? ;Static link for proc.
Fai | Adrs wor d ? ; G here when we fail
St op wor d ? ; Stop paranet er

Start wor d ? ; Start paranet er

Page 675

Chapter 12

rngAR ends
rAR equ [bp] . rngAR
Range proc

push bp

nov bp, sp

; Wiile start <= stop, yield start:

Wil Start LEStop: nov ax, rAR Start ;Also puts return val ue

cnp ax, rAR Stop ; in AX

jnle RangeFai |

yield

i nc rAR Start

j mp Wil St art LESt op
RangeFai | : pop bp ; Restore Dynam c Li nk.

add sp, 4 ;Skip ret adrs and S. L.

ret 4 ; Return through fail address.
Range endp

Iter2- Just calls iter3() and returns whatever value it generates.

; Note: Since iter2 and iter3 are at the sane lex level, the static link

; passed to iter3 nust be the same as the static link passed to iter2.

; This is why the "push [bp]" instruction appears bel ow (as opposed to the
; "push bp" instruction which appears in the calls to Range and iter2).

; Keep in nind, Range and iter2 are only called fromnain and bp contains
; the static link at that point. This is not true when iter2 calls iter3.

iter2 proc
push bp
nov bp, sp
push offset i3Fail ;Failure address.
push [bp] ;Static link is link to main.
call iter3
yield ;Return value returned by iter3
ret ; Resure Iter3.
i 3Fail : pop bp ; Restore Dynam c Li nk.
add sp, 4 ;Skip return address & S. L.
ret ; Return through fail address.
iter2 endp

; Iter3() sinply yields the values 1, 2, and O:

iter3 proc
push bp
nov bp, sp
nmov bx, AR StaticLink;Point BX at main's AR
i nc word ptr [bx-6];Increment L in main.
nmov ax, 1
yield
nov bx, AR StaticLink
i nc word ptr [bx- 6]
nmov ax, 2
yield
nov bx, AR StaticLink
i nc word ptr [bx- 6]
nmov ax, 0
yield

Page 676

Procedures: Advanced Topics

pop bp ; Restore Dynam c Link.

add sp, 4 ;Skip return address & S. L.

ret ; Return through fail address.
iter3 endp

; Main's local variables are allocated on the stack in order to justify
; the use of static Iinks.

! equ [bp-2]
i equ [bp- 4]
I equ [bp- 6]
Mai n proc
nov ax, dseg
nov ds, ax
nmov es, ax
nmov ss, ax
nov sp, offset EndStk
; Allocate storage for i, j, and | on the stack:
nov bp, sp
sub sp, 6
nem ni t
nov word ptr I, O ;lnitialize |.
; foreach i in range(1,3) do:
push 1 ; Paramet ers.
push 3
push offset iFail ;Failure address.
push bp ;Static link points at our AR
call Range

; Yield fromrange comes here. The |abel is for your benefit.

RangeYi el d: nov i, ax ; Save away | oop control val ue.
; foreach j initer2 do:
push offset jfail ;Failure address.
push bp ;Static link points at our AR
cal | iter2

; Yield fromiter2 comes here:
iter2Yield: nov j, ax

nmov ax, i
puti
print
byt e "' 0
mv ax, |j
puti
print
byt e "' 0
nmov ax, |
puti
put cr

; Restart iter2:
ret ;Resune iterator.

; Restart Range down here:

Page 677

Chapter 12

jFail:

; Al Done
i Fail:
Qit:

Mai n

cseg

ret ; Resune iterator.

print

byt e cr,If,"Al Done!",cr,If,0

Exi t Pgm ; DCB macro to quit program
endp

ends

; zzzzzzseg nust be the |ast segment that gets | oaded into menory!
; This is where the heap begins

277777s€g
Last Byt es
227777s€g

segnent para public 'zzzzzz'

db 16 dup (?)
ends
end Mai n

12.7 Laboratory Exercises

This chapter’s laboratory exercises consist of three components. In the first exercise
you will experiment with a fairly complex set of iterators. In the second exercise you will
learn how the 80286’s enter and leave instructions operate. In the third exercise, you will

run some experiments on parameter passing mechanisms.

12.7.1

Page 678

lterator Exercise

In this laboratory exercise you will be working with a program (Ex12_1.asm on the
companion CD-ROM) that uses four iterators. The first three iterators perform some fairly
simple computations, the fourth iterator returns (successively) pointers to the first three

iterators’ code that the main program can use to call these iterators.

For your lab report: study the following code and explain how it works. Run it and
Assemble the program with the “/Zi” option, then from within Code-
View, set a breakpoint on the first instruction of the four iterators. Run the program up to
these break points and dump the memory starting at the current stack pointer value
(ss:sp). Describe the meaning of the data on the stack at each breakpoint. Also, set a break-
point on the *“call ax” instruction. Trace into the routine ax points at upon each breakpoint
and describe which routine this instruction calls. How many times does this instruction

explain the output.

execute?
EX12_1. asm

Programto support the | aboratory exercise in Chapter 12.

Thi s program conbi nes iterators

and procedur a

; This programinpl ements the following iterators (exanples witten in panacea):

passing paraneters as paraneters,

paraneters all into the same program

; fibriterator(n:integer):integer;

, o var

Qur | ndex: i nt eger

Fnl:
Fn2:
endvar ;

;
;

;

;

;

;

;

;

;

;

; program EX12_1;
;

;

;

;

;

;

’ . .

; begin fib;

;

i nt eger;
i nt eger;

Procedures: Advanced Topics

yield 1; (* A ways have at |east n=0 *)
if (n<>0) then

yield 1; (* Have at least n=1 at this point *)

Fnl : = 1,
Fn2 :=1;
foreach Qurindex in 2..n do

yield Fnl+Fn2;
Fn2 = Fnl,;
Fnl = CQurl ndex;

endfor;
endi f;

end fib;

UpDown: i terator(n:integer):integer;

var
Qur | ndex: i nt eger ;
endvar ;
begi n UpDown;
foreach Qurindex in 0..n do
yi el d Qurl ndex;
endf or;
foreach Qurindex in n-1..0 do
yi el d Qurlndex;
endf or;
end UpDown;

SunToN iterator(n:integer):integer;

var
Qur | ndex: i nt eger ;
Sum i nt eger;
endvar ;
begi n SunToN
Sum: = 0;
foreach Qurindex in 0..n do
Sum : = Sum + CQurl ndex;
yield Sum
endf or;
end SunToN

Miltilter returns a pointer to an iterator that accepts a single integer
ar anet er .

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
1
1
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
’
)
)
’
1
1
)
1
)
’
’
)
)
’
)
)
)

Miultilter: iterator: [iterator(n:integer)];
begin Miltilter;

yield @pDown; (* as the result of this iterator.*)
yi el d @unioN

; yield @ib;(* Return pointers to the three iterators above *)
; end Miltilter;

Page 679

Chapter 12

; var
; i iinteger;
; n:integer;
; iter:[iterator(n:integer)];
; endvar;
begi n EX12_1;
(* The following for |oop repeats six tines, passing its |loop index as*)
; (* the paraneter to the Fib, UpDown, and SunToN paraneters. *)
foreach nin 0..5 do
(* The followi ng (funny | ooking) iterator sequences through *)
; (* each of the three iterators: Fib, UpDown, and SunToN It*)
; (* returns a pointer as the iterator value. The innernost *)
; (* foreach loop uses this pointer to call the appropriate *)
; (* iterator. *)
foreach iter in Miltilter do
(* Ckay, this for loop i nvokes whatever iterator was *)
; (* return by the Miltilter iterator above. *)
foreach i in [Miltilter](n) do
§ wite(i:3);
endf or;
; witeln;
endf or;
; witeln;
endf or;
end EX12_1;
.xli st
include stdlib.a
includelibstdlib.lib
st
. 286 ;Allow extra adrs nodes.
wp textequ <word ptr>
ofs textequ <offset>
dseg segment para public 'code'
dseg ends
cseg segment para public 'code'

assune CS: CseQ, SS:Ssseg

; The following macro builds a resune frame and the returns to the caller
; of aniterator. It assunes that the iterator and whoever called the

; iterator have the standard activation record defined above and that we
; are building the standard resure frane described above.

; This code wipes out the DX register. Woever calls the iterator cannot
; count on DX being preserved, |ikew se, the iterator cannot count on DX
; being preserved across a yield. Presumably, the iterator returns its

; value in AX

Page 680

Procedures: Advanced Topics

Yiel d nacro
nov dx, [BP+2] ;Place to yield back to.
push bp ;Save lterator link
nov bp, [bp] ;Get ptr tocaller's AR
call dx ; Push resume address and rtn.
pop bp ;Restore ptr to our A R
endm

Fib(n) - Yields the sequence of fibonacci nunmbers fromF(0)..F(n).
The fibonacci sequence is defined as:

F(0) and F(1) = 1.
F(n) = F(n-1) + F(n-2) for n > 1.

; The following structure defines the activation record for Fib

Qur | ndex textequ <[bp-6]> ; Qurrent sequence val ue.
Fnl textequ <[bp-4]> ; F(n-1) val ue.
Fn2 textequ <[bp-2]> ; F(n-2) val ue.
Dynami cLi nk textequ <[bp]> ; Saved BP val ue.
Yi el dAdr s textequ <[bp+2]> ;Return Adrs for proc.
Fai | Adrs textequ <[bp+4]> ; @ here when we fail
n textequ <[bp+6]> ;The initial parameter
Fib proc

push bp

nov bp, sp

sub sp, 6 ; Make room for |ocal variables.

; VW will also begin yielding values starting at F(O).
; Since F(0) and F(1) are special cases, yield their val ues here.

nov ax, 1 ;Yield F(O) (we always return at |east
yield 7 F(0)).

cnp wn, 1 ;See if user called this wth n=0.

ib Fail Fib

nov ax, 1

yield

; Ckay, n >=1 so we need to go into a loop to handl e the remai ni ng val ues.
; First, begin by initializing Fnl and Fn2 as appropri ate.

nov wp Fnl, 1
nov wp Fn2, 1
nmov wp Qurlndex, 2
Wl Lp: nmov ax, Qurindex ;See if Qurlndex > n.
cnp ax, n
ja Fail Fib
push Fnl
nmov ax, Fnl
add ax, Fn2
pop Fn2 ; Fnl becores the new Fn2 val ue.
nov Fnl, ax ; Qurrent val ue becones new Fnl val ue.
yield ;Yield the current val ue.
i nc wp Qur |l ndex
jmp Wil Lp
Fai | Fi b: nmov sp, bp ; Deal l ocate | ocal vars.
pop bp ; Restore Dynam c Li nk.

Page 681

Chapter 12

Fi b

; UpDown-

UpDown

Upt oN

CGoDown:

UpDownDone:

UpDown

;. SumToN(n) -

j
k

SunToN

Sunip:

SunDone:

Page 682

add sp, 2 ;Skip ret adrs.

ret 2 ; Return through fail address.
endp
This function yields the sequence 0, 1, 2, ..., n, n-1,
n-2, ..., 1, 0.
textequ <[bp-2]> ; F(n-2) val ue.

proc

push bp

nov bp, sp

sub sp, 2 ; Make roomfor i.

nov w i, O ;lnitialize our index variable (i).
nmv ax, i

cnp ax, n

j ae GoDown

yield

i nc wp i

jmp UpToN

nmv ax, i

yield

nmov ax, i

cnp ax, 0

je UpDownDone

dec wp i

jnp GoDown

nov sp, bp ; Deal | ocate | ocal vars.

pop bp ; Restore Dynam c Link.

add sp, 2 ; Skip ret adrs.

ret 2 ;Return through fail address.
endp

This iterator returns 1, 2, 3, 6, 10, ... sun(n) where

sunm(n) = 1+2+3+4+...+n (e.g., n(n+l)/2);

textequ <[bp-2]>
textequ <[bp-4]>

proc
push bp

nov bp, sp

sub sp, 4 ; Make roomfor j and k.

nov wj, 0 ;Initialize our index variable (j).
nov wp k, O sInitialize our sum (k).

nmv ax, |j

cnp ax, n

ja SunbDone

add ax, k

nmov k, ax

yield

inc wo j

Jnp Sunip

nmov sp, bp ; Deal l ocate | ocal vars.

pop bp ; Restore Dynam c Li nk.

add sp, 2 ;Skip ret adrs.

ret 2 ; Return through fail address.

SuniToN endp

Procedures: Advanced Topics

; Miltilter- This iterator returns a pointer to each of the above iterators.

Multilter proc
push bp
nov bp, sp
nov ax, ofs Fib
yield
nov ax, ofs UpDown
yield
nov ax, ofs SunifoN
yield
pop bp
add sp, 2
ret
Multilter endp
Mai n proc
nov ax, dseg
nov ds, ax
nov es, ax
nem ni t

; foreach bx in 0..5 do

nov bx, 0
Wil BXl e5:

; foreach ax in Miltilter do

; Loop control

variabl e for outer | oop.

push ofs MiltiDone ; Failure address.
call Multilter ;Cet iterator to call.
; foreach i in [ax](bx) do
push bx ;Push "n" (bx) onto the stack.
push ofs IterDone ; Fail ure Address
call ax ;Call the iterator pointed at by the

; ; return value fromMiltilter.

; wite(ax:3);

nmov cx, 3
puti si ze
ret
; endfor, witeln;
| t er Done: put cr ;Witeln;
ret
; endfor, witeln;
Mul ti Done: put cr
i nc bx
cnp bx, 5
j be Wil BXl e5
; endf or
Qit: Exi t Pgm

; DCB macro to quit program

Page 683

Chapter 12

Mai n endp
cseg ends
sseg segment para stack 'stack'
stk wor d 1024 dup (0)
sseg ends
zz7777s€g segnent para public 'zzzzzz'
Last Byt es db 16 dup (?)
zz772727s€g ends

end Mai n

12.7.2

Page 684

The 80x86 Enter and Leave Instructions

The following code (Ex12_2.asm on the companion CD-ROM) uses the 80x86 enter
and leave instructions to maintain a display in a block structured program. Assemble this
program with the “/Zi” option and load it into CodeView. Set breakpoints on the calls to
the Lex1, Lex2, Lex3, and Lex4 procedures. Run the program and when you encounter a
breakpoint, use the F8 key to single step into each procedure. Single step over the enter
instruction (to the following nop). Note the values of the bp and sp register before and after
the execution of the enter instruction.

For your lab report: explain the values in the bp and sp registers after executing each
enter instruction. Dump memory from ss:sp to about ss:sp+32 using a memory window or
the dw command in the command window. Describe the contents of the stack after the exe-
cution of each enter instruction.

After executing through the enter instruction in the Lex4 procedure, set a breakpoint
on each of the leave instructions. Run the program at full speed (using the F5 key) until
you hit each of these leave instructions. Note the values of the bp and sp registers before
and after the execution of each leave instruction. For your lab report: include these bp/sp
values in your lab report and explain them.

EX12_2.asm
Programto dermonstrate the ENTER and LEAVE instructions in Chapter 12.
; This programsimulates the followi ng Pascal code:

; program Ent er Leave;
; var i:integer;

procedure Lex1;
var j:integer;

procedure Lex2;
var Kk:integer;

procedure Lex3;
var mi nteger;

procedure Lex4;
var n:integer;
begi n

witeln(' Lex4");
for i:=0to 3 do
for j:=0to 2 do
wite(" ("0,)
witeln;
for ki= 1 dowto O do
for m=1 downto O do
for n:=0to 1 do
wite("(",m', ", k")),

beg

wp
di spl
di sp2

witeln;
end;

begi n {Lex3}

witeln(' Lex3');

for i :=0to 1 do
for j :=0to 1 do
for k :=0to 1 do
for m:=0to 1 do
witeln(i,j,k,m;
Lex4;
end; {Lex3}

begi n {Lex2}

witeln('Lex2");

for i := 1 downto O do
for j :=0to 1 do
for k := 1 downto O do
wite(i,j,k," ");
witeln;
Lex3;
end; {Lex2}

begi n {Lex1}

witeln(' Lex1");

end.

Lex2;
end; {Lex1}
in {Min (lex0)}
witeln(' Main Program);
Lex1;
.xli st
i ncl ude stdlib.a
includelib stdlib.lib
st
. 286
; Common equates all the procedures use:
textequ <word ptr>
textequ <word ptr [bp-2]>
textequ <word ptr [bp-4]>
textequ <word ptr [bp-6]>

di sp3

Procedures: Advanced Topics

; Al ow ENTER & LEAVE

Note: the data segnment and the stack segment are one and the same in this
program This is done to allow the use of the [bx] addressing node when

o oref
; sta
sseg
i

stk

sseg

cseg

;. Mai

erenci ng | ocal

ck segnent prefix.
segment para stack 'stack'
wor d ?
wor d 2046 dup (0)
ends
segment para public 'code'
assune cs:cseg, ds:sseg,

n's activation record | ooks like this:

SSISSeg

and internedi ate variables w thout having to use a

; Main programvari abl e.

Page 685

Chapter 12

Page 686

Mai n proc
nov ax, ss ; Make SS=DS to sinplify addressing
nov ds, ax ; (there will be no need to stick "SS:"
nov es, ax ; in front of addressing nodes |ike

; n [bx] ll) .

print
byt e "Main Progrant,cr,If,0
cal | Lex1

Qit: Exi t Pgm ; DCB macro to quit program

Mai n endp

; Lex1's activation record |ooks like this:

; | return address |

: | -on e |

; | Dynamc Link | < BP

; |-omommmeeee oo I

; | Lex1's AR Ptr | | Display

: S |

; | J Local var | <~ SP (BP-4)

: R et |

Lex1_J textequ <word ptr [bx-4]>

Lex1 proc near
enter 2, 1 ;A2 byte local variable at lex level 1.
nop ; Spacer instruction for single stepping
print
byt e "Lex1",cr,If,0
call Lex2
| eave
ret

Lex1 endp

; Lex2's activation record | ooks like this:

; | return address |

; |- oo I

; | Dynamc Link | < BP

; |-ommmmmeeee oo I

; | Lexl's ARPtr | |

; [----mmmmmmeee e | | Display

; | Lex2's ARPtr | |

; |-oommmmee oo I

; | K Local var | <- SP (BP-6)

; l=ommmmmemeeee I

witeln('Lex2");

; for i := 1 downto O do

; for j :=0to 1 do

; for k := 1 downto O do

; wite(i,j,k," ");

; witeln;

Lex3;

Lex2_k textequ <word ptr [bx-6]>

k textequ <word ptr [bp-6]>

Lex2 proc near
ent er 2, 2 ;A 2-byte local variable at lex |level 2.
nop ; Spacer instruction for single stepping
print
byt e "Lex2",cr,If,0
nmov i, 1

| return address |<- SP, BP

For Lpl :

For LpJ:
For LpK:

Lex2

Lex3's

Lex3_M

Lex3

For | Lp:
For Jl p:

For KLp:
For M_p:

nov bx, displ
nmov Lex1 J, O
nov k, 1

nov ax,

puti

nov bx, displ
nov ax, Lex1_J
puti

nov ax, k
puti

nov al, "'
put c

dec k

jns For LpK
nov bx, displ
inc Lex1_J
cnp Lexl J, 2
ib For LpJ
dec i

jns For Lpl
put cr

cal Lex3

| eave

ret

endp

Procedures: Advanced Topics

;"J" is at lex level one

;"K' is local

; Decrenment from 1->0 and quit
; if we hit -1.

activation record looks like this

return address

Dynamic Link | < BP
ewsmmr |

o smrr || osplay
ass]
e v N L ey

witel n(' Lex3");

for m:=0to 1 do

;2-byte variable at lex level 3.

; Spacer instruction for single stepping

for i :=0to 1 do
for j :=0to 1 do
for k :=0to 1 do
witeln(i,j,k,m;
Lex4;
textequ <word ptr [bx-8]>
textequ <word ptr [bp-8]>
proc near
enter 2, 3
nop
print
byt e "Lex3",cr,If,0
nov i, 0
nov bx, displ
nmov Lex1 J, O
nmov bx, disp2
mov Lex2 K, O
nmv m O
nmv ax,

Page 687

Chapter 12

Page 688

; Spacer instruction for single stepping

puti
nov bx, displ
nmov ax, Lex1_J
puti
nov bx, disp2
nov ax, Lex2_k
puti
nmov ax, m
puti
put cr
i nc m
cnp m 2
jb For M.p
nov bx, disp2
inc Lex2_K
cnp Lex2_K 2
jb For KLp
nov bx, displ
inc Lex1_J
cnp Lex1_J, 2
ib For JLp
i nc i
cnp i, 2
jb ForlLp
cal l Lex4
| eave
ret
Lex3 endp
; Lex4's activation record | ooks like this:
| return address |
; |---mmmmmmeees
; | Dynamic Link < BP
; |---mmmmmoe oo
: | Lexl's AR Ptr [
; |----ommmooooooe- |
; | Lex2's AR Ptr |
: R | Oisplay
; | Lex3's AR Ptr |
; |-o-oommmooooooe- |
: | Lex4's AR Ptr [
; |---ommmmme oo
: | N Local var <- SP (BP-10)
; |-=-mmmmmmmees
witeln(' Lex4');
; for i:=0to 3 do
; for j:=0to 2 do
X Wite(l(lyix'l'vjxl)l);
: writeln;
; for ki= 1 downto O do
; for m=1 downto O do
; for n:=0to 1 do
: wite("(".m", "Lk))
: witeln;
n textequ <word ptr [bp-10]>
Lex4 proc near
ent er 2, 4
nop
print
byt e "Lex4",cr,If,0

; 2-byte | ocal

vari abl e at

| ex |evel

4,

Procedures: Advanced Topics

nov i, O
For | Lp: nov bx, displ
nmov Lex1 J, O
For JLp: nov al, '
put c
nov ax, i
puti
nov al, ','
put c
nov ax, Lex1 J ;Note that BX still contains displ
puti
print
byt e "y ",0
i nc Lex1_J ;BX still contains displ
cnp Lex1 J, 3
ib ForJLp
i nc i
cnp i, 4
ib ForlLp
put cr
nov bx, disp2
nmov Lex2 K, 1
For KLp: nov bx, disp3
nmov Lex3 M 1
For M_p: nmv n, 0
For NLp: nov al, '
put c
nov bx, disp3
nmov ax, Lex3 M
puti
nov al, ','
put c
nov bx, disp2
nov ax, Lex2_K
puti
nmov al, ',
put c
nmov ax, n
put i
print
byt e "y ",0
i nc n
cnp n, 2
ib For NLp
nov bx, disp3
dec Lex3_M
jns For M_p
nov bx, disp2
dec Lex2_K
jns For KLp
| eave
ret
Lex4 endp
cseg ends
zzz77277S€g segnent para public 'zzzzzz'
Last Byt es db 16 dup (?)
z277727s€eg ends
end Mai n

Page 689

Chapter 12

12.7.3

Page 690

Parameter Passing Exercises

The following exercise demonstrates some simple parameter passing. This program

passes arrays by reference, word variables by value and by reference, and some functions
and procedure by reference. The program itself sorts two arrays using a generic sorting
algorithm. The sorting algorithm is generic because the main program passes it a compar-
ison function and a procedure to swap two elements if one is greater than the other.

Ex12_3.asm

Thi s program denmonstrates different paraneter passing methods.
It corresponds to the foll owi ng (pseudo) Pascal code:

pr ogram nai n;

; var i:integer;

a:array[0..255] of integer;
b: array[0..255] of unsigned,;

; function LTint(intl, int2:integer):bool ean;

begi n
LTint :=intl <int2;
end;

procedure Swaplnt(var intl, int2:integer);

; var tenp:integer;

begi n
tenp :=intl;
intl :=int2
int2 := tenp;
end;

; function LTunsi gned(unsl, uns2:unsigned): bool ean;

begi n
LTunsi gned : = unsl < uns2;
end;

procedure SwapUnsi gned(unsl, uns2:unsigned);

; var tenp:unsigned;

begi n
tenp := unsli,
unsl := uns2;
uns2 : = tenp;
end;

(* The following is a sinple Bubble sort that will sort arrays containing *)

sort (A, 256, LTint, Swaplnt);
sort (B, 256, LTunsigned, SwapUnsigned);

for i := 0 to 255 do

(* arbitrary data types. *)
procedure sort(data:array; elenments:integer; function LT: bool ean; procedure

swap) ;

;ovar i,j:integer;

; begin

: for i :=0to elenents-1 do

; for j :=i+1 to elenents do

; if (LT(data[j], data[i])) then swap(data[i], data[j]);

; end;

begi n

: for i :=0to 255 do A[i] := 128-i:

; for i :=0to 255 do B[i] := 255-i;

begi n

wp
ds
A

B
ds

Cs

if (i mod 8 =0 then witeln;

wite(Ai]:5);
end;
for i :=0 to 255 do
begi n
if (i mod 8 =0 then witeln;
wite(B[i]:5);
end;
end;
Xl st
i ncl ude stdlib.a
includelib stdlib.lib
st
. 386
option segnent : usel6
text equ <word ptr>
eg segment para public 'data'
wor d 256 dup (?)
wor d 256 dup (?)
eg ends
eg segment para public 'code'
assune cs: cseg, ds:dseg, ss:sseg

function LTint(intl, int2:integer):bool ean;
begi n

LTint :=intl <int2;
end;

LTint's activation record | ooks like this:

Procedures: Advanced Topics

| old BP |<- SP, BP
R |
intl textequ <word ptr [bp+6]>
int2 textequ <word ptr [bp+4]>
LTi nt proc near
push bp
nov bp, sp
nmov ax, intl ; Conpare the two paraneters
cnp ax, int2 ; and return true if intl<int2.
set| al ; Signed conpari son here.
nov ah, 0 ;Be sure to clear HQ byte.
pop bp
ret 4
LTi nt endp

Swap's activation record | ooks like this:

Page 691

Chapter 12

The tenporary variable is kept in a register.

Not e that swapping integers or unsigned integers can be done
with the sane code since the operations are identical for
ei ther type.

: procedure Swaplnt(var intl, int2:integer);
; var tenp:integer;
; begin

tenp :=intl;

intl :=int2

int2 := tenp;
end;

procedure SwapUnsi gned(unsl, uns2:unsigned);
var tenp:unsi gned;

begi n
tenp : = unsl;
unsl := uns2;
uns2 : = tenp;
end;
intl textequ <dword ptr [bp+8]>
int2 textequ <dword ptr [bp+4]>
Swapl nt proc near
push bp
nov bp, sp
push es
push bx
I es bx, intl ; Get address of intl variable.
nov ax, es:[bx] ;CGet intl' s value.
I es bx, int2 ; Get address of int2 variabl e.
xchg ax, es:[bx] ;Swap intl's value with int2's
I es bx, intl ;Get the address of intl and
nov es:[bx], ax ; store int2's value there.
pop bx
pop es
pop bp
ret 8
Swapl nt endp

LTunsi gned' s activation record | ooks |ike this:

function LTunsigned(unsl, uns2:unsigned): bool ean;

begi n
LTunsi gned : = unsl < uns2;
end;
unsl textequ <word ptr [bp+6]>
uns?2 textequ <word ptr [bp+4]>
LTunsi gned proc near

Page 692

cnp
setb
nov

pop
ret

LTunsi gned endp

Procedures: Advanced Topics

bp

bp, sp

ax, unsl ; Conpare unsl with uns2 and
ax, uns2 ; return true if unsl<uns2.

al ; Unsi gned conpari son.
ah, 0 ; Return 16-bit bool ean.

bp
4

Sort's activation record | ooks like this:

| old BP |<- SP, BP
R et |
procedure sort(data:array; elements:integer; function LT: bool ean; procedure
swap) ;
;ovar i,j:integer;
; begin
: for i :=0to elenents-1 do
; for j :=i+1 to elenents do
; if (LT(data[j], data[i])) then swap(data[i], data[j]);
; end;
data textequ <dword ptr [bp+10]>
el enent s textequ <word ptr [bp+8]>
funcLT textequ <word ptr [bp+6]>
pr ocSwap textequ <word ptr [bp+4]>
i textequ <word ptr [bp-2]>
] textequ <word ptr [bp-4]>
sort pr oc near
push bp
nov bp, sp
sub sp, 4
push es
push bx
nov i, 0
For I Lp: mov ax, i
inc i
cnp ax, Hements
j ae | Done
nmov j, ax
For JLp: nmov ax, |
cnp ax, Hements
ja JDone
I es bx, data ; Push the val ue of
nov si,] ; data[j] onto the
add si, si ; stack.

Page 693

Chapter 12

push es: [bx+si]
I es bx, data
nov Si, i
add si, si
push es: [bx+si]
cal FuncLT
cnp ax, 0
je Next J
push wp dat a+2
nov ax, i
add ax, ax
add ax, wp data
push ax
push wp dat a+2
nov ax, j
add ax, ax
add ax, wp data
push ax
call Pr ocSwap
Next J: inc j
jmp ForJLp
JDone: inc i
j mp ForlLp
| Done: pop bx
pop es
nov sp, bp
pop bp
ret 10
sort endp

Main's activation record | ooks |like this:

| return address |<- SP, BP

for i
for i

128-i;
33000-i ;

0 to 255 do Ali]
0 to 255 do B[i]
sort (A, 256, LTint, Swaplnt);

sort (B, 256, LTunsigned, SwapUnsigned);

: for i :=0 to 255 do

; Push the val ue of
; data[i] onto the
; stack.

;See if data[i] < data[j]
; Test bool ean resul t.

;Pass data[i] by reference.

;Pass data[j] by reference.

begi n
if (i mod 8) =0 then witeln;
wite(Ali]:5);

end;

for i :=0 to 255 do

begi n
if (i mod 8) =0 then witeln;
wite(B[i]:5);

end;

end;
Mai n proc

nov ax, dseg ;lnitialize the segnent registers.
nov ds, ax
nmov es, ax

; Note that the follow ng code nerges the two initialization for |oops

; into a single | oop.

mov ax, 128
nov bx, 0

Page 694

Procedures: Advanced Topics

nov cx, 33000
For | Lp: nov A bx], ax
nov B[bx], cx
add bx, 2
dec ax
dec cX
cnp bx, 256*2
ib ForlLp
push ds ; Seg address of A
push offset A ; OFfset of A
push 256 ;# of elements in A
push of fset LTint ; Address of conpare routine
push of fset Swapl nt ; Address of swap routine
cal | Sort
push ds ;Seg address of B
push offset B ; OFfset of B
push 256 ;# of elements in A
push of fset LTunsi gned ; Address of conpare routine
push of fset Swapl nt ; Address of swap routine
call Sort

; Print the values in A

nov bx, 0
For | Lp2: t est bx, OFh ;See if (I nod 8 =0
jnz Not Mod ; note: BX nod 16 = | nod 8.
put cr
Not Mod: nmov ax, Al bx]
nmov cx, 5
puti si ze
add bx, 2
cnp bx, 256*2
ib For | Lp2
; Print the values in B.
nov bx, 0
For | Lp3: t est bx, OFh ;See if (I nod 8 =0
jnz Not Mbd2 ; note: BX nmod 16 = 1 nod 8.
put cr
Not Mbd2: nmov ax, B[bx]
nmov cx, 5
put usi ze
add bx, 2
cnp bx, 256*2
ib For | Lp3
Qit: Exi t Pgm ; DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk wor d 256 dup (0)
sseg ends
zzz77277S€eg segnent para public 'zzzzzz'
Last Byt es db 16 dup (?)
z2772727s€egQ ends
end Mai n

12.8 Programming Projects

b

Write at iterator to which you pass an array of characters by reference. The iterator should
return an index into the array that points at a whitespace character (any ASCII code less
than or equal to a space) it finds. On each call, the iterator should return the index of the
next whitespace character. The iterator should fail if it encounters a byte containing the
value zero. Use local variables for any values the iterator needs.

Page 695

Chapter 12

2)

3)

4)

Page 696

Write a recursive routine that does the following:

function recursive(i:integer):integer;
var j,k:integer;

begi n
o=
k i=1i*i;
if (i >>0) then witeln(*AR Address =", Recursive(i-1));
witeln(i,” “,j," ‘,k);
recursive := Value in BP Regi ster;
end;

From your main program, call this procedure and pass it the value 10 on the stack. \Verify
that you get correct results back. Explain the results.

Write a program that contains a procedure to which you pass four parameters on the
stack. These should be passed by value, reference, value-result, and result, respectively
(for the value-result parameter, pass the address of the object on the stack). Inside that
procedure, you should call three other procedures that also take four parameters (each).
However, the first parameter should use pass by value for all four parameters; the second
procedure should use pass by reference for all four parameters; and the third should use
pass by value-result for all four parameters. Pass the four parameters in the enclosing pro-
cedure as parameters to each of these three child procedures. Inside the child procedures,
print the parameter’s values and change their results. Immediately upon return from each
of these child procedures, print the parameters’ values. Write a main program that passes
four local (to the main program) variables you’ve initialized with different values to the
first procedure above. Run the program and verify that it is operating correctly and that it
is passing the parameters to each of these procedures in a reasonable fashion.

Write a program that implements the following Pascal program in assembly language.
Assume that all program variables (including globals in the main program) are allocated
in activation records on the stack.

progr am nest 3;
var iinteger;

procedure A(K:integer);

procedure B(procedure c);
var mi nteger;

begi n
for m=0to 4 do c(m;

end; {B}

procedure D(n:integer);

begi n
for i:=0ton-1dowiteln(i);

end; {D

procedure E

begi n
witeln(*Astuff:’);
B(A);
witeln(*Dstuff:");
B(D;

end; {E

begin {A}
B(D):
witeln;

if k<2thenE

Procedures: Advanced Topics

end; {A
begi n {nest 3}

A0);
end; {nest3}

5) The program in Section 12.7.2 (Ex12_2.asm on the companion CD-ROM) uses the 80286
enter and leave instructions to maintain the display in each activation record. As pointed
out in Section 12.1.6, these instructions are quite slow, especially on 80486 and later pro-
cessors. Rewrite this code by replacing the enter and leave instructions with the
straight-line code that does the same job. In CodeView, single step through the program as
per the second laboratory exercise (Section 12.7.2) to verify that your stack frames are
identical to those the enter and leave instructions produce.

6) The generic Bubble Sort program in Section 12.7.3 only works with data objects that are
two bytes wide. This is because the Sort procedure passes the values of Data[l] and Data[J]
on the stack to the comparison routines (LTint and LTunsigned) and because the sort rou-
tine multiplies the i and j indexes by two when indexing into the data array. This is a
severe shortcoming to this generic sort routine. Rewrite the program to make it truly
generic. Do this by writing a “CompareAndSwap” routine that will replace the LT and
Swap calls. To CompareAndSwap you should pass the array (by reference) and the two
array indexes (i and j) to compare and possibly swap. Write two versions of the
CompareAndSwap routine, one for unsigned integers and one for signed integers. Run

this program and verify that your implementation works properly.

12.9 Summary

Block structured languages, like Pascal, provide access to non-local variables at differ-
ent lex levels. Accessing non-local variables is a complex task requiring special data struc-
tures such as a static link chain or a display. The display is probably the most efficient way
to access non-local variables. The 80286 and later processors provide special instructions,
enter and leave for maintaining a display list, but these instructions are too slow for most
common uses. For additional details, see

= “Lexical Nesting, Static Links, and Displays” on page 639

= “Scope” on page 640

- “Static Links” on page 642

= “Accessing Non-Local Variables Using Static Links” on page 647

< “The Display” on page 648

e “The 80286 ENTER and LEAVE Instructions” on page 650

= “Passing Variables at Different Lex Levels as Parameters.” on page 652
= “Passing Parameters as Parameters to Another Procedure” on page 655
= “Passing Procedures as Parameters” on page 659

Iterators are a cross between a function and a looping construct. They are a very pow-
erful programming construct available in many very high level languages. Efficient imple-
mentation of iterators involves careful manipulation of the stack at run time. To see how
to implement iterators, read the following sections:

= “lterators” on page 663

< “Implementing Iterators Using In-Line Expansion” on page 664
« “Implementing Iterators with Resume Frames” on page 666

< “An Example of an Iterator” on page 669

= “Another Iterator Example” on page 673

Page 697

Chapter 12

12.10 Questions

b
2)
3)
4)
5

6)
7)
8)
9)

10)

11)

12)

13)

Page 698

What is an iterator?

What is a resume frame?

How do the iterators in this chapter implement the success and failure results?

What does the stack look like when executing the body of a loop controlled by an iterator?
What is a static link?

What is a display?

Describe how to access a non-local variable when using static links.

Describe how to access a non-local variable when using a display.

How would you access a non-local variable when using the display built by the 80286
ENTER instruction?

Draw a picture of the activation record for a procedure at lex level 4 that uses the ENTER
instruction to build the display.

Explain why the static links work better than a display when passing procedures and
functions as parameters.

Suppose you want to pass an intermediate variable by value-result using the technique
where you push the value before calling the procedure and then pop the value (storing it
back into the intermediate variable) upon return from the procedure. Provide two exam-
ples, one using static links and one using a display, that implement pass by value-result in
this fashion.

Convert the following (pseudo) Pascal code into 80x86 assembly language. Assume Pascal
supports pass by name and pass by lazy evaluation parameters as suggested by the fol-
lowing code.

pr ogram mai n;
var Kk:integer;

procedure one(LazyEval i:integer);
begi n

witeln(i);
end;

procedure two(nane j:integer);
begi n

one(j);
end;
begi n {mai n}

two(k);
end;

