Floating Point Arithmetic Chapter 14

Although integers provide an exact representation for numeric values, they suffer
from two major drawbacks: the inability to represent fractional values and a limited
dynamic range. Floating point arithmetic solves these two problems at the expense of
accuracy and, on some processors, speed. Most programmers are aware of the speed loss
associated with floating point arithmetic; however, they are blithely unware of the prob-
lems with accuracy.

For many applications, the benefits of floating point outweigh the disadvantages.
However, to properly use floating point arithmetic in any program, you must learn how
floating point arithmetic operates. Intel, understanding the importance of floating point
arithmetic in modern programs, provided support for floating point arithmetic in the ear-
liest designs of the 8086 — the 80x87 FPU (floating point unit or math coprocessor). How-
ever, on processors eariler than the 80486 (or on the 80486sx), the floating point processor
is an optional device; it this device is not present you must simulate it in software.

This chapter contains four main sections. The first section discusses floating point
arithmetic from a mathematical point of view. The second section discusses the binary
floating point formats commonly used on Intel processors. The third discusses software
floating point and the math routines from the UCR Standard Library. The fourth section
discusses the 80x87 FPU chips.

14.0 Chapter Overview

This chapter contains four major sections: a description of floating point formats and
operations (two sections), a discussion of the floating point support in the UCR Standard
Library, and a discussion of the 80x87 FPU (floating point unit). The sections below that
have a “=” prefix are essential. Those sections with a “0” discuss advanced topics that you
may want to put off for a while.

= The mathematics of floating point arithmetic.
= |EEE floating point formats.

= The UCR Standard Library floating point routines.
= The 80x87 floating point coprocessors.

< FPU data movement instructions.

o Conversions.

Arithmetic instructions.

Comparison instructions.

Constant instructiuons.

Transcendental instructions.

Miscellaneous instructions.

Integer operations.

Additional trigonometric functions.

ocoooo ¢

14.1 The Mathematics of Floating Point Arithmetic

A big problem with floating point arithmetic is that it does not follow the standard
rules of algebra. Nevertheless, many programmers apply normal algebraic rules when
using floating point arithmetic. This is a source of bugs in many programs. One of the pri-
mary goals of this section is to describe the limitations of floating point arithmetic so you
will understand how to use it properly.

Normal algebraic rules apply only to infinte precision arithmetic. Consider the simple
statement x:=x+1, X is an integer. On any modern computer this statement follows the nor-
mal rules of algebra as long as overflow does not occur. That is, this statement is valid only for

Page 771

Chapter 14

+ et

Figure 14.1 Simple Floating Point Format

Page 772

certain values of x (minint <= x < maxint). Most programmers do not have a problem with
this because they are well aware of the fact that integers in a program do not follow the
standard algebraic rules (e.g., 5/2 # 2.5).

Integers do not follow the standard rules of algebra because the computer represents
them with a finite number of bits. You cannot represent any of the (integer) values above
the maximum integer or below the minimum integer. Floating point values suffer from
this same problem, only worse. After all, the integers are a subset of the real numbers.
Therefore, the floating point values must represent the same infinite set of integers. How-
ever, there are an infinite number of values between any two real values, so this problem
is infinitely worse. Therefore, as well as having to limit your values between a maximum
and minimum range, you cannot represent all the values between those two ranges,
either.

To represent real numbers, most floating point formats employ scientific notation and
use some number of bits to represent a mantissa and a smaller number of bits to represent
an exponent. The end result is that floating point numbers can only represent numbers
with a specific number of significant digits. This has a big impact on how floating point
arithmetic operations. To easily see the impact of limited precision arithmetic, we will
adopt a simplified decimal floating point format for our examples. Our floating point for-
mat will provide a mantissa with three significant digits and a decimal exponent with two
digits. The mantissa and exponents are both signed values (see Figure 14.1).

When adding and subtracting two numbers in scientific notation, you must adjust the
two values so that their exponents are the same. For example, when adding 1.23el and
4.56e0, you must adjust the values so they have the same exponent. One way to do this is
to to convert 4.56e0 to 0.456el and then add. This produces 1.686el. Unfortunately, the
result does not fit into three significant digits, so we must either round or truncate the
result to three significant digits. Rounding generally produces the most accurate result, so
let’s round the result to obtain 1.69el. As you can see, the lack of precision (the number of
digits or bits we maintain in a computation) affects the accuracy (the correctness of the
computation).

In the previous example, we were able to round the result because we maintained four
significant digits during the calculation. If our floating point calculation is limited to three
significant digits during computation, we would have had to truncate the last digit of the
smaller number, obtaining 1.68el which is even less correct. Extra digits available during a
computation are known as guard digits (or guard bits in the case of a binary format). They
greatly enhance accuracy during a long chain of computations.

The accuracy loss during a single computation usually isn’t enough to worry about
unless you are greatly concerned about the accuracy of your computations. However, if
you compute a value which is the result of a sequence of floating point operations, the
error can accumulate and greatly affect the computation itself. For example, suppose we
were to add 1.23e3 with 1.00e0. Adjusting the numbers so their exponents are the same
before the addition produces 1.23e3 + 0.001e3. The sum of these two values, even after
rounding, is 1.23e3. This might seem perfectly reasonable to you; after all, we can only
maintain three significant digits, adding in a small value shouldn’t affect the result at all.
However, suppose we were to add 1.00e0 1.23e3 ten times. The first time we add 1.00e0 to
1.23e3 we get 1.23e3. Likewise, we get this same result the second, third, fourth, ..., and
tenth time we add 1.00e0 to 1.23e3. On the other hand, had we added 1.00e0 to itself ten
times, then added the result (1.00el) to 1.23e3, we would have gotten a different result,
1.24e3. This is the most important thing to know about limited precision arithmetic:

Floating Point Arithmetic

The order of evaluation can effect the accuracy of the result.

You will get more accurate results if the relative magnitudes (that is, the exponents)
are close to one another. If you are performing a chain calculation involving addition and
subtraction, you should attempt to group the values appropriately.

Another problem with addition and subtraction is that you can wind up with false pre-
cision. Consider the computation 1.23e0 - 1.22 e0. This produces 0.01e0. Although this is
mathematically equivalent to 1.00e-2, this latter form suggests that the last two digits are
exactly zero. Unfortunately, we’ve only got a single significant digit at this time. Indeed,
some FPUs or floating point software packages might actually insert random digits (or
bits) into the L.O. positions. This brings up a second important rule concerning limited
precision arithmetic:

Whenever subtracting two numbers with the same signs or adding two numbers
with different signs, the accuracy of the result may be less than the precision
available in the floating point format.

Multiplication and division do not suffer from the same problems as addition and
subtraction since you do not have to adjust the exponents before the operation; all you
need to do is add the exponents and multiply the mantissas (or subtract the exponents
and divide the mantissas). By themselves, multiplication and division do not produce par-
ticularly poor results. However, they tend to multiply any error which already exists in a
value. For example, if you multiply 1.23e0 by two, when you should be multiplying 1.24e0
by two, the result is even less accurate. This brings up a third important rule when work-
ing with limited precision arithmetic:

When performing a chain of calculations involving addition, subtraction, multi-
plication, and division, try to perform the multiplication and division operations
first.

Often, by applying normal algebraic transformations, you can arrange a calculation so
the multiply and divide operations occur first. For example, suppose you want to com-
pute x*(y+z). Normally you would add y and z together and multiply their sum by x.
However, you will get a little more accuracy if you transform x*(y+z) to get x*y+x*z and
compute the result by performing the multiplications first.

Multiplication and division are not without their own problems. When multiplying
two very large or very small numbers, it is quite possible for overflow or underflow to
occur. The same situation occurs when dividing a small number by a large number or
dividing a large number by a small number. This brings up a fourth rule you should
attempt to follow when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange the multiplica-
tions so that they multiply large and small numbers together; likewise, try to
divide numbers that have the same relative magnitudes.

Comparing floating pointer numbers is very dangerous. Given the inaccuracies
present in any computation (including converting an input string to a floating point
value), you should never compare two floating point values to see if they are equal. In a
binary floating point format, different computations which produce the same (mathemati-
cal) result may differ in their least significant bits. For example, adding 1.31e0+1.69e0
should produce 3.00e0. Likewise, adding 2.50e0+1.50e0 should produce 3.00e0. However,
were you to compare (1.31e0+1.69e0) agains (2.50e0+1.50e0) you might find out that these
sums are not equal to one another. The test for equality succeeds if and only if all bits (or
digits) in the two operands are exactly the same. Since this is not necessarily true after two
different floating point computations which should produce the same result, a straight
test for equality may not work.

The standard way to test for equality between floating point numbers is to determine
how much error (or tolerance) you will allow in a comparison and check to see if one
value is within this error range of the other. The straight-forward way to do this is to use a
test like the following:

if Valuel >= (Value2-error) and Valuel <= (Val ue2+error) then ...

Page 773

Chapter 14

Another common way to handle this same comparison is to use a statement of the form:

i f abs(Val uel-Value2) <= error then ...

Most texts, when discussing floating point comparisons, stop immediately after dis-
cussing the problem with floating point equality, assuming that other forms of compari-
son are perfectly okay with floating point numbers. This isn’t true! If we are assuming that
x=y if x is within yzerror, then a simple bitwise comparison of x and y will claim that x<y
if y is greater than x but less than y+error. However, in such a case x should really be
treated as equal to y, not less than y. Therefore, we must always compare two floating
point numbers using ranges, regardless of the actual comparison we want to perform. Try-
ing to compare two floating point numbers directly can lead to an error. To compare two
floating point numbers, x and y, against one another, you should use one of the following
forms:

if abs(x-y) <= error then ...
if abs(x-y) > error then ...
if (x-y) <error then ...
if (x-y) <= error then ...
if (x-y) >error then ...
if (x-y) >= error then ...

vV VIANAN I

You must exercise care when choosing the value for error. This should be a value
slightly greater than the largest amount of error which will creep into your computations.
The exact value will depend upon the particular floating point format you use, but more
on that a little later. The final rule we will state in this section is

When comparing two floating point numbers, always compare one value to see if
it is in the range given by the second value plus or minus some small error value.

There are many other little problems that can occur when using floating point values.
This text can only point out some of the major problems and make you aware of the fact
that you cannot treat floating point arithmetic like real arithmetic — the inaccuracies
present in limited precision arithmetic can get you into trouble if you are not careful. A
good text on numerical analysis or even scientific computing can help fill in the details
which are beyond the scope of this text. If you are going to be working with floating point
arithmetic, in any language, you should take the time to study the effects of limited preci-
sion arithmetic on your computations.

14.2 |EEE Floating Point Formats

When Intel planned to introduce a floating point coprocessor for their new 8086
microprocessor, they were smart enough to realize that the electrical engineers and
solid-state physicists who design chips were, perhaps, not the best people to do the neces-
sary numerical analysis to pick the best possible binary representation for a floating point
format. So Intel went out and hired the best numerical analyst they could find to design a
floating point format for their 8087 FPU. That person then hired two other experts in the
field and the three of them (Kahn, Coonan, and Stone) designed Intel’s floating point for-
mat. They did such a good job designing the KCS Floating Point Standard that the IEEE
organization adopted this format for the IEEE floating point format®.

To handle a wide range of performance and accuracy requirements, Intel actually
introduced three floating point formats: single precision, double precision, and extended
precision. The single and double precision formats corresponded to C’s float and double
types or FORTRAN'’s real and double precision types. Intel intended to use extended pre-
cision for long chains of computations. Extended precision contains 16 extra bits that the

1. There were some minor changes to the way certain degenerate operations were handled, but the bit representa-
tion remained essentially unchanged.

Page 774

Floating Point Arithmetic

31 23 15 7 0
MEEEEEEs T T I J I Tr Trrrirrid
Sign Exponent Bits Mantissa Bits

Bit

The 24'[h mantissa bit is
implied and is always one.

Figure 14.2 32 Bit Single Precision Floating Point Format

calculations could use for guard bits before rounding down to a double precision value
when storing the result.

The single precision format uses a one’s complement 24 bit mantissa and an eight bit
excess-128 exponent. The mantissa usually represents a value between 1.0 to just under
2.0. The H.O. bit of the mantissa is always assumed to be one and represents a value just to
the left of the binary point>. The remaining 23 mantissa bits appear to the right of the
binary point. Therefore, the mantissa represents the value:

1. mmmmmm M mmmmmmmm

The “mmmm...” characters represent the 23 bits of the mantissa. Keep in mind that we are
working with binary numbers here. Therefore, each position to the right of the binary
point represents a value (zero or one) times a successive negative power of two. The
implied one bit is always multiplied by 2°, which is one. This is why the mantissa is
always greater than or equal to one. Even if the other mantissa bits are all zero, the
implied one bit always gives us the value one®. Of course, even if we had an almost infi-
nite number of one bits after the binary point, they still would not add up to two. This is
why the mantissa can represent values in the range one to just under two.

Although there are an infinite number of values between one and two, we can only
represent eight million of them because we a 23 bit mantissa (the 24" bit is always one).
This is the reason for inaccuracy in floating point arithmetic — we are limited to 23 bits of
precision in compuations involving single precision floating point values.

The mantissa uses a one’s complement format rather than two’s complement. This
means that the 24 bit value of the mantissa is simply an unsigned binary number and the
sign bit determines whether that value is positive or negative. One’s complement num-
bers have the unusual property that there are two representations for zero (with the sign
bit set or clear). Generally, this is important only to the person designing the floating point
software or hardware system. We will assume that the value zero always has the sign bit
clear.

To represent values outside the range 1.0 to just under 2.0, the exponent portion of the
floating point format comes into play. The floating point format raise two to the power
specified by the exponent and then multiplies the mantissa by this value. The exponent is
eight bits and is stored in an excess-127 format. In excess-127 format, the exponent 20 is
represented by the value 127 (7fh). Therefore, to convert an exponent to excess-127 format
simply add 127 to the exponent value. The use of excess-127 format makes it easier to
compare floating point values. The single precision floating point format takes the form
shown in Figure 14.2.

With a 24 bit mantissa, you will get approximately 6-1/2 digits of precision (one half
digit of precision means that the first six digits can all be in the range 0..9 but the seventh
digit can only be in the range 0..x where x<9 and is generally close to five). With an eight

2. The binary point is the same thing as the decimal point except it appears in binary numbers rather than decimal
numbers.

3. Actually, this isn’t necessarily true. Thye IEEE floating point format supports denormalized values where the
H.O. bit is not zero. However, we will ignore denormalized values in our discussion.

Page 775

Chapter 14

63 52 7 0
15 5 N e 0
Sign Exponent Bits Mantissa Bits

Bit

The 53 mantissa bit is
implied and is always one.

Figure 14.3 64 Bit Double Precision Floating Point Format

79 64 7 0
155 5 N e 0
Sign Exponent Bits Mantissa Bits

Bit

Figure 14.4 80 Bit Extended Precision Floating Point Format

Page 776

bit excess-128 exponent, the dynamic range of single precision floating point numbers is
approximately 2£28 or about 10*%8.

Although single precision floating point numbers are perfectly suitable for many
applications, the dynamic range is somewhat small for many scientific applications and
the very limited precision is unsuitable for many financial, scientific, and other applica-
tions. Furthermore, in long chains of computations, the limited precision of the single pre-
cision format may introduce serious error.

The double precision format helps overcome the problems of single preicision floating
point. Using twice the space, the double precision format has an 11-bit excess-1023 expo-
nent and a 53 bit mantissa (with an implied H.O. bit of one) plus a sign bit. This provides
a dynamic range of about 10*3%®and 14-1/, digits of precision, sufficient for most applica-
tions. Double precision floating point values take the form shown in Figure 14.3.

In order to help ensure accuracy during long chains of computations involving dou-
ble precision floating point numbers, Intel designed the extended precision format. The
extended precision format uses 80 bits. Twelve of the additional 16 bits are appended to
the mantissa, four of the additional bits are appended to the end of the exponent. Unlike
the single and double precision values, the extended precision format does not have an
implied H.O. bit which is always one. Therefore, the extended precision format provides a
64 bit mantissa, a 15 bit excess-16383 exponent, and a one bit sign. The format for the
extended precision floating point value is shown in Figure 14.4.

On the 80x87 FPUs and the 80486 CPU, all computations are done using the extended
precision form. Whenever you load a single or double precision value, the FPU automati-
cally converts it to an extended precision value. Likewise, when you store a single or dou-
ble precision value to memory, the FPU automatically rounds the value down to the
appropriate size before storing it. By always working with the extended precision format,
Intel guarantees a large number of guard bits are present to ensure the accuracy of your
computations. Some texts erroneously claim that you should never use the extended pre-
cision format in your own programs, because Intel only guarantees accurate computations
when using the single or double precision formats. This is foolish. By performing all com-
putations using 80 bits, Intel helps ensure (but not guarantee) that you will get full 32 or
64 bit accuracy in your computations. Since the 80x87 FPUs and 80486 CPU do not pro-
vide a large number of guard bits in 80 bit computations, some error will inevitably creep
into the L.O. bits of an extended precision computation. However, if your computation is
correct to 64 bits, the 80 bit computation will always provide at least 64 accurate bits. Most
of the time you will get even more. While you cannot assume that you get an accurate 80

Floating Point Arithmetic

bit computation, you can usually do better than 64 when using the extended precision for-
mat.

To maintain maximum precision during computation, most computations use normal-
ized values. A normalized floating point value is one that has a H.O. mantissa bit equal to
one. Almost any non-normalized value can be normalized by shifting the mantissa bits to
the left and decrementing the exponent by one until a one appears in the H.O. bit of the
mantissa. Remember, the exponent is a binary exponent. Each time you increment the
exponent, you multiply the floating point value by two. Likewise, whenever you decre-
ment the exponent, you divide the floating point value by two. By the same token, shifting
the mantissa to the left one bit position multiplies the floating point value by two; like-
wise, shifting the mantissa to the right divides the floating point value by two. Therefore,
shifting the mantissa to the left one position and decrementing the exponent does not
change the value of the floating point number at all.

Keeping floating point numbers normalized is beneficial because it maintains the
maximum number of bits of precision for a computation. If the H.O. bits of the mantissa
are all zero, the mantissa has that many fewer bits of precision available for computation.
Therefore, a floating point computation will be more accurate if it involves only normal-
ized values.

There are two important cases where a floating point number cannot be normalized.
The value 0.0 is a special case. Obviously it cannot be normalized because the floating
point representation for zero has no one bits in the mantissa. This, however, is not a prob-
lem since we can exactly represent the value zero with only a single bit.

The second case is when we have some H.O. bits in the mantissa which are zero but
the biased exponent is also zero (and we cannot decrement it to normalize the mantissa).
Rather than disallow certain small values, whose H.O. mantissa bits and biased exponent
are zero (the most negative exponent possible), the IEEE standard allows special
denormalized values to represent these smaller values*. Although the use of denormalized
values allows IEEE floating point computations to produce better results than if under-
flow occurred, keep in mind that denormalized values offer less bits of precision and are
inherently less accurate.

Since the 80x87 FPUs and 80486 CPU always convert single and double precision val-
ues to extended precision, extended precision arithmetic is actually faster than single or
double precision. Therefore, the expected performance benefit of using the smaller for-
mats is not present on these chips. However, when designing the Pentium/586 CPU, Intel
redesigned the built-in floating point unit to better compete with RISC chips. Most RISC
chips support a native 64 bit double precision format which is faster than Intel’s extended
precision format. Therefore, Intel provided native 64 bit operations on the Pentium to bet-
ter compete against the RISC chips. Therefore, the double precision format is the fastest on
the Pentium and later chips.

14.3 The UCR Standard Library Floating Point Routines

In most assembly language texts, which bother to cover floating point arithmetic, this
section would normally describe how to design your own floating point routines for addi-
tion, subtraction, multiplication, and division. This text will not do that for several rea-
sons. First, to design a good floating point library requires a solid background in numerical
analysis; a prerequisite this text does not assume of its readers. Second, the UCR Standard
Library already provides a reasonable set of floating point routines in source code form;
why waste space in this text when the sources are readily available elsewhere? Third,
floating point units are quickly becoming standard equipment on all modern CPUs or
motherboards; it makes no more sense to describe how to manually perform a floating
point computation than it does to describe how to manually perform an integer computa-
tion. Therefore, this section will describe how to use the UCR Standard Library routines if

4. The alternative would be to underflow the values to zero.

Page 777

Chapter 14

you do not have an FPU available; a later section will describe the use of the floating point
unit.

The UCR Standard Library provides a large number of routines to support floating
point computation and I/0. This library uses the same memory format for 32, 64, and 80
bit floating point numbers as the 80x87 FPUs. The UCR Standard Library’s floating point
routines do not exactly follow the IEEE requirements with respect to error conditions and
other degenerate cases, and it may produce slightly different results than an 80x87 FPU,
but the results will be very close®. Since the UCR Standard Library uses the same memory
format for 32, 64, and 80 bit numbers as the 80x87 FPUs, you can freely mix computations
involving floating point between the FPU and the Standard Library routines.

The UCR Standard Library provides numerous routines to manipulate floating point
numbes. The following sections describe each of these routines, by category.

1431

Load and Store Routines

Since 80x86 CPUs without an FPU do not provide any 80-bit registers, the UCR Stan-
dard Library must use memory-based variables to hold floating point values during com-
putation. The UCR Standard Library routines use two pseudo registers, an accumlator
register and an operand register, when performing floating point operations. For example,
the floating point addition routine adds the value in the floating point operand register to
the floating point accumulator register, leaving the result in the accumulator. The load and
store routines allow you to load floating point values into the floating point accumulator
and operand registers as well as store the value of the floating point accumulator back to
memory. The routines in this category include accop, xaccop, Isfpa, ssfpa, Idfpa, sdfpa, lefpa,
sefpa, lefpal, Isfpo, Idfpo, lefpo, and lefpol.

The accop routine copies the value in the floating point accumulator to the floating
point operand register. This routine is useful when you want to use the result of one com-
putation as the second operand of a second computation.

The xaccop routine exchanges the values in the floating point accumuator and oper-
and registers. Note that many floating point computations destory the value in the float-
ing point operand register, so you cannot blindly assume that the routines preserve the
operand register. Therefore, calling this routine only makes sense after performing some
computation which you know does not affect the floating point operand register.

Lsfpa, ldfpa, and lefpa load the floating point accumulator with a single, double, or
extended precision floating point value, respectively. The UCR Standard Library uses its
own internal format for computations. These routines convert the specified values to the
internal format during the load. On entry to each of these routines, es:di must contain the
address of the variable you want to load into the floating point accumulator. The follow-
ing code demonstrates how to call these routines:

r Var real 4 1.0
dr Var real 8 2.0
Xr Var real 10 3.0

| esi r Var

| sf pa

| esi dr Var

| df pa

5. Note, by the way, that different floating point chips, especially across different CPU lines, but even within the
Intel family, produce slightly different results. So the fact that the UCR Standard Library does not produce the
exact same results as a particular FPU is not that important.

Page 778

Floating Point Arithmetic

| esi xr Var
| ef pa

The Isfpo, Idfpo, and lefpo routines are similar to the Isfpa, Idfpa, and lefpa routines
except, of course, they load the floating point operand register rather than the floating
point accumulator with the value at address es:di.

Lefpal and lefpol load the floating point accumulator or operand register with a literal
80 bit floating point constant appearing in the code stream. To use these two routines, sim-
ply follow the call with a real10 directive and the appropriate constant, e.g.,

| ef pal

real 10 1.0

| ef pol

real 10 2. 0e5

The ssfpa, sdfpa, and sefpa routines store the value in the floating point accumulator
into the memory based floating point variable whose address appears in es:di. There are
no corresponding ssfpo, sdfpo, or sefpo routines because a result you would want to store
should never appear in the floating point operand register. If you happen to get a value in
the floating point operand that you want to store into memory, simply use the xaccop rou-
tine to swap the accumulator and operand registers, then use the store accumulator rou-
tines to save the result. The following code demonstrates the use of these routines:

r Var real 4 1.0
dr Var real 8 2.0
xr Var real 10 3.0
| esi r Var
ssf pa
| esi dr Var
sdf pa
| esi Xr Var
sef pa

14.3.2

Integer/Floating Point Conversion

The UCR Standard Library includes several routines to convert between binary inte-
gers and floating point values. These routines are itof, utof, Itof, ultof, ftoi, ftou, ftol, and ftoul.
The first four routines convert signed and unsigned integers to floating point format, the
last four routines truncate floating point values and convert them to an integer value.

Itof converts the signed 16-bit value in ax to a floating point value and leaves the result
in the floating point accumulator. This routine does not affect the floating point operand
register. Utof converts the unsigned integer in ax in a similar fashion. Ltof and ultof convert
the 32 bit signed (ltof) or unsigned (ultof) integer in dx:ax to a floating point value, leaving
the value in the floating point accumulator. These routines always succeed.

Ftoi converts the value in the floating point accumulator to a signed integer value,
leaving the result in ax. Conversion is by truncation; this routine keeps the integer portion
and throws away the fractional part. If an overflow occurs because the resulting integer
portion does not fit into 16 bits, ftoi returns the carry flag set. If the conversion occurs with-
out error, ftoi return the carry flag clear. Ftou works in a similar fashion, except it converts
the floating point value to an unsigned integer in ax; it returns the carry set if the floating
point value was negative.

Ftol and ftoul converts the value in the floating point accumulator to a 32 bit integer
leaving the result in dx:ax. Ftol works on signed values, ftoul works with unsigned values.
As with ftoi and ftou, these routines return the carry flag set if a conversion error occurs.

Page 779

Chapter 14

14.3.3

Floating Point Arithmetic

Floating point arithmetic is handled by the fpadd, fp sub, fpcmp, fpmul, and fpdiv rou-
tines. Fpadd adds the value in the floating point accumulator to the floating point accumu-
lator. Fpsub subtracts the value in the floating point operand from the floating point
accumulator. Fpmul multiplies the value in the floating accumulator by the floating point
operand. Fpdiv divides the value in the floating point accumulator by the value in the
floating point operand register. Fpcmp compares the value in the floating point accumula-
tor against the floating point operand.

The UCR Standard Library arithmetic routines do very little error checking. For exam-
ple, if arithmetic overflow occurs during addition, subtraction, multiplication, or division,
the Standard Library simply sets the result to the largest legal value and returns. This is
one of the major deviations from the IEEE floating point standard. Likewise, when under-
flow occurs the routines simply set the result to zero and return. If you divide any value
by zero, the Standard Library routines simply set the result to the largest possible value
and return. You may need to modify the standard library routines if you need to check for
overflow, underflow, or division by zero in your programs.

The floating point comparison routine (focmp) compares the floating point accumula-
tor against the floating point operand and returns -1, 0, or 1 in the ax register if the accu-
mulator is less than, equal, or greater than the floating point operand. It also compares ax
with zero immediately before returning so it sets the flags so you can use the jg, jge, jl, jle,
je, and jne instructions immediately after calling focmp. Unlike fpadd, fpsub, fomul, and fpdiv,
fpcmp does not destroy the value in the floating point accumulator or the floating point
operand register. Keep in mind the problems associated with comparing floating point
numbers!

14.3.4

Page 780

Float/Text Conversion and Printff

The UCR Standard Library provides three routines, ftoa, etoa, and atof, that let you
convert floating point numbers to ASCII strings and vice versa,; it also provides a special
version of printf, printff, that includes the ability to print floating point values as well as
other data types.

Ftoa converts a floating point number to an ASCII string which is a decimal represen-
tation of that floating point number. On entry, the floating point accumulator contains the
number you want to convert to a string. The es:di register pair points at a buffer in mem-
ory where ftoa will store the string. The al register contains the field width (number of
print positions). The ah register contains the number of positions to display to the right of
the decimal point. If ftoa cannot display the number using the print format specified by al
and ah, it will create a string of “#” characters, ah characters long. Es:di must point at a
byte array containing at least al+1 characters and al should contain at least five. The field
width and decimal length values in the al and ah registers are similar to the values
appearing after floating point numbers in the Pascal write statement, e.g.,

wite(floatVal:al:ah);

Etoa outputs the floating point number in exponential form. As with ftoa, es:di points
at the buffer where etoa will store the result. The al register must contain at least eight and
is the field width for the number. If al contains less than eight, etoa will output a string of
“#” characters. The string that es:di points at must contain at least al+1 characters. This
conversion routine is similar to Pascal’s write procedure when writing real values with a
single field width specification:

wite(realvar:al);

The Standard Library printff routine provides all the facilities of the standard printf
routine plus the ability to handle floating point output. The printff routine includes sev-

Floating Point Arithmetic

eral new format specifications to print floating point numbers in decimal form or using
scientific notation. The specifications are

= %x.yF Prints a 32 bit floating point number in decimal form.
= %x.yGF Prints a 64 bit floating point number in decimal form.
e %Xx.yLF Prints an 80 bit floating point number in decimal form.

- %zE Prints a 32 bit floating point number using scientific notation.
- %zGE Prints a 64 bit floating point number using scientific notation.
- %zLE Prints an 80 bit floating point value using scientific notation.

In the format strings above, x and z are integer constants that denote the field width of the
number to print. The y item is also an integer constant that specifies the number of posi-
tions to print after the decimal point. The x.y values are comparable to the values passed
to ftoa in al and ah. The z value is comparable to the value etoa expects in the al register.

Other than the addition of these six new formats, the printff routine is identical to the
printf routine. If you use the printff routine in your assembly language programs, you
should not use the printf routine as well. Printff duplicates all the facilities of printf and using
both would only waste memory.

14.4 The 80x87 Floating Point Coprocessors

When the 8086 CPU first appeared in the late 1970’s, semiconductor technology was
not to the point where Intel could put floating point instrutions directly on the 8086 CPU.
Therefore, they devised a scheme whereby they could use a second chip to perform the
floating point calculations — the floating point unit (or FPU)G. They released their original
floating point chip, the 8087, in 1980. This particular FPU worked with the 8086, 8088,
80186, and 80188 CPUs. When Intel introduced the 80286 CPU, they released a redesigned
80287 FPU chip to accompany it. Although the 80287 was compatible with the 80386 CPU,
Intel designed a better FPU, the 80387, for use in 80386 systems. The 80486 CPU was the
first Intel CPU to include an on-chip floating point unit. Shortly after the release of the
80486, Intel introduced the 80486sx CPU that was an 80486 without the built-in FPU. To
get floating point capabilities on this chip, you had to add an 80487 chip, although the
80487 was really nothing more than a full-blown 80486 which took over for the “sx chip
in the system. Intel’s Pentium/586 chips provide a high-performance floating point unit
directly on the CPU. There is no floating point coprocessor available for the Pentium chip.

Collectively, we will refer to all these chips as the 80x87 FPU. Given the obsolesence of
the 8086, 80286, 8087, and 80287 chips, this text will concentrate on the 80387 and later
chips. There are some differences between the 80387/80486/Pentium floating point units
and the earlier FPUs. If you need to write code that will execute on those earlier machines,
you should consult the appropriate Intel documentation for those devices.

14.4.1 FPU Registers

The 80x87 FPUs add 13 registers to the 80386 and later processors: eight floating point
data registers, a control register, a status register, a tag register, an instruction pointer, and
a data pointer. The data registers are similar to the 80x86’s general purpose register set
insofar as all floating point calculations take place in these registers. The control register
contains bits that let you decide how the 80x87 handles certain degenerate cases like
rounding of inaccurate computations, control precision, and so on. The status register is
similar to the 80x86’s flags register; it contains the condition code bits and several other
floating point flags that describe the state of the 80x87 chip. The tag register contains sev-
eral groups of bits that determine the state of the value in each of the eight general pur-
pose registers. The instruction and data pointer registers contain certain state information

6. Intel has also refered to this device as the Numeric Data Processor (NDP), Numeric Processor Extension (NPX),
and math coprocessor.

Page 781

Chapter 14

79

64 0

st(0)

st(1)

st(2)

st(3)

st(4)

st(5)

st(6)

st(7)

Figure 14.5 80x87 Floating Point Register Stack

about the last floating point instruction executed. We will not consider the last three regis-
ters in this text, see the Intel documentation for more details.

14.4.1.1 The FPU Data Registers

The 80x87 FPUs provide eight 80 bit data registers organized as a stack. This is a sig-
nificant departure from the organization of the general purpose registers on the 80x86
CPU that comprise a standard general-purpose register set. Intel refers to these registers
as ST(0), ST(1), ..., ST(7). Most assemblers will accept ST as an abbreviation for ST(0).

The biggest difference between the FPU register set and the 80x86 register set is the
stack organization. On the 80x86 CPU, the ax register is always the ax register, no matter
what happens. On the 80x87, however, the register set is an eight element stack of 80 bit
floating point values (see Figure 14.5). ST(0) refers to the item on the top of the stack, ST(1)
refers to the next item on the stack, and so on. Many floating point instructions push and
pop items on the stack; therefore, ST(1) will refer to the previous contents of ST(0) after
you push something onto the stack. It will take some thought and practice to get used to
the fact that the registers are changing under you, but this is an easy problem to overcome.

14.4.1.2 The FPU Control Register

Page 782

When Intel designed the 80x87 (and, essentially, the IEEE floating point standard),
there were no standards in floating point hardware. Different (mainframe and mini) com-
puter manufacturers all had different and incompatible floating point formats. Unfortu-
nately, much application software had been written taking into account the idiosyncrasies
of these different floating point formats. Intel wanted to designed an FPU that could work
with the majority of the software out there (keep in mind, the IBM PC was three to four
years away when Intel began designing the 8087, they couldn’t rely on that “mountain” of
software available for the PC to make their chip popular). Unfortunately, many of the fea-
tures found in these older floating point formats were mutually exclusive. For example, in
some floating point systems rounding would occur when there was insufficient precision;
in others, truncation would occur. Some applications would work with one floating point
system but not with the other. Intel wanted as many applications as possible to work with
as few changes as possible on their 80x87 FPUs, so they added a special register, the FPU
control register, that lets the user choose one of several possible operating modes for the
80x87.

The 80x87 control register contains 16 bits organized as shown in Figure 14.6.

Bit 12 of the control register is only present on the 8087 and 80287 chips. It controls
how the 80x87 responds to infinity. The 80387 and later chips always use a form of
infinitly known and affine closure because this is the only form supported by the IEEE

Floating Point Arithmetic

Rounding Precision
Control Control Exception Masks
15 11 10 9 8 5 4 3 2 1 0
00 - To nearest or even 00 - 24 bits
01 - Round down 01 - reserved
10 - Round up 10 - 53 bits
11 - Truncate result 11 - 64 bits
Precision
Underflow
Reserved on 80387 gverfllgwl d
and later FPUs. ero bivide
Denormalized
Invalid Operation

Figure 14.6 80x87 Control Register

754/854 standards. As such, we will ignore any further use of this bit and assume that it is
always programmed with a one.

Bits 10 and 11 provide rounding control according to the following values:

Table 58: Rounding Control

Bits 10 & 11 Function

00 To nearest or even
01 Round down

10 Round up

11 Truncate

The “00” setting is the default. The 80x87 rounds values above one-half of the least
significant bit up. It rounds values below one-half of the least significant bit down. If the
value below the least significant bit is exactly one-half the least significant bit, the 80x87
rounds the value towards the value whose least significant bit is zero. For long strings of
computations, this provides a reasonable, automatic, way to maintain maximum preci-
sion.

The round up and round down options are present for those computations where it is
important to keep track of the accuracy during a computation. By setting the rounding
control to round down and performing the operation, the repeating the operation with the
rounding control set to round up, you can determine the minimum and maximum ranges
between which the true result will fall.

The truncate option forces all computations to truncate any excess bits during the
computation. You will rarely use this option if accuracy is important to you. However, if
you are porting older software to the 80x87, you might use this option to help when port-
ing the software.

Bits eight and nine of the control register control the precision during computation.
This capability is provided mainly to allow compatbility with older software as required
by the IEEE 754 standard. The precision control bits use the following values:

Page 783

Chapter 14

Page 784

Table 59: Mantissa Precision Control Bits

Bits8 & 9 Precision Control
00 24 bits

01 Reserved

10 53 bits

11 64 bits

For modern applications, the precision control bits should always be set to “11” to
obtain 64 bits of precision. This will produce the most accurate results during numerical
computation.

Bits zero through five are the exception masks. These are similar to the interrupt enable
bit in the 80x86’s flags register. If these bits contain a one, the corresponding condition is
ignored by the 80x87 FPU. However, if any bit contains zero, and the corresponding con-
dition occurs, then the FPU immediately generates an interrupt so the program can han-
dle the degenerate condition.

Bit zero corresponds to an invalid operation error. This generally occurs as the result
of a programming error. Problem which raise the invalid operation exception include
pushing more than eight items onto the stack or attempting to pop an item off an empty
stack, taking the square root of a negative number, or loading a non-empty register.

Bit one masks the denormalized interrupt which occurs whenever you try to manipu-
late denormalized values. Denormalized values generally occur when you load arbitrary
extended precision values into the FPU or work with very small numbers just beyond the
range of the FPU'’s capabilities. Normally, you would probably not enable this exception.

Bit two masks the zero divide exception. If this bit contains zero, the FPU will generate
an interrupt if you attempt to divide a nonzero value by zero. If you do not enable the zero
division exception, the FPU will produce NaN (not a number) whenever you perform a
zero division.

Bit three masks the overflow exception. The FPU will raise the overflow exception if a
calculation overflows or if you attempt to store a value which is too large to fit into a des-
tination operand (e.g., storing a large extended precision value into a single precision vari-
able).

Bit four, if set, masks the underflow exception. Underflow occurs when the result is too
small to fit in the desintation operand. Like overflow, this exception can occur whenever
you store a small extended precision value into a smaller variable (single or double preci-
sion) or when the result of a computation is too small for extended precision.

Bit five controls whether the precision exception can occur. A precision exception
occurs whenever the FPU produces an imprecise result, generally the result of an internal
rounding operation. Although many operations will produce an exact result, many more
will not. For example, dividing one by ten will produce an inexact result. Therefore, this
bit is usually one since inexact results are very common.

Bits six and thirteen through fifteen in the control register are currently undefined and
reserved for future use. Bit seven is the interrupt enable mask, but it is only active on the
8087 FPU; a zero in this bit enables 8087 interrupts and a one disables FPU interrupts.

The 80x87 provides two instructions, FLDCW (load control word) and FSTCW (store
control word), that let you load and store the contents of the control register. The single
operand to these instructions must be a 16 bit memory location. The FLDCW instruction
loads the control register from the specified memory location, FSTCW stores the control
register into the specified memory location.

Floating Point Arithmetic

15

Exception Flags
14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0

Busy Cg Top of stack Cr, C1 Cp

Reserved on 80387 gverflquw d
and later FPUs. ero bivide

Pointer

Condition Codes
Exception Flag
Stack Fault
Precision
Underflow

Denormalized
Invalid Operation

Figure 14.7 FPU Status Register

14.4.1.3 The FPU Status Register

The FPU status register provides the status of the coprocessor at the instant you read
it. The FSTSW instruction stores thel6 bit floating point status register into the
mod/reg/rm operand. The status register s a 16 bit register, its layout appears in
Figure 14.7.

Bits zero through five are the exception flags. These bits are appear in the same order
as the exception masks in the control register. If the corresponding condition exists, then
the bit is set. These bits are independent of the exception masks in the control register. The
80x87 sets and clears these bits regardless of the corresponding mask setting.

Bit six (active only on 80386 and later processors) indicates a stack fault. A stack fault
occurs whenever there is a stack overflow or underflow. When this bit is set, the C; condi-
tion code bit determines whether there was a stack overflow (C;=1) or stack underflow
(C1=0) condition.

Bit seven of the status register is set if any error condition bit is set. It is the logical OR
of bits zero through five. A program can test this bit to quickly determine if an error condi-
tion exists.

Bits eight, nine, ten, and fourteen are the coprocessor condition code bits. Various
instructions set the condition code bits as shown in the following table:

Table 60; FPU Condition Code Bits

Instruction Condition Code Bits Condition
C3 C2 C1 Co

fcom, fcomp, | 0 0 X 0 ST > source

fpompp, 0 0 X 1 ST < source

ficom,

ficomp 1 0 X 0 ST =source
1 1 X 1 ST or source undefined
X =Don’t care

Page 785

Chapter 14

Table 60;: FPU Condition Code Bits

Instruction

Condition Code Bits
C3 Cc2

(@)
o

Condition

ftst

ST is positive

ST is negative

ST is zero (+ or -)
ST is uncomparable

fxam

+ Unnormalized
-Unnormalized
+Normalized
-Normalized

+0

-0
+Denormalized
-Denormalized
+NaN

-NaN

+Infinity
-Infinity

Empty register

fucom,
fucomp,
fucompp

0
0
0
1
0
0

1

1
0
0

1

1

0

0

1

1

X
0
0
0

1

><><><><><'—‘O'—‘O'-‘O'-‘°'-‘°'—‘°><><><><Q

P O kP Ol P P P P O O O O © © © Ollk 0o b o

ST > source
ST < source
ST = source
Unorder

=Don’t care

Page 786

Table 61: Condition Code Interpretation

Floating Point Arithmetic

Insruction(s) | Cy C; C, C,
fcom, fcomp, Result of com-
fempp, ftst, Result of Result of Operand is not parison (see
fucom, i i comparable table above) or
fucomp, comparison. comparison. p ’ stack over-
fucompp, See table above. | See table above. flow/underflow
ficom, (if stack excep-
ficomp tion bit is set).
fxam See previous See previous See previous Sign of result, or
table. table. table. stack over-
flow/underflow
(if stack excep-
tion bit is set).
fprem, Bit 2 of remain- Bit 0 of remain- 0- reduction Bit 1 of remain-
fpreml der der done. der or stack over-
1- reduction f!?vzluknderflow
incomplete. (if stack excep-
tion bit is set).
fist, fbstp, Round up
frndint, fst, occurred or stack
fstp, fadd, overflow/under-
fmul, fdiv, flow (if stack
fdivr, fsub, | yndefined Undefined Undefined exception bit is
fsubr, fscale, set).
fsqrt, fpatan,
f2xm1, fyl2x,
fyl2xpl
fptan, fsin, 0- reduction Round up
fcos, fsincos Undefined Undefined done. occurred or stack
: overflow/under-
1- reduction i if stack
incomplete. ow ('. Stack.
exception bit is
set).
fchs, fabs,
fxch, fincstp, Zero result or
fdecstp, | Undefined Undefined Undefined stack over-
C(;Qtsrtg?:]f:‘?jds flow/underflow
’ e if k -
fild., fold, (if stack excep

fstp (80 bit)

tion bit is set).

fldenv, fstor

Restored from
memory oper-
and.

Restored from
memaory oper-
and.

Restored from
memory oper-
and.

Restored from
memory oper-
and.

fldcw,
fstenv,
fstcw, fstsw,
fclex

Undefined

Undefined

Undefined

Undefined

finit, fsave

Cleared to zero.

Cleared to zero.

Cleared to zero.

Cleared to zero.

Page 787

Chapter 14

31 23 15 7 0
MEEEEEES I T T I J I Tr T i rrid
32 bit Single Precision Floating Point Format

63 52 7 0
/55 e 0
64 bit Double Precision Floating Point Format

79 64 7 0
/5 o O 0

80 bit Extended Precision Floating Point Format

Figure 14.8 80x87 Floating Point Formats

15 7 0

JN U O

16 Bit Two's Complement Integer

31 23 15 7 0
AN e e e
32 bit Two's Complement Integer

63 52 7 0
- e L Ty

64 bit Two's Complement Integer

Figure 14.9 80x87 Integer Formats

Bits 11-13 of the FPU status register provide the register number of the top of stack.
During computations, the 80x87 adds (modulo eight) the logical register numbers sup-
plied by the programmer to these three bits to determine the physical register number at
run time.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is busy. Most pro-
grams will have little reason to access this bit.

14.4.2

Page 788

FPU Data Types

The 80x87 FPU supports seven different data types: three integer types, a packed dec-
imal type, and three floating point types. Since the 80x86 CPUs already support integer
data types, these are few reasons why you would want to use the 80x87 integer types. The
packed decimal type provides a 17 digit signed decimal (BCD) integer. However, we are
avoiding BCD arithmetic in this text, so we will ignore this data type in the 80x87 FPU.
The remaining three data types are the 32 bit, 64 bit, and 80 bit floating point data types
we’ve looked at so far. The 80x87 data types appear in Figure 14.8, Figure 14.9, and
Figure 14.10.

Floating Point Arithmetic

79 72 68 64 60 7 4 0
O e 11
Sign Unused P17 D16 D15 D14 Dy Dy Do

80 Bit Packed Decimal Integer (BCD)

Figure 14.10 80x87 Packed Decimal Formats

The 80x87 FPU generally stores values in a normalized format. When a floating point
number is normalized, the H.O. bit is always one. In the 32 and 64 bit floating point for-
mats, the 80x87 does not actually store this bit, the 80x87 always assumes that it is one.
Therefore, 32 and 64 bit floating point numbers are always normalized. In the extended
precision 80 bit floating point format, the 80x87 does not assume that the H.O. bit of the
mantissa is one, the H.O. bit of the number appears as part of the string of bits.

Normalized values provide the greatest precision for a given number of bits. How-
ever, there are a large number of non-normalized values which we can represent with the
80 bit format. These values are very close to zero and represent the set of values whose
mantissa H.O. bit is not zero. The 80x87 FPUs support a special form of 80 bit known as
denormalized values. Denormalized values allow the 80x87 to encode very small values it
cannot encode using normalized values, but at a price. Denormalized values offer less bits
of precision than normalized values. Therefore, using denormalized values in a computa-
tion may introduce some slight inaccuracy into a computation. Of course, this is always
better than underflowing the denormalized value to zero (which could make the compu-
tation even less accurate), but you must keep in mind that if you work with very small
values you may lose some accuracy in your computations. Note that the 80x87 status reg-
ister contains a bit you can use to detect when the FPU uses a denormalized value in a
computation.

14.4.3 The FPU Instruction Set

The 80387 (and later) FPU adds over 80 new instructions to the 80x86 instruction set.
We can classify these instructions as data movement instructions, conversions, arithmetic
instructions, comparisons, constant instructions, transcendental instructions, and miscellaneous
instructions. The following sections describe each of the instructions in these categories.

14.4.4 FPU Data Movement Instructions

The data movement instructions transfer data between the internal FPU registers and
memory. The instructions in this category are fid, fst, fstp, and fxch. The fld instructions
always pushes its operand onto the floating point stack. The fstp instruction always pops
the top of stack after storing the top of stack (tos) into its operation. The remaining instruc-
tions do not affect the number of items on the stack.

14.4.4.1 The FLD Instruction

The fld instruction loads a 32 bit, 64 bit, or 80 bit floating point value onto the stack.
This instruction converts 32 and 64 bit operand to an 80 bit extended precision value
before pushing the value onto the floating point stack.

The fid instruction first decrements the tos pointer (bits 11-13 of the status register) and
then stores the 80 bit value in the physical register specified by the new tos pointer. If the
source operand of the fld instruction is a floating point data register, ST(i), then the actual

Page 789

Chapter 14

register the 80x87 uses for the load operation is the register number before decrementing
the tos pointer. Therefore, fid st or fld st(0) duplicates the value on the top of the stack.

The fld instruction sets the stack fault bit if stack overflow occurs. It sets the the denor-
malized exception bit if you load an 80 bit denormalized value. It sets the invalid opera-
tion bit if you attempt to load an empty floating point register onto the stop of stack (or
perform some other invalid operation).

Examples:
fld st (1)
fld nmem 32
fld M/Real Var
fld nmem 64[bx]

14.4.4.2 The FST and FSTP Instructions

The fst and fstp instructions copy the value on the top of the floating point register
stack to another floating point register or to a 32, 64, or 80 bit memory variable. When
copying data to a 32 or 64 bit memory variable, the 80 bit extended precision value on the
top of stack is rounded to the smaller format as specified by the rounding control bits in
the FPU control register.

The fstp instruction pops the value off the top of stack when moving it to the destina-
tion location. It does this by incrementing the top of stack pointer in the status register
after accessing the data in st(0). If the destination operand is a floating point register, the
FPU stores the value at the specified register number before popping the data off the top of
the stack.

Executing an fstp st(0) instruction effectively pops the data off the top of stack with no
data transfer. Examples:

fst mem 32

fstp mem 64

fstp mem 64[ebx* 8]
fst mem 80

f st st(2)

fstp st (1)

The last example above effectively pops st(1) while leaving st(0) on the top of the stack.

The fst and fstp instructions will set the stack exception bit if a stack underflow occurs
(attempting to store a value from an empty register stack). They will set the precision bit if
there is a loss of precision during the store operation (this will occur, for example, when
storing an 80 bit extended precision value into a 32 or 64 bit memory variable and there
are some bits lost during conversion). They will set the underflow exception bit when
storing an 80 bit value value into a 32 or 64 bit memory variable, but the value is too small
to fit into the destination operand. Likewise, these instructions will set the overflow
exception bit if the value on the top of stack is too big to fit into a 32 or 64 bit memory vari-
able. The fst and fstp instructions set the denormalized flag when you try to store a denor-
malized value into an 80 bit register or variable’. They set the invalid operation flag if an
invalid operation (such as storing into an empty register) occurs. Finally, these instruc-
tions set the C; condition bit if rounding occurs during the store operation (this only
occurs when storing into a 32 or 64 bit memory variable and you have to round the man-
tissa to fit into the destination).

14.4.4.3 The FXCH Instruction

The fxch instruction exchanges the value on the top of stack with one of the other FPU
registers. This instruction takes two forms: one with a single FPU register as an operand,

7. Storing a denormalized value into a 32 or 64 bit memory variable will always set the underflow exception bit.

Page 790

Floating Point Arithmetic

the second without any operands. The first form exchanges the top of stack with the spec-
ified register. The second form of fxch swaps the top of stack with st(1).

Many FPU instructions, e.g., fsqrt, operate only on the top of the register stack. If you
want to perform such an operation on a value that is not on the top of stack, you can use
the fxch instruction to swap that register with tos, perform the desired operation, and then
use the fxch to swap the tos with the original register. The following example takes the
square root of st(2):

fxch st(2)
fsgrt
fxch st(2)

The fxch instruction sets the stack exception bit if the stack is empty. It sets the invalid
operation bit if you specify an empty register as the operand. This instruction always
clears the C, condition code bit.

14.4.5 Conversions

The 80x87 chip performs all arithmetic operations on 80 bit real quantities. In a sense,
the fld and fst/fstp instructions are conversion instructions as well as data movement
instructions because they automatically convert between the internal 80 bit real format
and the 32 and 64 bit memory formats. Nonetheless, we’ll simply classify them as data
movement operations, rather than conversions, because they are moving real values to
and from memory. The 80x87 FPU provides five routines which convert to or from integer
or binary coded decimal (BCD) format when moving data. These instructions are fild, fist,
fistp, fbid, and fbstp.

14.45.1 The FILD Instruction

The fild (integer load) instruction converts a 16, 32, or 64 bit two’s complement integer
to the 80 bit extended precision format and pushes the result onto the stack. This instruc-
tion always expects a single operand. This operand must be the address of a word, double
word, or quad word integer variable. Although the instruction format for fild uses the
familiar mod/rm fields, the operand must be a memory variable, even for 16 and 32 bit
integers. You cannot specify one of the 80386’s 16 or 32 bit general purpose registers. If
you want to push an 80x86 general purpose register onto the FPU stack, you must first
store it into a memory variable and then use fild to push that value of that memory vari-
able.

The fild instruction sets the stack exception bit and C,; (accordingly) if stack overflow
occurs while pushing the converted value. Examples:

fild mem 16
fild mem 32[ecx*4]
fild nmem 64[ebx+ecx* 8]

14.4.5.2 The FIST and FISTP Instructions

The fist and fistp instructions convert the 80 bit extended precision variable on the top
of stack to a 16, 32, or 64 bit integer and store the result away into the memory variable
specified by the single operand. These instructions convert the value on tos to an integer
according to the rounding setting in the FPU control register (bits 10 and 11). As for the fild
instruction, the fist and fistp instructions will not let you specify one of the 80x86’s general
purpose 16 or 32 bit registers as the destination operand.

The fist instruction converts the value on the top of stack to an integer and then stores
the result; it does not otherwise affect the floating point register stack. The fistp instruction
pops the value off the floating point register stack after storing the converted value.

Page 791

Chapter 14

These instructions set the stack exception bit if the floating point register stack is
empty (this will also clear C;). They set the precision (imprecise operation) and C, bits if
rounding occurs (that is, if there is any fractional component to the value in st(0)). These
instructions set the underflow exception bit if the result is too small (i.e., less than one but
greater than zero or less than zero but greater than -1). Examples:

fist mem 16[bx]
fist nem 64
fistp mem 32

Don’t forget that these instructions use the rounding control settings to determine
how they will convert the floating point data to an integer during the store operation. Be
default, the rouding control is usually set to “round” mode; yet most programmers expect
fist/fistp to truncate the decimal portion during conversion. If you want fist/fistp to truncate
floating point values when converting them to an integer, you will need to set the round-
ing control bits appropriately in the floating point control register.

14.4.5.3 The FBLD and FBSTP Instructions

The fbld and fbstp instructions load and store 80 bit BCD values. The fbld instruction
converts a BCD value to its 80 bit extended precision equivalent and pushes the result
onto the stack. The fbstp instruction pops the extended precision real value on tos, con-
verts it to an 80 bit BCD value (rounding according to the bits in the floating point control
register), and stores the converted result at the address specified by the destination mem-
ory operand. Note that there is no fbst instruction which stores the value on tos without
popping it.

The fbld instruction sets the stack exception bit and C, if stack overflow occurs. It sets
the invalid operation bit if you attempt to load an invalid BCD value. The fbstp instruction
sets the stack exception bit and clears C, if stack underflow occurs (the stack is empty). It
sets the underflow flag under the same conditions as fist and fistp. Examples:

; Assumng fewer than eight itens on the stack, the foll ow ng
; code sequence is equivalent to an fbst instruction:

fld st(0) ; Dupl i cate val ue on TCB.
fbstp mem 80

; The followi ng exanpl e easily converts an 80 bit BCD val ue to
; a 64 bit integer:

fbld bcd_80 ; Get BCD val ue to convert.
fist mem 64 ; Store as an integer.

14.4.6

Arithmetic Instructions

The arithmetic instructions make up a small, but important, subset of the 80x87’s
instruction set. These instructions fall into two general categories — those which operate
on real values and those which operate on a real and an integer value.

14.4.6.1 The FADD and FADDP Instructions

Page 792

These two instructions take the following forms:

fadd

f addp

fadd st(i), st(0)
fadd st(0), st(f)
f addp st(/i), st(0)
fadd nmem

Floating Point Arithmetic

The first two forms are equivalent. They pop the two values on the top of stack, add
them, and push their sum back onto the stack.

The next two forms of the fadd instruction, those with two FPU register operands,
behave like the 80x86’s add instruction. They add the value in the second register operand
to the value in the first register operand. Note that one of the register operands must be
st(O)B.

The faddp instruction with two operands adds st(0) (which must always be the second
operand) to the destination (first) operand and then pops st(0). The destination operand
must be one of the other FPU registers.

The last form above, fadd with a memory operand, adds a 32 or 64 bit floating point
variable to the value in st(0). This instruction will convert the 32 or 64 bit operands to an 80
bit extended precision value before performing the addition. Note that this instruction
does not allow an 80 bit memory operand.

These instructions can raise the stack, precision, underflow, overflow, denormalized,
and illegal operation exceptions, as appropriate. If a stack fault exception occurs, C;
denotes stack overflow or underflow.

14.4.6.2 The FSUB, FSUBP, FSUBR, and FSUBRP Instructions

These four instructions take the following forms:

fsub

f subp

f subr

fsubrp

fsub st(i). st(0)
fsub st(0), st(/)
f subp st(/i), st(0)
fsub nem

f subr st(/i). st(0)

f subr st(0), st(/)

f subrp st(/i), st(0)

f subr mem

With no operands, the fsub and fsubp instructions operate identically. They pop st(0)

and st(1) from the register stack, compute st(0)-st(1), and the push the difference back onto
the stack. The fsubr and fsubrp instructions (reverse subtraction) operate in an almost iden-
tical fashion except they compute st(1)-st(0) and push that difference.

With two register operands (destination, source) the fsub instruction computes destina-
tion := destination - source. One of the two registers must be st(0). With two registers as
operands, the fsubp also computes destination := destination - source and then it pops st(0)
off the stack after computing the difference. For the fsubp instruction, the source operand
must be st(0).

With two register operands, the fsubr and fsubrp instruction work in a similar fashion
to fsub and fsubp, except they compute destination := source - destination.

The fsub mem and fsubr mem instructions accept a 32 or 64 bit memory operand. They
convert the memory operand to an 80 bit extended precision value and subtract this from
st(0) (fsub) or subtract st(0) from this value (fsubr) and store the result back into st(0).

These instructions can raise the stack, precision, underflow, overflow, denormalized,
and illegal operation exceptions, as appropriate. If a stack fault exception occurs, C;
denotes stack overflow or underflow.

8. Because you will use st(0) quite a bit when programming the 80x87, MASM allows you to use the abbreviation
st for st(0). However, this text will explicitly state st(0) so there will be no confusion.

Page 793

Chapter 14

14.4.6.3 The FMUL and FMULP Instructions

The fmul and fmulp instructions multiply two floating point values. These instructions
allow the following forms:

f ul

frul p

f rmul st(0), st(/i)
f rul st(i), st(0)
f ul nmem

frul p st(i), st(0)

With no operands, fmul and fmulp both do the same thing — they pop st(0) and st(1),
multiply these values, and push their product back onto the stack. The fmul instructions
with two register operands compute destination := destination * source. One of the registers
(source or destination) must be st(0).

The fmulp st(i), st(0) instruction computes st(i) := st(i) * st(0) and then pops st(0). This
instruction uses the value for i before popping st(0). The fmul mem instruction requires a 32
or 64 bit memory operand. It converts the specified memory variable to an 80 bit extended
precision value and the multiplies st(0) by this value.

These instructions can raise the stack, precision, underflow, overflow, denormalized,
and illegal operation exceptions, as appropriate. If rounding occurs during the computa-
tion, these instructions set the C; condition code bit. If a stack fault exception occurs, C;
denotes stack overflow or underflow.

14.4.6.4 The FDIV, FDIVP, FDIVR, and FDIVRP Instructions

Page 794

These four instructions allow the following forms:
fdiv
fdivp
fdivr
fdivrp

fdiv st(0), st(f)
fdiv st(i), st(0)
fdivp st(i), st(0)
fdivr st(0), st(/)
fdivr st(i), st(0)
fdivrp st(i), st(0)
fdiv nem

fdivr nem

With zero operands, the fdiv and fdivp instructions pop st(0) and st(1), compute
st(0)/st(1), and push the result back onto the stack. The fdivr and fdivrp instructions also pop
st(0) and st(1) but compute st(1)/st(0) before pushing the quotient onto the stack.

With two register operands, these instructions compute the following quotients:

fdiv st(0), st(/) ;st(0) 1= st(0)/st(i)
fdiv st(i), st(0) ;st(i) = st(i)/st(0)
fdivp st(i), st(0) ;st(i) = st(i)/st(0)
fdivr st(i), st(/i) ;st(0) 1= st(0)/st(i)
fdivrp st(i), st(0) ;st(i) = st(0)/st(i)

The fdivp and fdivrp instructions also pop st(0) after performing the division operation. The
value for i in this two instructions is computed before popping st(0).

These instructions can raise the stack, precision, underflow, overflow, denormalized,
zero divide, and illegal operation exceptions, as appropriate. If rounding occurs during
the computation, these instructions set the C; condition code bit. If a stack fault exception
occurs, C, denotes stack overflow or underflow.

Floating Point Arithmetic

14.4.6.5 The FSQRT Instruction

The fsqrt routine does not allow any operands. It computes the square root of the value
on tos and replaces st(0) with this result. The value on tos must be zero or positive, other-
wise fsgrt will generate an invalid operation exception.

This instruction can raise the stack, precision, denormalized, and invalid operation
exceptions, as appropriate. If rounding occurs during the computation, fsqrt sets the C;
condition code bit. If a stack fault exception occurs, C, denotes stack overflow or under-
flow.

Example:
; Conpute Z := sqrt(x**2 + y**2);

fld X ; Load X

fld st(0) ; Duplicate X on TCS.

f mul ; Conpute X**2.

fld y ; Load .

fld st(0) ;Duplicate Y on TCB.

f mul ; Conpute Y**2.

f add ; Conpute X**2 + Y**2,

fsqrt ; Conpute sqrt(x**2 + y**2).
f st Z ;Store away result in Z

14.4.6.6 The FSCALE Instruction

The fscale instruction pops two values off the stack. It multiplies st(0) by 259 and
pushes the result back onto the stack. If the value in st(1) is not an integer, fscale truncates
it towards zero before performing the operation.

This instruction raises the stack exception if there are not two items currently on the
stack (this will also clear C; since stack underflow occurs). It raises the precision exception
if there is a loss of precision due to this operation (this occurs when st(1) contains a large,
negative, value). Likewise, this instruction sets the underflow or overflow exception bits if
you multiply st(0) by a very large positive or negative power of two. If the result of the
multiplication is very small, fscale could set the denormalized bit. Also, this instruction
could set the invalid operation bit if you attempt to fscale illegal values. Fscale sets C; if
rounding occurs in an otherwise correct computation. Example:

fild Si xt een ; Push si xteen onto the stack.
fld X ; Conpute x * (2**16).
fscal e

Si xt een wor d 16

14.4.6.7 The FPREM and FPREML1 Instructions

The fprem and fprem1 instructions compute a partial remainder. Intel designed the fprem
instruction before the IEEE finalized their floating point standard. In the final draft of the
IEEE floating point standard, the definition of fprem was a little different than Intel’s origi-
nal design. Unfortunately, Intel needed to maintain compatibility with the existing soft-
ware that used the fprem instruction, so they designed a new version to handle the IEEE
partial remainder operation, fprem1. You should always use fpreml in new software you
write, therefore we will only discuss fprem1 here, although you use fprem in an identical
fashion.

Fpreml computes the partial remainder of st(0)/st(1). If the difference between the
exponents of st(0) and st(1) is less than 64, fprem1 can compute the exact remainder in one

Page 795

Chapter 14

operation. Otherwise you will have to execute the fprem1 two or more times to get the cor-
rect remainder value. The C, condition code bit determines when the computation is com-
plete. Note that fporem1 does not pop the two operands off the stack; it leaves the partial
remainder in st(0) and the original divisor in st(1) in case you need to compute another
partial product to complete the result.

The fprem1 instruction sets the stack exception flag if there aren’t two values on the
top of stack. It sets the underflow and denormal exception bits if the result is too small. It
sets the invalid operation bit if the values on tos are inappropriate for this operation. It
sets the C, condition code bit if the partial remainder operation is not complete. Finally, it
loads C5, C4, and C, with bits zero, one, and two of the quotient, respectively.

Example:
Compute Z := X nod Y

fld y
fld X

Partial Lp: f preml
fstsw ax ;Get condition bits in AX
t est ah, 100b ;See if G is set.
jnz Partial Lp ;Repeat if not done yet.
fstp z ;Store remai nder away.
fstp st (0) ; Pop old y val ue.

14.4.6.8 The FRNDINT Instruction

The frndint instruction rounds the value on tos to the nearest integer using the round-
ing algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the tos (it will also
clear C; in this case). It sets the precision and denormal exception bits if there was a loss of
precision. It sets the invalid operation flag if the value on the tos is not a valid number.

14.4.6.9 The FXTRACT Instruction

The fxtract instruction is the complement to the fscale instruction. It pops the value off
the top of the stack and pushes a value which is the integer equivalent of the exponent (in
80 bit real form), and then pushes the mantissa with an exponent of zero (3fffh in biased
form).

This instruction raises the stack exception if there is a stack underflow when popping
the original value or a stack overflow when pushing the two results (C; determines
whether stack overflow or underflow occurs). If the original top of stack was zero, fxtract
sets the zero division exception flag. The denormalized flag is set if the result warrants it;
and the invalid operation flag is set if there are illegal input values when you execute
fxtract.

Example:

; The following exanpl e extracts the binary exponent of X and
; stores this into the 16 bit integer variable Xponent.

fld X
f xtract
fstp st(0)

fistp Xponent

14.4.6.10 The FABS Instruction

Page 796

Fabs computes the absolute value of st(0) by clearing the sign bit of st(0). It sets the
stack exception bit and invalid operation bits if the stack is empty.

Floating Point Arithmetic

Example:
Conpute X : = sqgrt(abs(x));

fld X
f abs
fsgrt
fstp X

14.4.6.11 The FCHS Instruction

Fchs changes the sign of st(0)’s value by inverting its sign bit. It sets the stack excep-
tion bit and invalid operation bits if the stack is empty. Example:

; Conpute X :=-Xif Xis positive, X:= Xif Xis negative.

fld X
f abs
fchs
fstp X

14.4.7 Comparison Instructions

The 80x87 provides several instructions for comparing real values. The fcom, fcomp,
fcompp, fucom, fucomp, and fucompp instructions compare the two values on the top of stack
and set the condition codes appropriately. The ftst instruction compares the value on the
top of stack with zero. The fxam instrution checks the value on tos and reports sign, nor-
malization, and tag information.

Generally, most programs test the condition code bits immediately after a compari-
son. Unfortunately, there are no conditional jump instructions that branch based on the
FPU condition codes. Instead, you can use the fstsw instruction to copy the floating point
status register (see “The FPU Status Register” on page 785) into the ax register; then you
can use the sahf instruction to copy the ah register into the 80x86’s condition code bits.
After doing this, you can can use the conditional jump instructions to test some condition.
This technique copies C, into the carry flag, C, into the parity flag, and C; into the zero
flag. The sahf instruction does not copy C, into any of the 80x86’s flag bits.

Since the sahf instruction does not copy any 80x87 processor status bits into the sign or
overflow flags, you cannot use the jg, jl, jge, or jle instructions. Instead, use the ja, jae, jb, jbe,
je, and jz instructions when testing the results of a floating point comparison. Yes, these con-
ditional jumps normally test unsigned values and floating point numbers are signed values. How-
ever, use the unsigned conditional branches anyway; the fstsw and sahf instructions set the
80x86 flags register to use the unsigned jumps.

14.4.7.1 The FCOM, FCOMP, and FCOMPP Instructions

The fcom, fcomp, and fcompp instructions compare st(0) to the specified operand and
set the corresponding 80x87 condition code bits based on the result of the comparison. The
legal forms for these instructions are

fcom

f conp

f conpp

fcom st(/)
f conp st(/)
fcom nmem
f conp mem

Page 797

Chapter 14

With no operands, fcom, fcomp, and fcompp compare st(0) against st(1) and set the pro-
cessor flags accordingly. In addition, fcomp pops st(0) off the stack and fcompp pops both
st(0) and st(1) off the stack.

With a single register operand, fcom and fcomp compare st(0) against the specified reg-
ister. Fcomp also pops st(0) after the comparison.

With a 32 or 64 bit memory operand, the fcom and fcomp instructions convert the
memory variable to an 80 bit extended precision value and then compare st(0) against this
value, setting the condition code bits accordingly. Fcomp also pops st(0) after the compari-
son.

These instructions set C, (which winds up in the parity flag) if the two operands are
not comparable (e.g., NaN). If it is possible for an illegal floating point value to wind up in
a comparison, you should check the parity flag for an error before checking the desired
condition.

These instructions set the stack fault bit if there aren’t two items on the top of the reg-
ister stack. They set the denormalized exception bit if either or both operands are denor-
malized. They set the invalid operation flag if either or both operands are quite NaNs.
These instructions always clear the C; condition code.

14.4.7.2 The FUCOM, FUCOMP, and FUCOMPP Instructions

These instructions are similar to the fcom, fcomp, and fcompp instructions, although
they only allow the following forms:

fucom
f uconp

f uconpp
f ucom st(/)

f uconp st(1F)

The difference between fcom/fcomp/fcompp and fucom/fucomp/fucompp is rela-
tively minor. The fcom/fcomp/fcompp instructions set the invalid operation exception bit
if you compare two NaNs. The fucom/fucomp/fucompp instructions do not. In all other
cases, these two sets of instructions behave identically.

14.4.7.3 The FTST Instruction

The ftst instruction compares the value in st(0) against 0.0. It behaves just like the fcom
instruction would if st(1) contained 0.0. Note that this instruction does not differentiate
-0.0 from +0.0. If the value in st(0) is either of these values, ftst will set C5 to denote equal-
ity. If you need to differentiate -0.0 from +0.0, use the fxam instruction. Note that this
instruction does not pop st(0) off the stack.

14.4.7.4 The FXAM Instruction

The fxam instruction examines the value in st(0) and reports the results in the condi-
tion code bits (see “The FPU Status Register” on page 785 for details on how fxam sets
these bits). This instruction does not pop st(0) off the stack.

14.4.8 Constant Instructions

The 80x87 FPU provides several instructions that let you load commonly used con-
stants onto the FPU'’s register stack. These instructions set the stack fault, invalid opera-

Page 798

Floating Point Arithmetic

tion, and C, flags if a stack overflow occurs; they do not otherwise affect the FPU flags.
The specific instructions in this category include:

fldz ; Pushes +0. 0.
fldl ; Pushes +1. 0.

f1 dpi ; Pushes 1t

fldl2t ; Pushes | 0g,(10).
fldl 2e ; Pushes | ogy(e).
fldl g2 ; Pushes 1 09g10(2).
fldln2 ; Pushes | n(2).

14.4.9 Transcendental Instructions

The 80387 and later FPUs provide eight transcendental (log and trigonometric)
instructions to compute a partial tangent, partial arctangent, 2*-1, y * logy(x), and y *
log,(x+1). Using various algebraic identities, it is easy to compute most of the other com-
mon transcendental functions using these instructions.

14.4.9.1 The F2XM1 Instruction

F2xm1 computes 2510)-1. The value in st(0) must be in the range -1.0 < st(0) < +1.0. If
st(0) is out of range f2xm1 generates an undefined result but raises no exceptions. The com-
puted value replaces the value in st(0). Example:

Conpute 10% using the identity: 10¢ = 2x"19(10) (g = |og,).

fld X
fldl 2t

f mul

f 2xmi
fldil

f add

Note that f2xm1 computes 2%-1, which is why the code above adds 1.0 to the result at the
end of the computation.

14.4.9.2 The FSIN, FCOS, and FSINCOS Instructions

These instructions pop the value off the top of the register stack and compute the sine,
cosine, or both, and push the result(s) back onto the stack. The fsincos pushes the sine fol-
lowed by the cosine of the original operand, hence it leaves cos(st(0)) in st(0) and sin(st(0))
in st(1).

These instructions assume st(0) specifies an angle in radians and this angle must be in
the range -2% < st(0) < +253. If the original operand is out of range, these instructions set
the C, flag and leave st(0) unchanged. You can use the fprem1 instruction, with a divisor of
2TT, to reduce the operand to a reasonable range.

These instructions set the stack fault/C,, precision, underflow, denormalized, and
invalid operation flags according to the result of the computation.

14.4.9.3 The FPTAN Instruction

Fptan computes the tangent of st(0) and pushes this value and then it pushes 1.0 onto
the stack. Like the fsin and fcos instructions, the value of st(0) is assumed to be in radians
and must be in the range -2%3<st(0)<+2%3. If the value is outside this range, fptan sets C, to
indicate that the conversion did not take place. As with the fsin, fcos, and fsincos instruc-
tions, you can use the fprem1 instruction to reduce this operand to a reasonable range
using a divisor of 21t

Page 799

Chapter 14

If the argument is invalid (i.e., zero or Ttradians, which causes a division by zero) the
result is undefined and this instruction raises no exceptions. Fptan will set the stack fault,
precision, underflow, denormal, invalid operation, C,, and C; bits as required by the oper-
ation.

14.4.9.4 The FPATAN Instruction

This instruction expects two values on the top of stack. It pops them and computes the
following:

st(0) = tan"Y(st(1) 7 st(0))

The resulting value is the arctangent of the ratio on the stack expressed in radians. If
you have a value you wish to compute the tangent of, use fld1 to create the appropriate
ratio and then execute the fpatan instruction.

This instruction affects the stack fault/C,, precision, underflow, denormal, and
invalid operation bits if an problem occurs during the computation. It sets the C, condi-
tion code bit if it has to round the result.

14.49.5 The FYL2X and FYL2XP1 Instructions

The fyl2x and fyl2xp1 instructions compute st(1) * log,(st(0)) and st(1) * log,(st(0)+1),
respectively. Fyl2x requires that st(0) be greater than zero, fyl2xp1 requires st(0) to be in the

range:
0 , 0OJ/20 0, 0420
Ul—D_é—D]<5t(0) <D1—D%ED

Fyl2x is useful for computing logs to bases other than two; fyl2xp1 is useful for comput-
ing compound interest, maintaining the maximum precision during computation.

Fyl2x can affect all the exception flags. C; denotes rounding if there is not other error,
stack overflow/underflow if the stack fault bit is set.

The fyl2xpl instruction does not affect the overflow or zero divide exception flags.
These exceptions occur when st(0) is very small or zero. Since fyl2xpl adds one to st(0)
before computing the function, this condition never holds. Fyl2xp1 affects the other flags in
a manner identical to fyl2x.

14.4.10 Miscellaneous instructions

The 80x87 FPU includes several additional instructions which control the FPU, syn-
chronize operations, and let you test or set various status bits. These instructions include
finit/fninit, fdisi/fndisi, feni/fneni, fldcw, fstcw/fnstcw, fclex/fnclex, fsave/fnsave, frstor, frstpm,
fstsw/fnstsw, fstenv/fnstenv, fldenv, fincstp, fdecstp, fwait, fnop, and ffree. The fdisi/fndisi, feni/fneni,
and frstpm are active only on FPUs earlier than the 80387, so we will not consider them
here.

Many of these instructions have two forms. The first form is Fxxxx and the second
form is FNxxxx. The version without the “N” emits an fwait instruction prior to opcode
(which is standard for most coprocessor instructions). The version with the “N” does not
emit the fwait opcode (“N” stands for no wait).

14.4.10.1 The FINIT and FNINIT Instructions

The finit instruction intializes the FPU for proper operation. Your applications should
execute this instruction before executing any other FPU instructions. This instruction ini-

Page 800

Floating Point Arithmetic

tializes the control register to 37Fh (see “The FPU Control Register” on page 782), the sta-
tus register to zero (see “The FPU Status Register” on page 785) and the tag word to
OFFFFh. The other registers are unaffected.

14.4.10.2 The FWAIT Instruction

The fwait instruction pauses the system until any currently executing FPU instruction
completes. This is required because the FPU on the 80486sx and earlier CPU/FPU combi-
nations can execute instructions in parallel with the CPU. Therefore, any FPU instruction
which reads or writes memory could suffer from a data hazard if the main CPU accesses
that same memory location before the FPU reads or writes that location. The fwait instruc-
tion lets you synchronize the operation of the FPU by waiting until the completion of the
current FPU instruction. This resolves the data hazard by, effectively, inserting an explict
“stall” into the execution stream.

14.4.10.3 The FLDCW and FSTCW Instructions

The fldcw and fstcw instructions require a single 16 bit memory operand:

fldcw mem 16
fstcw mem 16

These two instructions load the control register (see “The FPU Control Register” on
page 782) from a memory location (fldcw) or store the control word to a 16 bit memory
location (fstcw).

When using the fidew instruction to turn on one of the exceptions, if the corresponding
exception flag is set when you enable that exception, the FPU will generate an immediate
interrupt before the CPU executes the next instruction. Therefore, you should use the fclex
instruction to clear any pending interrupts before changing the FPU exception enable bits.

14.4.10.4 The FCLEX and FNCLEX Instructions

The fclex and fnclex instructions clear all exception bits the stack fault bit, and the busy
flag in the FPU status register (see “The FPU Status Register” on page 785).

14.4.10.5 The FLDENYV, FSTENV, and FNSTENYV Instructions

fstenv mem 14b
fnstenv nmem 14b
f1 denv mem 14b

The fstenv/fnstenv instructions store a 14-byte FPU environment record to the memory
operand specified. When operating in real mode (the only mode this text considers), the
environment record takes the form appearing in Figure 14.11.

You must execute the fstenv and fnstenv instructions with the CPU interrupts disabled.
Furthermore, you should always ensure that the FPU is not busy before executing this
instruction. This is easily accomplished by using the following code:

pushf ;Preserve | flag.

cli ;Dsable interrupts.

fstenv mem 14b ;lmplicit wait for not busy.
fwai t ;Wait for operation to finish.
popf ;Restore | flag.

The fidenv instruction loads the FPU environment from the specified memory oper-
and. Note that this instruction lets you load the the status word. There is no explicit
instruction like fldew to accomplish this.

Page 801

Chapter 14

Offset
DanPuBis16-19 | Unused Bits (settozero) 12
Data Ptr (Bits 0-15) 10
na{Pnéhsl§49| 0| : : In}nuéﬁoﬁopéodekllbnsi ' 8
Instr Ptr (Bits 0-15) 6
Tag Word 4
Status Word 2
Control Word 0

Figure 14.11 FPU Environment Record (16 Bit Real Mode)

14.4.10.6 The FSAVE, FNSAVE, and FRSTOR Instructions

f save mem 94b
f nsave mem 94b
frstor mem 94b

These instructions save and restore the state of the FPU. This includes saving all the
internal control, status, and data registers. The destination location for fsave/fnsave (source
location for frstor) must be 94 bytes long. The first 14 bytes correspond to the environment
record the fldenv and fstenv instructions use; the remaining 80 bytes hold the data from the
FPU register stack written out as st(0) through st(7). Frstor reloads the environment record
and floating point registers from the specified memory operand.

The fsave/fnsave and frstor instructions are mainly intended for task switching. You can
also use fsave/fnsave and frstor as a “push all” and “pop all” sequence to preserve the state
of the FPU.

Like the fstenv and fldenv instructions, interrupts should be disabled while saving or
restoring the FPU state. Otherwise another interrupt service routine could manipulate the
FPU registers and invalidate the operation of the fsave/fnsave or frestore operation. The fol-
lowing code properly protects the environment data while saving and restore the FPU sta-
tus:

; Preserve the FPU state, assunme di points at the environnent
; record in nenory.

pushf

cli

f save [si]
fwai t

popf

pushf

cli

frstor [si]
fwai t

popf

Page 802

Floating Point Arithmetic

14.4.10.7 The FSTSW and FNSTSW Instructions

fstsw ax
fnstsw ax
fstsw mem 16

fnstsw nem 16

These instructions store the FPU status register (see “The FPU Status Register” on
page 785) into a 16 bit memory location or the ax register. These instructions are unusual
in the sense that they can copy an FPU value into one of the 80x86 general purpose regis-
ters. Of course, the whole purpose behind allowing the transfer of the status register into
ax is to allow the CPU to easily test the condition code register with the sahf instruction.

14.4.10.8 The FINCSTP and FDECSTP Instructions

The fincstp and fdecstp instructions do not take any operands. They simply increment
and decrement the stack pointer bits (mod 8) in the FPU status register. These two instruc-
tions clear the C, flag, but do not otherwise affect the condition code bits in the FPU status
register.

14.4.10.9 The FNOP Instruction

The fnop instruction is simply an alias for fst st, st(0). It performs no other operation on
the FPU.

14.4.10.10The FFREE Instruction

ffree st(/)

This instruction modifies the tag bits for register i in the tags register to mark the spec-
ified register as emtpy. The value is unaffected by this instruction, but the FPU will no
longer be able to access that data (without resetting the appropriate tag bits).

14.4.11 Integer Operations

The 80x87 FPUs provide special instructions that combine integer to extended preci-
sion conversion along with various arithmetic and comparison operations. These instruc-
tions are the following:

fiadd int
fisub int
fisubr int
fiml int
fidiv int
fidivr int
ficom int
ficonp int

These instructions convert their 16 or 32 bit integer operands to an 80 bit extended
precision floating point value and then use this value as the source operand for the speci-
fied operation. These instructions use st(0) as the destination operand.

Page 803

Chapter 14

14.5 Sample Program: Additional Trigonometric Functions

Page 804

This section provides various examples of 80x87 FPU programming. This group of
routines provides several trigonometric, inverse trigonometric, logarithmic, and exponen-
tial functions using various algebraic identities. All these functions assume that the input
values are on the stack are are within valid ranges for the given functions. The trigono-
metric routines expect angles expressed in radians and the inverse trig routines produce
angles measured in radians.

This program (transcnd.asm) appears on the companion CD-ROM.

.xlist

i ncl ude stdlib.a

includelib stdlib.lib

st

. 386

. 387

option segnent : usel6
dseg segment para public ‘data’
resul t real 8 ?

; Some variables we use to test the routines in this package:

cotvar real 8 3.0
cot Res real 8 ?
acot Res real 8 ?
cscvar real 8 1.5
cscRes real 8 ?
acscRes real 8 ?
secvar real 8 0.5
secRes real 8 ?
asecRes real 8 ?

si nvar real 8 0.75
si nRes real 8 ?
asi nRes real 8 ?
cosvar real 8 0.25
cosRes real 8 ?
acosRes real 8 ?
Two2xvar real 8 -2.5
Two2xRes real 8 ?

| gxRes real 8 ?
Ten2xVar real 8 3.75
Ten2xRes real 8 ?

| ogRes real 8 ?
expVar real 8 3.25
expRes real 8 ?

| nRes real 8 ?
Y2Xx real 8 3.0
Y2Xy real 8 3.0
Y2XRes real 8 ?
dseg ends

cseg segnent para public ‘code’

assune cs: cseqg, ds:dseg

cot

CscC

sec

sec

Floating Point Arithmetic

QOT(x) - Conputes the cotangent of st(0) and |l eaves result in st(0).

st(0) contains x (in radians) and rmust be between
-2**63 and +2**63

There nust be at |east one free register on the stack for
this routine to operate properly.

cot(x) = 1/tan(x)

proc near
f si ncos

fdivr

ret

endp

CSO(x) - conputes the cosecant of st(0) and | eaves result in st(0).

st(0) contains x (in radians) and rmust be between
-2**63 and +2**63.

The cosecant of x is undefined for any value of sin(x) that

produces zero (e.g., zero or pi radians).

There nust be at |east one free register on the stack for
this routine to operate properly.

csc(x) = 1/sin(x)

pr oc near
fsin

fldl

fdivr

ret

endp

SEQ(x) - conputes the secant of st(0) and |leaves result in st(0).

st(0) contains x (in radians) and rmust be between
-2**63 and +2**63.

The secant of x is undefined for any value of cos(x) that
produces zero (e.g., pi/2 radians).

There nust be at | east one free register on the stack for
this routine to operate properly.

sec(x) = 1/cos(x)

asin(x) =

proc near
fcos

fldl

fdivr

ret

endp

ASI N(x)- Conputes the arcsine of st(0) and | eaves the result in st(0).

Al | ownabl e range: -1<=x<=+1
There nust be at least two free registers for this
function to operate properly.

atan(sqgrt (x*x/ (1-x*x)))

proc near
fld st (0) ; Duplicate X on tos.

f mul ; Conpute X**2.

fld st(0) ; Duplicate X**2 on tos.

fldl ; Conput e 1- X*¥*2,

f subr

fdiv ; Conput e X**2/ (1- X¥*2).

fsart ; Conpute sqgrt(x**2/(1-X*2)).
fldl ; To conpute full arctangent.
f pat an ; Conpute atan of the above.
ret

Page 805

Chapter 14

Page 806

acos

acsc

acos(x) =

acot (x) =

acsc(x) =

asec(x) =

endp

ACCS(x)- Conputes the arccosine of st(0) and | eaves the

result in st(0).

Al owabl e range: - l<=x<=+1

There nust be at least two free registers for
this function to operate properly.

atan(sqrt ((1-x*x)/ (x*x)))

proc near

fld st(0) ; Duplicate X on tos.

f mul ; Conpute X**2.

fld st(0) ; Duplicate X**2 on tos.

fldl ; Conpute 1- X¥*2,

f subr

fdiv ; Conput e (1-x**2)/ X**2.
fsqrt ; Conpute sqgrt ((1-X*2)/ Xx*2).
fldl ; To conpute full arctangent.
f pat an ; Conpute atan of the above.
ret

endp

AQOT(x)- Conputes the arccotangent of st(0) and | eaves the

result in st(0).

X cannot equal zero.

There nust be at |east one free register for
this function to operate properly.

at an(1/ x)

proc near

fldl ; fpatan conput es

fxch ; atan(st(1)/st(0)).

f pat an ; we want atan(st(0)/st(1)).
ret

endp

ACS(O(x)- Conputes the arccosecant of st(0) and | eaves the

result in st(0).

abs(X) must be greater than one.

There nust be at least two free registers for
this function to operate properly.

atan(sqrt (1/ (x*x-1)))

pr oc near

fld st(0) ; Conput e x*Xx

fru

fldl ; Conpute x*x-1

fsub

fldl ; Conput e 1/ (x*x- 1)
fdivr

fsqrt ; Conpute sqgrt (1/(x*x-1))
fldl

f pat an ; Conpute atan of above.
ret

endp

ASEQ(x)- Conputes the arcsecant of st(0) and | eaves the

result in st(0).

abs(X) must be greater than one.

There nust be at least two free registers for
this function to operate properly.

atan(sqrt(x*x-1))

pr oc near
fld st(0) ; Conput e x*Xx
f rmul

asec

SaveCW

MaskedCW

TwoToX

Floating Point Arithmetic

fldl ; Conpute x*x-1

fsub

fsqrt ; Conput e sqgrt(x*x-1)
fldl

f pat an ; Conput e atan of above.
ret

endp

TwoToX(x)- Conputes 2**x.

It does this by using the al gebraic identity:
2%*x = 2**int(x) * 2**frac(x).

V% can easily conpute 2**int(x) with fscale and
2**frac(x) using f2xnil.

This routine requires three free registers.

wor d ?
wor d ?
proc near

fstcw cseg: SaveCW

; Modify the control word to truncate when rounding.

TwoToX

TenToX

)
1
)
)
)

TenToX(x)

fstcw cseg: MaskedCwW
or byte ptr cseg: MaskedCWM1, 1100b
fldcw cseg: MaskedCwW

fld st(0) ; Dupl i cate tos.

fld st (0)

frndi nt ; Conput e integer portion.
fxch ; Swap whol e and int val ues.
fsub st(0), st(1) ;Conpute fractional part.
f2xnmi ; Conpute 2**frac(x)-1.
fldl

fadd ; Conpute 2**frac(x).

fxch ; Get integer portion.

fldl ; Conput e 1*2**i nt (X) .
fscale

fstp st(1) ; Renove st (1) (which is 1).
f mul ; Conpute 2**int(x) * 2**frac(x).

fldcw cseg: SaveCW ; Restore roundi ng node.
ret
endp

TenToX(x)- Conputes 10**x.

This routine requires three free registers.

= 2**(x * 1g(10))

proc near

fldl2t ; Put 1g(10) onto the stack
f rmul ; Conput e x*I g(10)

call TwoToX ; Conpute 2**(x * 1g(10)).
ret

endp

exp(x)- Conputes e**x.

This routine requires three free registers.

exp(x) = 2**(x * lg(e))

Page 807

Chapter 14

exp proc near
fldl 2e ;Put 1g(e) onto the stack.
f rul ; Conpute x*Ig(e).
call TwoToX ; Conpute 2**(x * lg(e))
ret

exp endp

YtoX(y, x)- Conputes y**x (y=st(1l), x=st(0)).
This routine requires three free registers.

Y nust be greater than zero.

YtoX(y,X) =2 ** (x * lg(y))

Yt oX proc near
fxch ; Conpute 1 g(y).
fldl
fxch
fyl 2x

f rmul ; Conpute x*1g(y).
cal | TwoToX ; Conpute 2**(x*1g(y)).
ret

Yt oX endp

; LO x)- Conputes the base 10 | ogarithm of x.
Usual range for x (>0).
j Lo x) = 1 g(x)/1g(10).

| og pr oc near
fldl
fxch
fyl 2x ; Conput e 1*1 g(x) .
fldl 2t ; Load 1g(10).
fdiv ; Comput e 1g(x)/1g(10).
ret
| og endp

; LN(x)- Conputes the base e logarithmof x.
X nust be greater than zero.
: In(x) = 1g(x)/1g(e).

I'n proc near
fldl
fxch
fyl 2x ; Conput e 1*1 g(x) .
fldl2e ; Load 1 g(e).
fdiv ; Comput e 1g(x)/1g(10).
ret

I'n endp

; This main programtests the various functions in this package.

Mai n proc
nov ax, dseg
nov ds, ax
nov es, ax
nmem ni t
finit

; Check to see if cot and acot are working properly.

Page 808

Floating Point Arithmetic

fld cot Var

call cot

f st cot Res

call acot

fstp acot Res

printff

byt e “x=98. 5gf, cot(x)=98.5gf, acot(cot(x)) = 9B.5gf\n",0
dwor d cotVar, cotRes, acotRes

; Check to see if csc and acsc are working properly.

fld cscVar

call csc

f st cscRes

call acsc

fstp acscRes

printff

byt e “x=98. 5gf, csc(x)=9B. 5gf, acsc(csc(x)) = 9B.5gf\n",0
dwor d cscVar, cscRes, acscRes

; Check to see if sec and asec are working properly.

fld secVar

call sec

f st secRes

call asec

fstp asecRes

printff

byt e “x=98. 5gf , sec(x)=98.5gf, asec(sec(x)) = 9B.5gf\n",0
dwor d secVar, secRes, asecRes

; Check to see if sin and asin are working properly.

fld si nVar

fsin

f st si nRes

call asin

fstp asi nRes

printff

byte “x=98. 5gf, sin(x)=98.5gf, asin(sin(x)) = 9%.5gf\n",0
dwor d sinVar, sinRes, asinRes

; Check to see if cos and acos are working properly.

fld cosVar

fcos

f st cosRes

call acos

fstp acosRes

printff

byt e “x=98. 5gf , cos(x)=98.5gf, acos(cos(x)) = 9.5gf\n",0
dwor d cosVar, cosRes, acosRes

; Check to see if 2**x and | g(x) are working properly.

fld Two2xVar

call TwoToX

f st Two2xRes

fldl

fxch

fyl 2x

fstp | gxRes

printff

byt e “x=98. 5gf , 2**x =98.5gf, |1g(2**x) = 98.5gf\n",0

Page 809

Chapter 14

dword Two2xVar, Two2xRes, |gxRes

; Check to see if 10**x and | 0g(x) are working properly.

fld Ten2xVar

call TenToX

fst Ten2xRes

call LOG

fstp | ogRes

printff

byt e “x=98. 5gf, 10**x =98.2gf, |og(10**x) = 98.5¢gf\n",0

dword Ten2xVar, Ten2xRes, |ogRes

; Check to see if exp(x) and In(x) are working properly.

fld expVar

cal | exp

f st expRes

cal I'n

fstp I nRes

printff

byte “x=98. 5¢gf , e**x =98.2gf, In(e**x) = 9B.5gf\n",0

dword expVar, expRes, |nRes

; Check to see if y**x is working properly.

fld Y2Xy
fld Y2Xx
cal | Yt oX
fstp Y2XRes
printff
byte “x=98. 5gf, y =98.59f, y**x = 98.49f\n",0
dword Y2Xx, Y2Xy, Y2XRes
Qit: Exi t Pgm
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk byt e 1024 dup (“stack “)
sseg ends
zzz7277S€eg segnment para public ‘zzzzzz’
Last Byt es byt e 16 dup (?)
2772727s€eg ends
end Mai n
Sanpl e program out put :
x= 3.00000, cot(x)=-7.01525, acot(cot(x)) = 3.00000
x= 1.50000, csc(x)= 1.00251, acsc(csc(x)) = 1.50000
x= 0.50000, sec(x)= 1.13949, asec(sec(x)) = 0.50000
x= 0. 75000, sin(x)= 0.68163, asin(sin(x)) = 0.75000
x= 0. 25000, cos(x)= 0.96891, acos(cos(x)) = 0.25000
x=-2.50000, 2**x = 0.17677, |g(2**x) = -2.50000
x= 3.75000, 10**x = 5623.41, |og(10**x) = 3. 75000
x= 3.25000, e**x = 25.79, I n(e**x) = 3. 25000
x= 3. 00000, y = 3.00000, y**x = 27.0000

14.6 Laboratory Exercises

Page 810

Floating Point Arithmetic

14.6.1 FPU vs StdLib Accuracy

In this laboratory exercise you will will run two programs that perform 20,000,000
floating point additions. These programs do the first 10,000,000 additions using the 80x87
FPU, they do the second 10,000,000 additions using the Standard Library’s floating point
routines. This exercise demonstrates the relative accuracy of the two floating point mecha-
nisms.

For your lab report: assemble and run the EX14_1.asm program (it’s on the compan-
ion CD-ROM). This program adds together 10,000,000 64-bit floating point values and
prints their sum. Describe the results in your lab report. Time these operations and report
the time difference in your lab report. Note that the exact sum these operations should pro-
duce is 1.00000010000e+0000.

After running Ex14_1.asm, repeat this process for the Ex14_2.asm file. Ex14_2 differs
from Ex14_1 insofar as Ex14_2 lets the Standard Library routines operate on 80-bit mem-
ory operands (the FPU cannot operate on 80-bit memory operands, so this part remains
unchanged). Time the execution of Ex14 2’s two components. Compare these times
against the running time of Ex14_1 and explain any differences.

EX14 1. asm

This programruns some tests to deternine how well the floating point
arithnetic in the Standard Library conmpares with the floating point
arithnetic on the 80x87. It does this performng various operations
using both methods and conparing the result.

O course, you nmust have an 80x87 FPU (or 80486 or |ater processor)
in order to run this code.

. 386
option segment : usel6
i ncl ude stdlib.a

includelib stdlib.lib
dseg segnent para public 'data'

; Since this is an accuracy test, this code uses REAL8 val ues for
; all operations

sl Val uel real 8 1.0

sl Smal | Val real 8 1. 0e-14

Val uel real 8 1.0

Smal | Val real 8 1. 0e-14

Buf f er byte 20 dup (0)

dseg ends

cseg segnent para public 'code'

assune cs: cseqg, ds:dseg

Mai n proc
nov ax, dseg
nov ds, ax
nov es, ax
mem ni t
finit ;lnitialize the FPU

; Do 10, 000, 000 floating point additions:

Page 811

Chapter 14

printff
byt e " Addi ng 10, 000, 000 FP val ues together with the
byt e “FPU',cr,If,0
nov ecx, 10000000
FPLoop: fld Val uel
fld Smal | Val
fadd
fstp Val uel
dec ecx
jnz FPLoop
printff
byt e "Result = %®20&\n",cr,If,0
dwor d Val uel

; Do 10,000,000 floating point additions with the Standard Library fpadd

; routine:
printff
byte cr,lf
byt e " Addi ng 10, 000, 000 FP val ues together with the “
byte “StdLib", cr,If
byt e "Note: this may take a few mnutes to run, don't *
byte “get too inpatient"”
byt e cr,lf,0
nmov ecx, 10000000
SLLoop: | esi sl Val uel
| df pa
| esi sl Smal | Val
| df po
f padd
| esi sl Val uel
sdf pa
dec ecx
jnz SLLoop
printff
byte "Result = %®0&E\ n",cr,If,0
dwor d sl Val uel
Qi t: Exi t Pgm ; DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends
zz77277S€g segnment para public 'zzzzzz'
Last Byt es db 16 dup (?)
2772727s€eg ends
end Mai n
EX14_2. asm

; This programruns some tests to determne how well the floating point
; arithnetic in the Standard Library conpares with the floating point

; arithnetic on the 80x87. It lets the standard library routines use

; the full 80-bit format since they allowit and the FPU does not.

O course, you nust have an 80x87 FPU (or 80486 or |ater processor)
inorder to run this code.

Page 812

dseg

sl Val uel
sl Smal | Val

Val uel
Smal | Va

Buf f er
dseg

cseg

Mai n

. 386
option

i ncl ude

Floating Point Arithmetic

segment : usel6

stdlib.a

includelib stdlib.lib

segment

real 10
real 10

real 8
real 8

byt e
ends

segment
assune

proc
nov
nov
nov
nmem ni t
finit

para public 'data

1.0
1. 0e-14

1.0
1. 0e-14

20 dup (0)

para public 'code
cs: cseg, ds:dseg

ax, dseg
ds, ax
es, ax

;lnitialize the FPU

; Do 10, 000, 000 floating point additions:

FPLoop

printff
byt e
byt e

nov
fld
fld
f add
fstp
dec
jnz

printff
byt e
dwor d

" Addi ng 10, 000, 000 FP val ues together with the
“FPU',cr,If,0

ecx, 10000000
Val uel
Snal | Va

Val uel
ecx
FPLoop

"Result = %20&\n",cr,If,0
Val uel

; Do 10,000,000 floating point additions with the Standard Library fpadd

; routine

SLLoop

printff
byt e
byt e
byt e
byt e
byt e
byt e

nmov
| esi
| ef pa
| esi
| ef po
f padd
| esi
sef pa
dec
jnz

printff

cr,lf

"Addi ng 10, 000, 000 FP val ues together with the
“StdLib", cr,If

"Note: this may take a few minutes to run, don't
“get too inpatient"”

cr,lf,0

“

ecx, 10000000
sl Val uel

sl Smal | Val
sl Val uel

ecx
SLLoop

Page 813

Chapter 14

byt e "Result = %20LE\n",cr,If,0
dwor d sl Val uel
Qit: Exi t Pgm ;DCB macro to quit program
Mai n endp
cseg ends
sseg segment para stack 'stack'
stk db 1024 dup ("stack ")
sseg ends
zz77277s€g segnent para public 'zzzzzz'
Last Byt es db 16 dup (?)
zz772727s€g ends
end Mai n

14.7 Programming Projects

14.8 Summary

For many applications integer arithmetic has two insurmountable drawbacks - it is
not easy to represent fractional values with integers and integers have a limited dynamic
range. Floating point arithmetic provides an approximation to real arithmetic that over-
comes these two limitations.

Floating point arithmetic, however, is not without its own problems. Floating point
arithmetic suffers from limited precision. As a result, inaccuracies can creep into a calcula-
tion. Therefore, floating point arithmetic does not completely follow normal algebraic
rules. There are five very important rules to keep in mind when using floating point arith-
metic: (1°) The order of evaluation can affect the accuracy of the result; (2) Whenever add-
ing and subtracting numbers, the accuracy of the result may be less than the precision
provided by the floating point format; (3) When performing a chain of calculations involv-
ing addition, subtraction, multiplication, and division, try to perform the multiplication
and division operations first; (4) When multiplying and dividing values, try to multiply
large and small numbers together first and try to divide numbers with the same relative
magnitue first; (5) When comparing two floating point numbers, always keep in mind that
errors can creep into the computations, therefore you should check to see if one value is
within a certain range of the other. For more information, see

= “The Mathematics of Floating Point Arithmetic” on page 771

Early on Intel recognized the need for a hardware floating point unit. They hired three
mathematicians to design highly accurate floating point formats and algorithms for their
80x87 family of FPUs. These formats, with slight modifications, become the IEEE 754 and
IEEE 854 floating point standards. The IEEE standard actually provides for three different
formats: a 32 bit standard precision format, a 64 bit double precision format, and an
extended precision format. Intel implemented the extended precision format using 80
bits®. The 32 bit format uses a 24 bit mantissa (the H.O. bit is an implied one and is not
stored in the 32 bits), an eight bit bias 127 exponent, and a one bit sign. The 64 bit format
provides a 53 bit mantissa (again, the H.O. bit is always one and is not stored in the 64 b it
value), an 11 bit excess 1023 exponent, and a one bit sign. The 80 bit extended precision
format uses a 64 bit exponent, a 15 bit excess 16363 exponent, and a single bit sign. For
more information, see

= “|EEE Floating Point Formats” on page 774

9. The IEEE standard only requires that the extended precision format contain more bits than the double precision
format.

Page 814

Floating Point Arithmetic

Although 80x87 FPUs and CPUs with built-in FPUs (80486 and Pentium) are becom-
ing very common, it is still possible that you may need to execute code that uses floating
point arithmetic on a machine without an FPU. In such cases you will need to supply soft-
ware routines to execute the floating point arithmetic. Fortunately, the UCR Standard
Library provides a set of floating point routines you can call. The Standard Library
includes routines to load and store floating point values, convert between integer and
floating point formats, add, subtract, multiply, and divide floating point values, convert
between ASCII and floating point, and output floating point values. Even if you have an
FPU installed, the Standard Library’s conversion and output routines are quite useful. For
more information, see

= “The UCR Standard Library Floating Point Routines” on page 777

For fast floating point arithmetic, software doesn’t stand a chance against hardware.
The 80x87 FPUs provide fast and convient floating point operations by extended the
80x86’s instruction set to handle floating point arithmetic. In addition to the new instruc-
tions, the 80x87 FPUs also provide eight new data registers, a control register, a status reg-
ister, and several other internal registers. The FPU data registers, unlike the 80x86’s
general purpose registers, are organized as a stack. Although it is possible to manipulate
the registers as though they were a standard register file, most FPU applications use the
stack mechanism when computing floating point results. The FPU control register lets you
initialize the 80x87 FPU in one of several different modes. The control register lets you set
the rounding control, the precision available during computation, and choose which
exceptions can cause an interrupt. The 80x87 status register reports the current state of the
FPU. This register provides bits that determine if the FPU is currently busy, determine if a
previous instruction has generated an exception, determine the physical register number
of the top of the register stack, and provide the FPU condition codes. For more informa-
tion on the 80x87 register set, see

= “The 80x87 Floating Point Coprocessors” on page 781
= “FPU Registers” on page 781

= “The FPU Data Registers” on page 782

= “The FPU Control Register” on page 782

= “The FPU Status Register” on page 785

In addition to the IEEE single, double, and extended preoision data types, the 80x87
FPUs also support various integer and BCD data types. The FPU will automatically con-
vert to and from these data types when loading and storing such values. For more infor-
mation on these data type formats, see

= “FPU Data Types” on page 788

The 80x87 FPUs provide a wide range of floating point operations by augmenting the
80x86’s instruction set. We can classify the FPU instructions into eight categories: data
movement instructions, conversions, arithmetic instructions, comparison instructions,
constant instructions, transcendental instructions, miscellaneous instructions, and integer
instructions. For more information on these instruction types, see

= “The FPU Instruction Set” on page 789

< “FPU Data Movement Instructions” on page 789
= “Conversions” on page 791

= “Arithmetic Instructions” on page 792

= “Comparison Instructions” on page 797

= “Constant Instructions” on page 798

= “Transcendental Instructions” on page 799

= “Miscellaneous instructions” on page 800

= “Integer Operations” on page 803

Although the 80387 and later FPUs provide a rich set of transcendental functions,
there are many trigonometric, inverse trigonometric, exponential, and logarithmic func-
tions missing from the instruction set. However, the missing functions are easy to synthe-
size using algebraic identities. This chapter provides source code for many of these
routines as an example of FPU programming. For more information, see

Page 815

Chapter 14

= “Sample Program: Additional Trigonometric Functions” on page 804

Page 816

Floating Point Arithmetic

14.9 Questions

b
2)

3)

4)

5)

6)

7)
8)

9)

10)

Why don’t the normal rules of algebra apply to floating point arithmetic?

Give an example of a sequence of operations whose order of evaluation will produce dif-
ferent results with finite precision arithmetic.

Explain why limited precision addition and subtraction operations can cause a loss of pre-
cision during a calculation.

Why should you, if at all possible, perform multiplications and divisions first in a calcula-
tion involving multiplication or division as well as addition or subtraction?

Explain the difference between a normalized, unnormalized, and denormalized floating
point value.

Using the UCR Standard Library, convert the following expression to 80x86 assembly
code (assume all variables are 64 bit double precision values). Be sure to perform any nec-
essary algebraic manipulations to ensure the maximum accuracy. You can assume all vari-
ables fall in the range +1e-10...+1e+10.

Q) Z=X*X+Y*Y
C) Z:=X*Y - X/Y d) Z .= (X+Y)/(X-Y)
e) Z = (X*X)Z(Y*Y) flZ=X*X+Y+10
Convert the above statements to 80x87 FPU code.

b) Z := (X-Y)*Z

The following problems provide definitions for the hyperbolic trigonometric functions.
Encode each of these using the 80x87 FPU instructions and the exp(x) and In(x) routines
provided in this chapter.

—_eX X —X
a) sinhx = ef-e b) coshx = &€
2 2
_ sinhx _ 1
¢) tanhx = oshx d) cschx = Sihx
__1 _ coshx
€) sechx = o f) cothx = Srhx

g) asinhx = In(x + /x2 + 1)

h) acoshx = In(x + J/x2—-1)

|n(1l()
1+x2
i) atanhx = 12_X j) acschx = In(%)
1
= I
k) asechx = In(Xi—i_Xz) 1) atanhx = %1

Create a log(x,y) function which computes logy, x. The algebraic identity for this is

Interval arithmetic involves performing a calculation with every result rounded down
and then repeating the computation with each result rounded up. At the end of these two
computations, you know that the true result must lie between the two computed results.
The rounding control bits in the FPU control register let you select round up and round
down modes. Repeat question six applying interval arithmetic and compute the two
bounds for each of those problems (a-f).

Page 817

Chapter 14

11)

12)

13)

14)
15)

16)

17)

18)
19)

20)

Page 818

The mantissa precision control bits in the FPU control register simply control where the
FPU rounds results. Selecting a lower precision does not improve the performance of the
FPU. Therefore, any new software you write should set these two bits to ones to get 64 bits
of precision when performing calculations. Can you provide one reason why you might
want to set the precision to something other than 64 bits?

Suppose you have two 64 bit variables, X and Y, that you want to compare to see if they
are equal. As you know, you should not compare them directly to see if they are equal, but
rather see if they are less than some small value apart. Suppose €, the error constant, is
1e-300. Provide the code to load ax with zero if X=Y and load ax with one if X2Y.

Repeat problem 12, except test for:

ay X<y b) X <Y
)XY d)X>Y
e)XzY

What instruction can you use to see if the value in st(0) is denormalized?

Assuming no stack underflow or overflow, what is the C; condition code bit usually used
for?

Many texts, when describing the FPU chip, suggest that you can use the FPU to perform
integer arithmetic. An argument generally given is that the FPU can support 64 bit inte-
gers whereas the CPU can only support 16 or 32 bit integers. What is wrong with this
argument? Why would you not want to use the FPU to perform integer arithmetic? Why
does the FPU even provide integer instructions?

Suppose you have a 64 bit double precision floating point value in memory. Describe how
you could take the absolute value of this variable without using the FPU (i.e., by using
only 80x86 instructions).

Explain how to change the sign of the variable in question 17.

Why does the TwoToX function (see “Sample Program: Additional Trigonometric Func-
tions” on page 804) have to compute the result using fscale and fyl2x? Why can’t it use fyl2x
along?

Explain a possible problem with the following code sequence:

stp nmem 64
xor byte ptr nem 64+7, 80h ; Tweak sign bit

