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Interrupts, Traps, and Exceptions Chapter 17

 

The concept of an interrupt is something that has expanded in scope over the years.
The 80x86 family has only added to the confusion surrounding interrupts by introducing
the 

 

int

 

 (software interrupt) instruction. Indeed, different manufacturers have used terms
like 

 

exceptions, faults, aborts, traps, 

 

and 

 

interrupts

 

  to describe the phenomena this chapter
discusses. Unfortunately, there is no clear consensus as to the exact meaning of these
terms. Different authors adopt different terms to their own use. While it is tempting to
avoid the use of such misused terms altogether, for the purpose of discussion it would be
nice to have a set of well defined terms we can use in this chapter. Therefore, we will pick
three of the terms above, interrupts, traps, and exceptions, and define them. This chapter
attempts to use the most common meanings for these terms, but don’t be surprised to find
other texts using them in different contexts. 

On the 80x86, there are three types of events commonly known as interrupts: 

 

traps

 

,

 

exceptions,

 

 and 

 

interrupts

 

  (hardware interrupts). This chapter will describe each of these
forms and discuss their support on the 80x86 CPUs and PC compatible machines.

Although the terms trap and exception are often used synonymously, we will use the
term 

 

trap

 

  to denote a programmer initiated and expected transfer of control to a special
handler routine. In many respects, a trap is nothing more than a specialized subroutine
call. Many texts refer to traps as 

 

software interrupts

 

. The 80x86 

 

int

 

 instruction is the main
vehicle for executing a trap. Note that traps are usually 

 

unconditional

 

; that is, when you
execute an 

 

int

 

 instruction, control 

 

always

 

  transfers to the procedure associated with the
trap. Since traps execute via an explicit instruction, it is easy to determine exactly which
instructions in a program will invoke a 

 

trap handling

 

  routine.

An exception is an automatically generated trap (coerced rather than requested) that
occurs in response to some exceptional condition. Generally, there isn’t a specific instruc-
tion associated with an exception

 

1

 

, instead, an exception occurs in response to some
degenerate behavior of normal 80x86 program execution. Examples of conditions that
may 

 

raise

 

  (cause) an exception include executing a division instruction with a zero divi-
sor, executing an illegal opcode, and a memory protection fault. Whenever such a condi-
tion occurs, the CPU immediately suspends execution of the current instruction and
transfers control to an 

 

exception handler

 

  routine. This routine can decide how to handle the
exceptional condition; it can attempt to rectify the problem or abort the program and print
an appropriate error message. Although you do not generally execute a specific instruc-
tion to cause an exception, as with the software interrupts (traps), execution of some
instruction is what causes an exception. For example, you only get a division error when
executing a division instruction somewhere in a program.

 

Hardware interrupts

 

, the third category that we will refer to simply as 

 

interrupts

 

, are
program control interruption based on an external hardware event (external to the CPU).
These interrupts generally have nothing at all to do with the instructions currently execut-
ing; instead, some event, such as pressing a key on the keyboard or a time out on a timer
chip, informs the CPU that a device needs some attention. The CPU interrupts the cur-
rently executing program, services the device, and then returns control back to the pro-
gram.

An 

 

interrupt service routine

 

  is a procedure written specifically to handle a trap, excep-
tion, or interrupt. Although different phenomenon cause traps, exceptions, and interrupts,
the structure of an interrupt service routine, or 

 

ISR

 

, is approximately the same for each of
these.

 

1. Although we will classify the 

 

into

 

 instruction in this category. This is an exception to this rule.
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17.1 80x86 Interrupt Structure and Interrupt Service Routines (ISRs)

 

Despite the different causes of traps, exceptions, and interrupts, they share a common
format for their handling routines. Of course, these interrupt service routines will perform
different activities depending on the source of the invocation, but it is quite possible to
write a single interrupt handling routine that processes traps, exceptions, and hardware
interrupts. This is rarely done, but the structure of the 80x86 interrupt system allows this.
This section will describe the 80x86’s interrupt structure and how to write basic interrupt
service routines for the 80x86 real mode interrupts.

The 80x86 chips allow up to 256 

 

vectored

 

  interrupts. This means that you can have up
to 256 different sources for an interrupt and the 80x86 will directly call the service routine
for that interrupt without any software processing. This is in contrast to 

 

nonvectored

 

  inter-
rupts that transfer control directly to a single interrupt service routine, regardless of the
interrupt source.

The 80x86 provides a 256 entry 

 

interrupt vector table

 

  beginning at address 0:0 in mem-
ory. This is a 1K table containing 256 4-byte entries. Each entry in this table contains a seg-
mented address that points at the interrupt service routine in memory. Generally, we will
refer to interrupts by their index into this table, so interrupt zero’s address (vector) is at
memory location 0:0, interrupt one’s vector is at address 0:4, interrupt two’s vector is at
address 0:8, etc.

When an interrupt occurs, regardless of source, the 80x86 does the following:

1) The CPU pushes the flags register onto the stack.

2) The CPU pushes a far return address (segment:offset) onto the stack, segment
value first.

3) The CPU determines the cause of the interrupt (i.e., the interrupt number) and
fetches the four byte interrupt vector from address 0:vector*4.

4) The CPU transfers control to the routine specified by the interrupt vector table
entry.

After the completion of these steps, the interrupt service routine takes control. When the
interrupt service routine wants to return control, it must execute an 

 

iret

 

  (interrupt return)
instruction. The interrupt return pops the far return address and the flags off the stack.
Note that executing a far return is insufficient since that would leave the flags on the stack.

There is one minor difference between how the 80x86 processes hardware interrupts
and other types of interrupts – upon entry into the hardware interrupt service routine, the
80x86 disables further hardware interrupts by clearing the interrupt flag. Traps and excep-
tions do not do this. If you want to disallow further hardware interrupts within a trap or
exception handler, you must explicitly clear the interrupt flag with a 

 

cli

 

 instruction. Con-
versely, if you want to allow interrupts within a hardware interrupt service routine, you
must explicitly turn them back on with an 

 

sti

 

 instruction. Note that the 80x86’s interrupt
disable flag only affects hardware interrupts. Clearing the interrupt flag will not prevent
the execution of a trap or exception.

ISRs are written like almost any other assembly language procedure except that they
return with an 

 

iret

 

 instruction rather than 

 

ret

 

. Although the distance of the ISR procedure
(near vs. far) is usually of no significance, you should make all ISRs 

 

far

 

  procedures. This
will make programming easier if you decide to call an ISR directly rather than using the
normal interrupt handling mechanism. 

Exceptions and hardware interrupts ISRs have a very special restriction: they must

 

preserve the state of the CPU

 

. In particular, these ISRs must preserve all registers they mod-
ify. Consider the following extremely simple ISR:

 

SimpleISR proc far
mov ax, 0
iret

SimpleISR endp
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This ISR obviously does 

 

not

 

  preserve the machine state; it explicitly disturbs the value in

 

ax

 

 and then returns from the interrupt. Suppose you were executing the following code
segment when a hardware interrupt transferred control to the above ISR:

 

mov ax, 5
add ax, 2

; Suppose the interrupt occurs here.

puti

 

 .
 .
 .

 

The interrupt service routine would set the 

 

ax

 

 register to zero and your program would
print zero rather than the value five. Worse yet, hardware interrupts are generally 

 

asyn-
chronous

 

, meaning they can occur at any time and rarely do they occur at the same spot in
a program. Therefore, the code sequence above would print seven most of the time; once
in a great while it might print zero or two (it will print two if the interrupt occurs between
the 

 

mov ax, 5 

 

and 

 

add ax, 2

 

 instructions). Bugs in hardware interrupt service routines are
very difficult to find, because such bugs often affect the execution of unrelated code. 

The solution to this problem, of course, is to make sure you preserve all registers you
use in the interrupt service routine for hardware interrupts and exceptions. Since trap
calls are explicit, the rules for preserving the state of the machine in such programs is
identical to that for procedures.

Writing an ISR is only the first step to implementing an interrupt handler. You must
also initialize the interrupt vector table entry with the address of your ISR. There are two
common ways to accomplish this – store the address directly in the interrupt vector table
or call DOS and let DOS do the job for you. 

Storing the address yourself is an easy task. All you need to do is load a segment reg-
ister with zero (since the interrupt vector table is in segment zero) and store the four byte
address at the appropriate offset within that segment. The following code sequence initial-
izes the entry for interrupt 255 with the address of the SimpleISR routine presented ear-
lier:

 

mov ax, 0
mov es, ax
pushf
cli
mov word ptr es:[0ffh*4], offset SimpleISR
mov word ptr es:[0ffh*4 + 2], seg SimpleISR
popf

 

Note how this code turns off the interrupts while changing the interrupt vector table. This
is important if you are patching a hardware interrupt vector because it wouldn’t do for the
interrupt to occur between the last two 

 

mov

 

 instructions above; at that point the interrupt
vector is in an inconsistent state and invoking the interrupt at that point would transfer
control to the offset of SimpleISR and the segment of the previous interrupt 0FFh handler.
This, of course, would be a disaster. The instructions that turn off the interrupts while
patching the vector are unnecessary if you are patching in the address of a trap or excep-
tion handler

 

2

 

.

Perhaps a better way to initialize an interrupt vector is to use DOS’ 

 

Set Interrupt Vector

 

call. Calling DOS (see “MS-DOS, PC-BIOS, and File I/O” on page 699) with 

 

ah

 

 equal to
25h provides this function. This call expects an interrupt number in the 

 

al

 

 register and the
address of the interrupt service routine in 

 

ds:dx

 

. The call to MS-DOS that would accom-
plish the same thing as the code above is

 

2. Strictly speaking, this code sequence does not require the pushf, cli, and popf instructions because interrupt 255
does not correspond to any hardware interrupt on a typical PC machine. However, it is important to provide this
example so you’re aware of the problem.
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mov ax, 25ffh ;AH=25h, AL=0FFh.
mov dx, seg SimpleISR ;Load DS:DX with
mov ds, dx ; address of ISR
lea dx, SimpleISR
int 21h ;Call DOS
mov ax, dseg ;Restore DS so it
mov ds, ax ; points back at DSEG.

 

Although this code sequence is a little more complex than poking the data directly into the
interrupt vector table, it is safer. Many programs monitor changes made to the interrupt
vector table through DOS. If you call DOS to change an interrupt vector table entry, those
programs will become aware of your changes. If you circumvent DOS, those programs
may not find out that you’ve patched in your own interrupt and could malfunction.

Generally, it is a very bad idea to patch the interrupt vector table and not restore the
original entry after your program terminates. Well behaved programs always save the
previous value of an interrupt vector table entry and restore this value before termination.
The following code sequences demonstrate how to do this. First, by patching the table
directly:

 

mov ax, 0
mov es, ax

; Save the current entry in the dword variable IntVectSave:

mov ax, es:[IntNumber*4]
mov word ptr IntVectSave, ax
mov ax, es:[IntNumber*4 + 2]
mov word ptr IntVectSave+2, ax

; Patch the interrupt vector table with the address of our ISR

pushf ;Required if this is a hw interrupt.
cli ; “        “   “   “ “  “     “ 

mov word ptr es:[IntNumber*4], offset OurISR
mov word ptr es:[IntNumber*4+2], seg OurISR

popf ;Required if this is a hw interrupt.

; Okay, do whatever it is that this program is supposed to do:

 

 .
 .
 .

 

; Restore the interrupt vector entries before quitting:

mov ax, 0
mov es, ax

pushf ;Required if this is a hw interrupt.
cli ;   “      “  “    “   “     “

mov ax, word ptr IntVectSave
mov es:[IntNumber*4], ax
mov ax, word ptr IntVectSave+2
mov es:[IntNumber*4 + 2], ax

popf ;Required if this is a hw interrupt.

 

 .
 .
 .

 

If you would prefer to call DOS to save and restore the interrupt vector table entries, you
can obtain the address of an existing interrupt table entry using the DOS 

 

Get Interrupt
Vector

 

  call. This call, with 

 

ah

 

=35h, expects the interrupt number in 

 

al

 

; it returns the exist-
ing vector for that interrupt in the 

 

es:bx

 

 registers. Sample code that preserves the interrupt
vector using DOS is
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; Save the current entry in the dword variable IntVectSave:

mov ax, 3500h + IntNumber ;AH=35h, AL=Int #.
int 21h
mov word ptr IntVectSave, bx
mov word ptr IntVectSave+2, es

; Patch the interrupt vector table with the address of our ISR

mov dx, seg OurISR
mov ds, dx
lea dx, OurISR
mov ax, 2500h + IntNumber ;AH=25, AL=Int #.
int 21h

; Okay, do whatever it is that this program is supposed to do:

 

 .
 .
 .

 

; Restore the interrupt vector entries before quitting:

lds bx, IntVectSave
mov ax, 2500h+IntNumber ;AH=25, AL=Int #.
int 21h

 

 .
 .
 .

 

17.2 Traps

 

A trap is a software-invoked interrupt. To execute a trap, you use the 80x86 

 

int

 

 (soft-
ware interrupt) instruction

 

3

 

. There are only two primary differences between a trap and
an arbitrary far procedure call: the instruction you use to call the routine (

 

int

 

 vs. 

 

call

 

) and
the fact that a trap pushes the flags on the stack so you must use the 

 

iret

 

 instruction to
return from it. Otherwise, there really is no difference between a trap handler’s code and
the body of a typical far procedure.

The main purpose of a trap is to provide a fixed subroutine that various programs can
call without having to actually know the run-time address. MS-DOS is the perfect exam-
ple. The 

 

int 21h

 

 instruction is an example of a trap invocation. Your programs do not have
to know the actual memory address of DOS’ entry point to call DOS. Instead, DOS patches
the interrupt 21h vector when it loads into memory. When you execute 

 

int 21h

 

, the 80x86
automatically transfers control to DOS’ entry point, whereever in memory that happens to
be.

There is a long lists of support routines that use the trap mechanism to link applica-
tion programs to themselves. DOS, BIOS, the mouse drivers, and Netware

 



 

 are a few
examples. Generally, you would use a trap to call a 

 

resident program

 

  function. Resident
programs (see “Resident Programs” on page 1025) load themselves into memory and
remain resident once they terminate. By patching an interrupt vector to point at a subrou-
tine within the resident code, other programs that run after the resident program termi-
nates can call the resident subroutines by executing the appropriate 

 

int

 

 instruction.

Most resident programs do 

 

not

 

  use a separate interrupt vector entry for each function
they provide. Instead, they usually patch a 

 

single

 

  interrupt vector and transfer control to
an appropriate routine using a 

 

function number

 

  that the caller passes in a register. By con-
vention, most resident programs expect the function number in the 

 

ah

 

 register. A typical
trap handler would execute a case statement on the value in the ah register and transfer
control to the appropriate handler function. 

 

3. You can also simulate an int instruction by pushing the flags and executing a far call to the trap handler. We will
consider this mechanism later on.
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Since trap handlers are virtually identical to far procedures in terms of use, we will
not discuss traps in any more detail here. However, the text chapter will explore this sub-
ject in greater depth when it discusses resident programs.

 

17.3 Exceptions

 

Exceptions occur (are 

 

raised

 

) when an abnormal condition occurs during execution.
There are fewer than eight possible exceptions on machines running in real mode. Pro-
tected mode execution provides many others, but we will not consider those here, we will
only consider those exceptions interesting to those working in real mode

 

4

 

.

Although exception handlers are user defined, the 80x86 hardware defines the excep-
tions that can occur. The 80x86 also assigns a fixed interrupt number to each of the excep-
tions. The following sections describe each of these exceptions in detail.

In general, an exception handler should preserve all registers. However, there are sev-
eral special cases where you may want to tweak a register value before returning. For
example, if you get a bounds violation, you may want to modify the value in the register
specified by the 

 

bound

 

 instruction before returning. Nevertheless, you should not arbi-
trarily modify registers in an exception handling routine unless you intend to immedi-
ately abort the execution of your program.

 

17.3.1 Divide Error Exception (INT 0)

 

This exception occurs whenever you attempt to divide a value by zero or the quotient
does not fit in the destination register when using the 

 

div

 

 or 

 

idiv

 

 instructions. Note that the
FPU’s fdiv and fdivr instructions do 

 

not

 

  raise this exception.

MS-DOS provides a generic divide exception handler that prints a message like
“divide error” and returns control to MS-DOS. If you want to handle division errors your-
self, you must write your own exception handler and patch the address of this routine into
location 0:0.

On 8086, 8088, 80186, and 80188 processors, the return address on the stack points at
the next instruction after the divide instruction. On the 80286 and later processors, the
return address points at the beginning of the divide instruction (include any prefix bytes
that appear). When a divide exception occurs, the 80x86 registers are unmodified; that is,
they contain the values they held when the 80x86 first executed the 

 

div

 

 or 

 

idiv

 

 instruction.

When a divide exception occurs, there are three reasonable things you can attempt:
abort the program (the easy way out), jump to a section of code that attempts to continue
program execution in view of the error (e.g., as the user to reenter a value), or attempt to
figure out why the error occurred, correct it, and reexecute the division instruction. Few
people choose this last alternative because it is so difficult.

 

17.3.2 Single Step (Trace) Exception (INT 1)

 

The single step exception occurs after every instruction if the 

 

trace

 

  bit in the flags reg-
ister is equal to one. Debuggers and other programs will often set this flag so they can
trace the execution of a program.

When this exception occurs, the return address on the stack is the address of the 

 

next

 

instruction to execute. The trap handler can decode this opcode and decide how to pro-
ceed. Most debuggers use the trace exception to check for 

 

watchpoints

 

  and other events
that change dynamically during program execution. Debuggers that use the trace excep-

 

4. For more details on exceptions in protected mode, see the bibliography.
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tion for single stepping often 

 

disassemble

 

  the next instruction using the return address on
the stack as a pointer to that instruction’s opcode bytes.

Generally, a single step exception handler should preserve 

 

all

 

  80x86 registers and
other state information. However, you will see an interesting use of the trace exception
later in this text where we will purposely modify register values to make one instruction
behave like another (see “The PC Keyboard” on page 1153).

Interrupt one is also shared by the debugging exceptions capabilities of 80386 and
later processors. These processors provide on-chip support via 

 

debugging registers

 

. If some
condition occurs that matches a value in one of the debugging registers, the 80386 and
later CPUs will generate a debugging exception that uses interrupt vector one.

 

17.3.3 Breakpoint Exception (INT 3)

 

The breakpoint exception is actually a trap, not an exception. It occurs when the CPU
executes an 

 

int 3

 

 instruction. However, we will consider it an exception since programmers
rarely put 

 

int 3

 

 instructions directly into their programs. Instead, a debugger like Code-
view often manages the placement and removal of 

 

int 3 

 

instructions. 

When the 80x86 calls a breakpoint exception handling routine, the return address on
the stack is the address of the next instruction after the breakpoint opcode. Note, however,
that there are actually 

 

two

 

  

 

int

 

 instructions that transfer control through this vector. Gener-
ally, though, it is the one-byte 

 

int 3

 

 instruction whose opcode is 0cch; otherwise it is the
two byte equivalent: 0cdh, 03h.

 

17.3.4 Overflow Exception (INT 4/INTO)

 

The overflow exception, like 

 

int 3

 

, is technically a trap. The CPU only raises this excep-
tion when you execute an 

 

into

 

 instruction and the overflow flag is set. If the overflow flag
is clear, the 

 

into

 

 instruction is effectively a 

 

nop

 

, if

 

 the overflow flag is set, into behaves like an
int 4 instruction. Programmers can insert an into instruction after an integer computation to
check for an arithmetic overflow. Using into is equivalent to the following code sequence:

« Some integer arithmetic code »
jno GoodCode
int 4

GoodCode:

One big advantage to the into instruction is that it does not flush the pipeline or prefetch
queue if the overflow flag is not set. Therefore, using the into instruction is a good tech-
nique if you provide a single overflow handler (that is, you don’t have some special code
for each sequence where an overflow could occur).

The return address on the stack is the address of the next instruction after into. Gener-
ally, an overflow handler does not return to that address. Instead, it will usually abort the
program or pop the return address and flags off the stack and attempt the computation in
a different way.

17.3.5 Bounds Exception (INT 5/BOUND)

Like into, the bound instruction (see “The INT, INTO, BOUND, and IRET Instructions”
on page 292) will cause a conditional exception. If the specified register is outside the
specified bounds, the bound instruction is equivalent to an int 5 instruction; if the register is
within the specified bounds, the bound instruction is effectively a nop.

The return address that bound pushes is the address of the bound instruction itself, not
the instruction following bound. If you return from the exception without modifying the
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value in the register (or adjusting the bounds), you will generate an infinite loop because
the code will reexecute the bound instruction and repeat this process over and over again.

One sneaky trick with the bound instruction is to generate a global minimum and max-
imum for an array of signed integers. The following code demonstrates how you can do
this:

; This program demonstrates how to compute the minimum and maximum values
; for an array of signed integers using the bound instruction

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

; The following two values contain the bounds for the BOUND instruction.

LowerBound word ?
UpperBound word ?

; Save the INT 5 address here:

OldInt5 dword ?

; Here is the array we want to compute the minimum and maximum for:

Array word 1, 2, -5, 345, -26, 23, 200, 35, -100, 20, 45
word 62, -30, -1, 21, 85, 400, -265, 3, 74, 24, -2
word 1024, -7, 1000, 100, -1000, 29, 78, -87, 60

ArraySize = ($-Array)/2

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Our interrupt 5 ISR. It compares the value in AX with the upper and
; lower bounds and stores AX in one of them (we know AX is out of range
; by virtue of the fact that we are in this ISR).
;
; Note: in this particular case, we know that DS points at dseg, so this
; ISR will get cheap and not bother reloading it.
;
; Warning: This code does not handle the conflict between bound/int5 and
; the print screen key. Pressing prtsc while executing this code may
; produce incorrect results (see the text).

BoundISR proc near
cmp ax, LowerBound
jl NewLower

; Must be an upper bound violation.

mov UpperBound, ax
iret

NewLower: mov LowerBound, ax
iret

BoundISR endp

Main proc
mov ax, dseg
mov ds, ax
meminit
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; Begin by patching in the address of our ISR into int 5’s vector.

mov ax, 0
mov es, ax
mov ax, es:[5*4]
mov word ptr OldInt5, ax
mov ax, es:[5*4 + 2]
mov word ptr OldInt5+2, ax

mov word ptr es:[5*4], offset BoundISR
mov es:[5*4 + 2], cs

; Okay, process the array elements. Begin by initializing the upper
; and lower bounds values with the first element of the array.

mov ax, Array
mov LowerBound, ax
mov UpperBound, ax

; Now process each element of the array:

mov bx, 2 ;Start with second element.
mov cx, ArraySize

GetMinMax: mov ax, Array[bx]
bound ax, LowerBound
add bx, 2 ;Move on to next element.
loop GetMinMax ;Repeat for each element.

printf
byte “The minimum value is %d\n”
byte “The maximum value is %d\n”,0
dword LowerBound, UpperBound

; Okay, restore the interrupt vector:

mov ax, 0
mov es, ax
mov ax, word ptr OldInt5
mov es:[5*4], ax
mov ax, word ptr OldInt5+2
mov es:[5*4+2], ax

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

If the array is large and the values appearing in the array are relatively random, this
code demonstrates a fast way to determine the minimum and maximum values in the
array. The alternative, comparing each element against the upper and lower bounds and
storing the value if outside the range, is generally a slower approach. True, if the bound
instruction causes a trap, this is much  slower than the compare and store method. How-
ever, it a large array with random values, the bounds violation will rarely occur. Most of
the time the bound instruction will execute in 7-13 clock cycles and it will not flush the
pipeline or the prefetch queue5.
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Warning: IBM, in their infinite wisdom, decided to use int 5 as the print screen  opera-
tion. The default int 5 handler will dump the current contents of the screen to the printer.
This has two implications for those who would like to use the bound instruction in their
programs. First, if you do not install your own int 5 handler and you execute a bound
instruction that generates a bound exception, you will cause the machine to print the con-
tents of the screen. Second, if you press the PrtSc key with your int 5 handler installed,
BIOS will invoke your handler. The former case is a programming error, but this latter
case means you have to make your bounds exception handler a little smarter. It should
look at the byte pointed at by the return address. If this is an int 5 instruction opcode
(0cdh), then you need to call the original int 5 handler, or simply return from interrupt (do
you want them pressing the PrtSc key at that point?). If it is not an int 5 opcode, then this
exception was probably raised by the bound instruction. Note that when executing a bound
instruction the return address may not be pointing directly at a bound opcode (0c2h). It
may be pointing at a prefix byte to the bound instruction (e.g., segment, addressing mode,
or size override). Therefore, it is best to check for the int 5 opcode.

17.3.6 Invalid Opcode Exception (INT 6)

The 80286 and later processors raise this exception if you attempt to execute an
opcode that does not correspond to a legal 80x86 instruction. These processors also raise
this exception if you attempt to execute a bound, lds, les, lidt, or other instruction that
requires a memory operand but you specify a register operand in the mod/rm field of the
mod/reg/rm byte.

The return address on the stack points at the illegal opcode. By examining this
opcode, you can extend the instruction set of the 80x86. For example, you could run 80486
code on an 80386 processor by providing subroutines that mimic the extra 80486 instruc-
tions (like bswap, cmpxchg, etc.).

17.3.7 Coprocessor Not Available (INT 7)

The 80286 and later processors raise this exception if you attempt to execute an FPU
(or other coprocessor) instruction without having the coprocessor installed. You can use
this exception to simulate the coprocessor in software.

On entry to the exception handler, the return address points at the coprocessor opcode
that generated the exception.

17.4 Hardware Interrupts

Hardware interrupts are the form most engineers (as opposed to PC programmers)
associate with the term interrupt. We will adopt this same strategy henceforth and will use
the non-modified term “interrupt” to mean a hardware interrupt. 

On the PC, interrupts come from many different sources. The primary sources of
interrupts, however, are the PCs timer chip, keyboard, serial ports, parallel ports, disk
drives, CMOS real-time clock, mouse, sound cards, and other peripheral devices. These
devices connect to an Intel 8259A programmable interrupt controller (PIC) that prioritizes
the interrupts and interfaces with the 80x86 CPU. The 8259A chip adds considerable com-
plexity to the software that processes interrupts, so it makes perfect sense to discuss the
PIC first, before trying to describe how the interrupt service routines have to deal with it.
Afterwards, this section will briefly describe each device and the conditions under which

5. Note that on the 80486 and later processors, the bound instruction may actually be slower than the correspond-
ing straight line code.
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it interrupts the CPU. This text will fully describe many of these devices in later chapters,
so this chapter will not go into a lot of detail except when discussing the timer interrupt.

17.4.1 The 8259A Programmable Interrupt Controller (PIC)

The 8259A (82596 or PIC, hereafter) programmable interrupt controller chip accepts
interrupts from up to eight different devices. If any one of the devices requests service, the
8259 will toggle an interrupt output line (connected to the CPU) and pass a programmable
interrupt vector to the CPU. You can cascade  the device to support up to 64 devices by
connecting nine 8259s together: eight of the devices with eight inputs each whose outputs
become the eight inputs of the ninth device. A typical PC uses two of these devices to pro-
vide 15 interrupt inputs (seven on the master  PIC with the eight input coming from the
slave  PIC to process its eight inputs)7. The sections following this one will describe the
devices connected to each of those inputs, for now we will concentrate on what the 8259
does with those inputs. Nevertheless, for the sake of discussion, the following table lists
the interrupt sources on the PC:

The 8259 PIC is a very complex chip to program. Fortunately, all of the hard stuff has
already been done for you by the BIOS when the system boots. We will not discuss how to
initialize the 8259 in this text because that information is only useful to those writing oper-
ating systems like Linux, Windows, or OS/2. If you want your interrupt service routines
to run correctly under DOS or any other OS, you must not reinitialize the PIC.

The PICs interface to the system through four I/O locations: ports 20h/0A0h and
21h/0A1h. The first address in each pair is the address of the master PIC (IRQ 0-7), the

6. The original 8259 was designed for Intel’s 8080 system. The 8259A provided support for the 80x86 and some
other features. Since almost no one uses 8259 chips anymore, this text will use the generic term 8259.
7. The original IBM PC and PC/XT machines only supported eight interrupts via one 8259 chip. IBM, and virtu-
ally all clone manufacturers, added the second PIC in PC/AT and later designs.

Table 66: 8259 Programmable Interrupt Controller Inputs

Input on 
8259

80x86 
INT

Device

IRQ 0 8 Timer chip

IRQ 1 9 Keyboard

IRQ 2 0Ah Cascade for controller 2 (IRQ 8-15)

IRQ 3 0Bh Serial port 2

IRQ 4 0Ch Serial port 1

IRQ 5 0Dh Parallel port 2 in AT, reserved in PS/2 systems

IRQ 6 0Eh Diskette drive

IRQ 7 0Fh Parallel port 1

IRQ 8/0 70h Real-time clock

IRQ 9/1 71h CGA vertical retrace (and other IRQ 2 devices)

IRQ 10/2 72h Reserved

IRQ 11/3 73h Reserved

IRQ 12/4 74h Reserved in AT, auxiliary device on PS/2 systems

IRQ 13/5 75h FPU interrupt

IRQ 14/6 76h Hard disk controller

IRQ 15/7 77h Reserved
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second address in each pair corresponds to the slave PIC (IRQ 8-15). Port 20h/0A0h is a
read/write location to which you write PIC commands and read PIC status, we will refer
to this as the command register or the status register. The command register is write only, the
status register is read only. They just happen to share the same I/O location. The
read/write lines on the PIC determine which register the CPU accesses. Port 21h/0A1h is
a read/write location that contains the interrupt mask register, we will refer to this as the
mask register. Choose the appropriate address depending upon which interrupt controller
you want to use.

The interrupt mask register is an eight bit register that lets you individually enable
and disable interrupts from devices on the system. This is similar to the actions of the cli
and sti instructions, but on a device by device basis. Writing a zero to the corresponding
bit enables  that device’s interrupts. Writing a one disables interrupts from the affected
device. Note that this is non-intuitive. Figure 17.1 provides the layout of the interrupt
mask register. 

When changing bits in the mask register, it is important that you not simply load al
with a value and output it directly to the mask register port. Instead, you should read the
mask register and then logically or in or and out the bits you want to change; finally, you
can write the output back to the mask register. The following code sequence enables
COM1: interrupts without affecting any others:

in al, 21h ;Read existing bits.
and al, 0efh ;Turn on IRQ 4 (COM1).
out 21h, al ;Write result back to PIC.

The command register provides lots of options, but there are only three commands
you would want to execute on this chip that are compatible with the BIOS’ initialization of
the 8259: sending an end of interrupt command and sending one of two read status regis-
ter commands.

One a specific interrupt occurs, the 8259 masks all further interrupts from that device
until is receives an end of interrupt  signal from the interrupt service routine. On PCs run-
ning DOS, you accomplish this by writing the value 20h to the command register. The fol-
lowing code does this:

mov al, 20h
out 20h, al ;Port 0A0h if IRQ 8-15.

Figure 17.1 8259 Interrupt Mask Register

Contoller Adrs

21h         0A1h

IRQ 0  /  IRQ 8

IRQ 1  /  IRQ 9

IRQ 2  /  IRQ 10

IRQ 3  /  IRQ 11

IRQ 4  /  IRQ 12

IRQ 5  /  IRQ 13

IRQ 6  /  IRQ 14

IRQ 7  /  IRQ 15

Interrupt Mask Register
7   6   5   4   3   2   1   0

To disable a specific device's interrupt, write a one to the mask register
To enable a specific device's interrupt, write a zero to the mask register
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You must send exactly one end of interrupt command to the PIC for each interrupt you
service. If you do not send the end of interrupt command, the PIC will not honor any
more interrupts from that device; if you send two or more end of interrupt commands,
there is the possibility that you will accidentally acknowledge a new interrupt that may be
pending and you will lose that interrupt.

For some interrupt service routines you write, your ISR will not be the only ISR that
an interrupt invokes. For example, the PC’s BIOS provides an ISR for the timer interrupt
that maintains the time of day. If you patch into the timer interrupt, you will need to call
the PC BIOS’ timer ISR so the system can properly maintain the time of day and handle
other timing related chores (see “Chaining Interrupt Service Routines” on page 1010).
However, the BIOS’ timer ISR outputs the end of interrupt command. Therefore, you
should not output the end of interrupt command yourself, otherwise the BIOS will output
a second end of interrupt command and you may lose an interrupt in the process.

The other two commands you can send the 8259 let you select whether to read the
in-service register  (ISR) or the interrupt request register  (IRR). The in-service register con-
tains set bits for each active ISR (because the 8259 allows prioritized interrupts, it is quite
possible that one ISR has been interrupted by a higher priority ISR). The interrupt request
register contains set bits in corresponding positions for interrupts that have not yet been
serviced (probably because they are a lower priority interrupt than the interrupt currently
being serviced by the system). To read the in-service register, you would execute the fol-
lowing statements:

; Read the in-service register in PIC #1 (at I/O address 20h)

mov al, 0bh
out 20h, al
in al, 20h

To read the interrupt request register, you would use the following code:

; Read the interrupt request register in PIC #1 (at I/O address 20h)

mov al, 0ah
out 20h, al
in al, 20h

Writing any other values to the command port may cause your system to malfunction. 

17.4.2 The Timer Interrupt (INT 8)

The PC’s motherboard contains an 8254 compatible timer chip. This chip contains
three timer channels, one of which generates interrupts every 55 msec (approximately).
This is about once every 1/18.2 seconds. You will often hear this interrupt referred to as the
“eighteenth second clock.” We will simply call it the timer interrupt.

The timer interrupt vector is probably the most commonly patched interrupt in the
system. It turns out there are two  timer interrupt vectors in the system. Int 8 is the hard-
ware vector associated with the timer interrupt (since it comes in on IRQ 0 on the PIC).
Generally, you should not  patch this interrupt if you want to write a timer ISR. Instead,
you should patch the second timer interrupt, interrupt 1ch. The BIOS’ timer interrupt han-
dler (int 8) executes an int 1ch instruction before it returns. This gives a user patched rou-
tine access to the timer interrupt. Unless you are willing to duplicate the BIOS and DOS
timer code, you should never completely replace the existing timer ISR with one of your
own, you should always ensure that the BIOS and DOS ISRs execute in addition to your
ISR. Patching into the int 1ch vector is the easiest way to do this.

Even replacing the int 1ch vector with a pointer to your ISR is very dangerous. The
timer interrupt service routine is the one most commonly patched by various resident pro-
grams (see “Resident Programs” on page 1025). By simply writing the address of your ISR
into the timer interrupt vector, you may disable such resident programs and cause your
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system to malfunction. To solve this problem, you need to create an interrupt chain. For
more details, see the section “Chaining Interrupt Service Routines” on page 1010.

By default the timer interrupt is always enabled on the interrupt controller chip.
Indeed, disabling this interrupt may cause your system to crash or otherwise malfunction.
At the very least, you system will not maintain the correct time if you disable the timer
interrupt.

17.4.3 The Keyboard Interrupt (INT 9)

The keyboard microcontroller on the PC’s motherboard generates two  interrupts on
each keystroke – one when you press a key and one when you release it. This is on IRQ 1
on the master PIC. The BIOS responds to this interrupt by reading the keyboard’s scan
code, converting this to an ASCII character, and storing the scan and ASCII codes away in
the system type ahead buffer. 

By default, this interrupt is always enabled. If you disable this interrupt, the system
will not be able to respond to any keystrokes, including ctrl-alt-del. Therefore, your pro-
grams should always reenable this interrupt if they ever disable it.

For more information on the keyboard interrupt, see “The PC Keyboard” on
page 1153.

17.4.4 The Serial Port Interrupts (INT 0Bh and INT 0Ch)

The PC uses two interrupts, IRQ 3 and IRQ 4, to support interrupt driven serial com-
munications. The 8250 (or compatible) serial communications controller chip (SCC) gener-
ates an interrupt in one of four situations: a character arriving over the serial line, the SCC
finishes the transmission of a character and is requesting another, an error occurs, or a sta-
tus change occurs. The SCC activates the same interrupt line (IRQ 3 or 4) for all four inter-
rupt sources. The interrupt service routine is responsible for determining the exact nature
of the interrupt by interrogating the SCC.

By default, the system disables IRQ 3 and IRQ 4. If you install a serial ISR, you will
need to clear the interrupt mask bit in the 8259 PIC before it will respond to interrupts
from the SCC. Furthermore, the SCC design includes its own interrupt mask. You will
need to enable the interrupt masks on the SCC chip as well. For more information on the
SCC, see “The PC Serial Ports” on page 1223.

17.4.5 The Parallel Port Interrupts (INT 0Dh and INT 0Fh)

The parallel port interrupts are an enigma. IBM designed the original system to allow
two parallel port interrupts and then promptly designed a printer interface card that
didn’t support the use of interrupts. As a result, almost no DOS based software today uses
the parallel port interrupts (IRQ 5 and IRQ 7). Indeed, on the PS/2 systems IBM reserved
IRQ5 which they formerly used for LPT2:. 

However, these interrupts have not gone to waste. Many devices which IBM’s engi-
neers couldn’t even conceive when designing the first PC have made good use of these
interrupts. Examples include SCSI cards and sound cards. Many devices today include
“interrupt jumpers” that let you select IRQ 5 or IRQ 7 when installing the device.

Since IRQ 5 and IRQ 7 find such little use as parallel port interrupts, we will effec-
tively ignore the “parallel port interrupts” in this text.
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17.4.6 The Diskette and Hard Drive Interrupts (INT 0Eh and INT 76h)

The floppy and hard disk drives generate interrupts at the completion of a disk opera-
tion. This is a very useful feature for multitasking systems like OS/2, Linux, or Windows.
While the disk is reading or writing data, the CPU can go execute instructions for another
process. When the disk finishes the read or write operation, it interrupts the CPU so it can
resume the original task.

While managing the disk drives would be an interesting topic to cover in this text, this
book is already long enough. Therefore, this text will avoid discussing the disk drive
interrupts (IRQ 6 and IRQ 14) in the interest of saving some space. There are many texts
that cover low level disk I/O in assembly language, see the bibliography for details.

By default, the floppy and hard disk interrupts are always enabled. You should not
change this status if you intend to use the disk drives on your system.

17.4.7 The Real-Time Clock Interrupt (INT 70h)

PC/AT and later machines included a CMOS real-time clock. This device is capable of
generating timer interrupts in multiples of 976 µsec (let’s call it 1 msec). By default, the
real-time clock interrupt is disabled. You should only enable this interrupt if you have an
int 70h ISR installed.

17.4.8 The FPU Interrupt (INT 75h)

The 80x87 FPU generates an interrupt whenever a floating point exception occurs. On
CPUs with built-in FPUs (80486DX and better) there is a bit in one of the control register
you can set to simulate a vectored interrupt. BIOS generally initializes such bits for com-
patibility with existing systems.

By default, BIOS disables the FPU interrupt. Most programs that use the FPU explic-
itly test the FPU’s status register to determine if an error occurs. If you want to allow FPU
interrupts, you must enable the interrupts on the 8259 and  on the 80x87 FPU.

17.4.9 Nonmaskable Interrupts (INT 2)

The 80x86 chips actually provide two  interrupt input pins. The first is the maskable
interrupt. This is the pin to which the 8259 PIC connects. This interrupt is maskable
because you can enable or disable it with the cli and sti instructions. The nonmaskable  inter-
rupt, as its name implies, cannot be disabled under software control. Generally, PCs use
this interrupt to signal a memory parity error, although certain systems use this interrupt
for other purposes as well. Many older PC systems connect the FPU to this interrupt.

This interrupt cannot be masked, so it is always enabled by default.

17.4.10 Other Interrupts

As mentioned in the section on the 8259 PIC, there are several interrupts reserved by
IBM. Many systems use the reserved interrupts for the mouse or for other purposes. Since
such interrupts are inherently system dependent, we will not describe them here. 
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17.5 Chaining Interrupt Service Routines

Interrupt service routines come in two basic varieties – those that need exclusive
access to an interrupt vector and those that must share an interrupt vector with several
other ISRs. Those in the first category include error handling ISRs (e.g., divide error or
overflow) and certain device drivers. The serial port is a good example of a device that
rarely has more than one ISR associated with it at any one given time8. The timer,
real-time clock, and keyboard ISRs generally fall into the latter category. It is not at all
uncommon to find several ISRs in memory sharing each of these interrupts.

Sharing an interrupt vector is rather easy. All an ISR needs to do to share an interrupt
vector is to save the old interrupt vector when installing the ISR (something you need to
do anyway, so you can restore the interrupt vector when your code terminates) and then
call the original ISR before or after you do your own ISR processing. If you’ve saved away
the address of the original ISR in the dseg double word variable OldIntVect, you can call the
original ISR with the following code:

; Presumably, DS points at DSEG at this point.

pushf ;Simulate an INT instruction by pushing
call OldIntVect ; the flags and making a far call.

Since OldIntVect is a dword variable, this code generates a far call to the routine whose seg-
mented address appears in the OldIntVect variable. This code does not  jump to the location
of the OldIntVect variable.

Many interrupt service routines do not modify the ds register to point at a local data
segment. In fact, some simple ISRs do not change any of the segment registers. In such
cases it is common to put any necessary variables (especially the old segment value)
directly in the code segment. If you do this, your code could jump  directly to the original
ISR rather than calling it. To do so, you would just use the code:

MyISR proc near
 .
 .
 .

jmp cs:OldIntVect
MyISR endp

OldIntVect dword ?

This code sequence passes along your ISR’s flags and return address as the flag and return
address values to the original ISR. This is fine, when the original ISR executes the iret
instruction, it will return directly to the interrupted code (assuming it doesn’t pass control
to some other ISR in the chain).

The OldIntVect variable must  be in the code segment if you use this technique to trans-
fer control to the original ISR. After all, when you executing the jmp instruction above, you
must have already restored the state of the CPU, including the ds register. Therefore, you
have no idea what segment ds is pointing at, and it probably isn’t pointing at your local
data segment. Indeed, the only segment register whose value is known to you is cs, so you
must keep the vector address in your code segment.

The following simple program demonstrates interrupt chaining. This short program
patches into the int 1ch vector. The ISR counts off seconds and notifies the main program
as each second passes. The main program prints a short message every second. When 10
seconds have expired, this program removes the ISR from the interrupt chain and termi-
nates.

; TIMER.ASM
; This program demonstrates how to patch into the int 1Ch timer interrupt
; vector and create an interrupt chain.

8. There is no reason this has to be this way, it’s just that most people rarely run two programs at the same time
which must both be accessing the serial port.
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.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

; The TIMERISR will update the following two variables.
; It will update the MSEC variable every 55 ms.
; It will update the TIMER variable every second.

MSEC word 0
TIMER word 0

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; The OldInt1C variable must be in the code segment because of the
; way TimerISR transfers control to the next ISR in the int 1Ch chain.

OldInt1C dword ?

; The timer interrupt service routine.
; This guy increment MSEC variable by 55 on every interrupt.
; Since this interrupt gets called every 55 msec (approx) the
; MSEC variable contains the current number of milliseconds.
; When this value exceeds 1000 (one second), the ISR subtracts
; 1000 from the MSEC variable and increments TIMER by one.

TimerISR proc near
push ds
push ax
mov ax, dseg
mov ds, ax

mov ax, MSEC
add ax, 55  ;Interrupt every 55 msec.
cmp ax, 1000
jb SetMSEC
inc Timer  ;A second just passed.
sub ax, 1000  ;Adjust MSEC value.

SetMSEC: mov MSEC, ax
pop ax
pop ds
jmp cseg:OldInt1C ;Transfer to original ISR.

TimerISR endp

Main proc
mov ax, dseg
mov ds, ax
meminit

; Begin by patching in the address of our ISR into int 1ch’s vector.
; Note that we must turn off the interrupts while actually patching
; the interrupt vector and we must ensure that interrupts are turned
; back on afterwards; hence the cli and sti instructions. These are
; required because a timer interrupt could come along between the two
; instructions that write to the int 1Ch interrupt vector. This would
; be a big mess.

mov ax, 0
mov es, ax
mov ax, es:[1ch*4]
mov word ptr OldInt1C, ax
mov ax, es:[1ch*4 + 2]
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mov word ptr OldInt1C+2, ax

cli
mov word ptr es:[1Ch*4], offset TimerISR
mov es:[1Ch*4 + 2], cs
sti

; Okay, the ISR updates the TIMER variable every second.
; Continuously print this value until ten seconds have
; elapsed. Then quit.

mov Timer, 0
TimerLoop: printf

byte “Timer = %d\n”,0
dword Timer
cmp Timer, 10
jbe TimerLoop

; Okay, restore the interrupt vector. We need the interrupts off
; here for the same reason as above.

mov ax, 0
mov es, ax
cli
mov ax, word ptr OldInt1C
mov es:[1Ch*4], ax
mov ax, word ptr OldInt1C+2
mov es:[1Ch*4+2], ax
sti

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

17.6 Reentrancy Problems

A minor problem develops with developing ISRs, what happens if you enable inter-
rupts while in an ISR and a second interrupt from the same device comes along? This
would interrupt the ISR and then reenter  the ISR from the beginning. Many applications
do not behave properly under these conditions. An application that can properly handle
this situation is said to be reentrant. Code segments that do not operate properly when
reentered are nonreentrant. 

Consider the TIMER.ASM program in the previous section. This is an example of a
nonreentrant program. Suppose that while executing the ISR, it is interrupted at the fol-
lowing point:

TimerISR proc near
push ds
push ax
mov ax, dseg
mov ds, ax

mov ax, MSEC
add ax, 55  ;Interrupt every 55 msec.
cmp ax, 1000
jb SetMSEC
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; <<<<< Suppose the interrupt occurs at this point >>>>>

inc Timer  ;A second just passed.
sub ax, 1000  ;Adjust MSEC value.

SetMSEC: mov MSEC, ax
pop ax
pop ds
jmp cseg:OldInt1C ;Transfer to original ISR.

TimerISR endp

Suppose that, on the first invocation of the interrupt, MSEC contains 950 and Timer
contains three. If a second interrupt occurs and the specified point above, ax will contain
1005. So the interrupt suspends the ISR and reenters it from the beginning. Note that
TimerISR is nice enough to preserve the ax register containing the value 1005. When the
second invocation of TimerISR executes, it finds that MSEC still contains 950 because the
first invocation has yet to update MSEC. Therefore, it adds 55 to this value, determines
that it exceeds 1000, increments Timer (it becomes four) and then stores five into MSEC.
Then it returns (by jumping to the next ISR in the int 1ch chain). Eventually, control returns
the first invocation of the TimerISR routine. At this time (less than 55 msec after updating
Timer by the second invocation) the TimerISR code increments the Timer variable again and
updates MSEC to five. The problem with this sequence is that it has incremented the Timer
variable twice in less than 55 msec.

Now you might argue that hardware interrupts always clear the interrupt disable flag
so it would not be possible for this interrupt to be reentered. Furthermore, you might
argue that this routine is so short, it would never take more than 55 msec to get to the
noted point in the code above. However, you are forgetting something: some other timer
ISR could be in the system that calls your  code after it is done. That code could take 55
msec and just happen to turn the interrupts back on, making it perfectly possible that your
code could be reentered.

The code between the mov ax, MSEC and mov MSEC, ax instructions above is called a
critical region  or critical section. A program must not be reentered while it is executing in a
critical region. Note that having critical regions does not mean that a program is not reen-
trant. Most programs, even those that are reentrant, have various critical regions. The key
is to prevent an interrupt that could cause a critical region to be reentered while in that
critical region. The easiest way to prevent such an occurrence is to turn off the interrupts
while executing code in a critical section. We can easily modify the TimerISR to do this
with the following code:

TimerISR proc near
push ds
push ax
mov ax, dseg
mov ds, ax

; Beginning of critical section, turn off interrupts.

pushf ;Preserve current I flag state.
cli ;Make sure interrupts are off.

mov ax, MSEC
add ax, 55 ;Interrupt every 55 msec.
cmp ax, 1000
jb SetMSEC

inc Timer ;A second just passed.
sub ax, 1000 ;Adjust MSEC value.

SetMSEC: mov MSEC, ax

; End of critical region, restore the I flag to its former glory.

popf
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pop ax
pop ds
jmp cseg:OldInt1C;Transfer to original ISR.

TimerISR endp

We will return to the problem of reentrancy and critical regions in the next two chap-
ters of this text.

17.7 The Efficiency of an Interrupt Driven System

Interrupts introduce a considerable amount of complexity to a software system (see
“Debugging ISRs” on page 1020). One might ask if using interrupts is really worth the
trouble. The answer of course, is yes. Why else would people use interrupts if they were
proven not to be worthwhile? However, interrupts are like many other nifty things in
computer science – they have their place; if you attempt to use interrupts in an inappro-
priate fashion they will only make things worse for you.

The following sections explore the efficiency aspects of using interrupts. As you will
soon discover, an interrupt driven system is usually superior despite the complexity.
However, this is not always the case. For many systems, alternative methods provide bet-
ter performance.

17.7.1 Interrupt Driven I/O vs. Polling

The whole purpose of an interrupt driven system is to allow the CPU to continue pro-
cessing instructions while some I/O activity occurs. This is in direct contrast to a polling
system  where the CPU continually tests an I/O device to see if the I/O operation is com-
plete. In an interrupt driven system, the CPU goes about its business and the I/O device
interrupts it when it needs servicing. This is generally much more efficient than wasting
CPU cycles polling a device while it is not ready.

The serial port is a perfect example of a device that works extremely well with inter-
rupt driven I/O. You can start a communication program that begins downloading a file
over a modem. Each time a character arrives, it generates an interrupt and the communi-
cation program starts up, buffers the character, and then returns from the interrupt. In the
meantime, another program (like a word processor) can be running with almost no perfor-
mance degradation since it takes so little time to process the serial port interrupts.

Contrast the above scenario with one where the serial communication program con-
tinually polls the serial communication chip to see if a character has arrived. In this case
the CPU spends all of its time looking for an input character even though one rarely (in
CPU terms) arrives. Therefore, no CPU cycles are left over to do other processing like run-
ning your word processor.

Suppose interrupts were not available and you wanted to allow background down-
loads while using your word processing program. Your word processing program would
have to test the input data on the serial port once every few milliseconds to keep from los-
ing any data. Can you imagine how difficult such a word processor would be to write? An
interrupt system is the clear choice in this case.

If downloading data while word processing seems far fetched, consider a more simple
case – the PC’s keyboard. Whenever a keypress interrupt occurs, the keyboard ISR reads
the key pressed and saves it in the system type ahead buffer for the moment when the
application wants to read the keyboard data. Can you imagine how difficult it would be to
write applications if you had to constantly poll the keyboard port yourself to keep from
losing characters? Even in the middle of a long calculation? Once again, interrupts pro-
vide an easy solution.
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17.7.2 Interrupt Service Time

Of course, the serial communication system just described is an example of a best case
scenario. The communication program takes so little time to do its job that most of the time
is left over for the word processing program. However, were to you run a different inter-
rupt driven I/O system, for example, copying files from one disk to another, the interrupt
service routine would have a noticeable impact on the performance of the word process-
ing system. 

Two factors control an ISR’s impact on a computer system: the frequency of interrupts
and the interrupt service time. The frequency is how many times per second (or other time
measurement) a particular interrupt occurs. The interrupt service time is how long the ISR
takes to service the interrupt.

The nature of the frequency varies according to source of the interrupt. For example,
the timer chip generates evenly spaced interrupts about 18 times per second, likewise, a
serial port receiving at 9600bps generates better than 100 interrupts per second. On the
other hand, the keyboard rarely generates more than about 20 interrupts per second and
they are not very regular.

The interrupt service time is obviously dependent upon the number of instructions
the ISR must execute. The interrupt service time is also dependent upon the particular
CPU and clock frequency. The same ISR executing identical instructions on two CPUs will
run in less time on a faster machine.

The amount of time an interrupt service routine takes to handle an interrupt, multi-
plied by the frequency of the interrupt, determines the impact the interrupt will have on
system performance. Remember, every CPU cycle spent in an ISR is one less cycle avail-
able for your application programs. Consider the timer interrupt. Suppose the timer ISR
takes 100 µsec to complete its tasks. This means that the timer interrupt consumes 1.8
msec out of every second, or about 0.18% of the total computer time. Using a faster CPU
will reduce this percentage (by reducing the time spent in the ISR); using a slower CPU
will increase the percentage. Nevertheless, you can see that a short ISR such as this one
will not have a significant effect on overall system performance. 

One hundred microseconds is fast for a typical timer ISR, especially when your sys-
tem has several timer ISRs chained together. However, even if the timer ISR took ten times
as long to execute, it would only rob the system of less than 2% of the available CPU
cycles. Even if it took 100 times longer (10 msec), there would only be an 18% performance
degradation; most people would barely notice such a degradation9.

Of course, one cannot allow the ISR to take as much time as it wants. Since the timer
interrupt occurs every 55 msec, the maximum  time the ISR can use is just under 55msec. If
the ISR requires more time than there is between interrupts, the system will eventually
lose an interrupt. Furthermore, the system will spend all its time servicing the interrupt
rather than accomplishing anything else.

For many systems, having an ISR that consumes as much as 10% of the overall CPU
cycles will not prove to a problem. However, before you go off and start designing slow
interrupt service routines, you should remember that your ISR is probably not the only
ISR in the system. While your ISR is consuming 25% of the CPU cycles, there may be
another ISR that is doing the same thing; and another, and another, and… Furthermore,
there may be some ISRs that require fast servicing. For example, a serial port ISR may
need to read a character from the serial communications chip each millisecond or so. If
your timer ISR requires 4 msec to execute and does so with the interrupts turned off, the
serial port ISR will miss some characters.

Ultimately, of course, you would like to write ISRs so they are as fast as possible so
they have as little impact on system performance as they can. This is one of the main rea-

9. As a general rule, people begin to notice a real difference in performance between 25 and 50%. It isn’t instantly
obvious until about 50% (i.e., running at one-half the speed).
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sons most ISRs for DOS are still written in assembly language. Unless you are designing
an embedded system, one in which the PC runs only your application, you need to realize
that your ISRs must coexist with other ISRs and applications; you do not want the perfor-
mance of your ISR to adversely affect the performance of other code in the system.

17.7.3 Interrupt Latency

Interrupt latency is the time between the point a device signals that it needs service
and the point where the ISR provides the needed service. This is not instantaneous! At the
very least, the 8259 PIC needs to signal the CPU, the CPU needs to interrupt the current
program, push the flags and return address, obtain the ISR address, and transfer control to
the ISR. The ISR may need to push various registers, set up certain variables, check device
status to determine the source of the interrupt, and so on. Furthermore, there may be other
ISRs chained into the interrupt vector before you and they execute to completion before
transferring control to your ISR that actually services the device. Eventually, the ISR actu-
ally does whatever it is that the device needs done. In the best case on the fastest micro-
processors with simple ISRs, the latency could be under a microsecond. On slower
systems, with several ISRs in a chain, the latency could be as bad as several milliseconds.

For some devices, the interrupt latency is more important than the actual interrupt
service time. For example, an input device may only interrupt the CPU once every 10 sec-
onds. However, that device may be incapable of holding the data on its input port for
more than a millisecond. In theory, any interrupt service time less than 10 seconds is fine;
but the CPU must read the data within one millisecond of its arrival or the system will
lose the data.

Low interrupt latency (that is, responding quickly) is very important in many applica-
tions. Indeed, in some applications the latency requirements are so strict that you have to
use a very fast CPU or you have to abandon interrupts altogether and go back to polling.
What a minute! Isn’t polling less efficient than an interrupt driven system? How will poll-
ing improve things?

An interrupt driven I/O system improves system performance by allowing the CPU
to work on other tasks in between I/O operations. In principle, servicing interrupts takes
very little CPU time compared the arrival of interrupts to the system. By using interrupt
driven I/O, you can use all those other CPU cycles for some other purpose. However, sup-
pose the I/O device is producing service requests at such a rate that there are no free CPU
cycles. Interrupt driven I/O will provide few benefits in this case.

For example, suppose we have an eight bit I/O device connected to two I/O ports.
Suppose bit zero of port 310h contains a one if data is available and a zero otherwise. If
data is available, the CPU must read the eight bits at port 311h. Reading port 311h clears
bit zero of port 310h until the next byte arrives. If you wanted to read 8192 bytes from this
port, you could do this with the following short segment of code:

mov cx, 8192
mov dx, 310h
lea bx, Array ;Point bx at storage buffer

DataAvailLp: in al, dx ;Read status port.
shr al, 1 ;Test bit zero.
jnc DataAvailLp ;Wait until data is 

available.
inc dx ;Point at data port.
in al, dx ;Read data.
mov [bx], al ;Store data into buffer.
inc bx ;Move on to next array 

element.
dec dx ;Point back at status port.
loop DataAvailLp ;Repeat 8192 times.
 .
 .
 .
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This code uses a classical polling loop (DataAvailLp) to wait for each available charac-
ter. Since there are only three instructions in the polling loop, this loop can probably exe-
cute in just under a microsecond10.  So it might take as much as one microsecond to
determine that data is available, in which case the code falls through and by the second
instruction in the sequence we’ve read the data from the device. Let’s be generous and say
that takes another microsecond. Suppose, instead, we use a interrupt service routine. A
well-written  ISR combined with a good system hardware design will probably have laten-
cies measured in microseconds.

To measure the best case  latency we could hope to achieve would require some sort of
hardware timer than begins counting once an interrupt event occurs. Upon entry into our
interrupt service routine we could read this counter to determine how much time has
passed between the interrupt and its service. Fortunately, just such a device exists on the
PC – the 8254 timer chip that provides the source of the 55 msec interrupt.

The 8254 timer chip actually contains three separate timers: timer #0, timer #1, and
timer #2. The first timer (timer #0) provides the clock interrupt, so it will be the focus of
our discussion. The timer contains a 16 bit register that the 8254 decrements at regular
intervals (1,193,180 times per second). Once the timer hits zero, it generates an interrupt
on the 8259 IRQ 0 line and then wraps around to 0FFFFh and continues counting down
from that point. Since the counter automatically resets to 0FFFFh after generating each
interrupt, this means that the 8254 timer generates interrupts every 65,536/1,193,180 sec-
onds, or once every 54.9254932198 msec, which is 18.2064819336 times per second. We’ll
just call these once every 55 msec or 18 (or 18.2) times per second, respectively. Another
way to view this is that the 8254 decrements the counter once every 838 nanoseconds (or
0.838 µsec). 

The following short assembly language program measures interrupt latency by patch-
ing into the int 8 vector. Whenever the timer chip counts down to zero, it generates an
interrupt that directly calls this program’s ISR. The ISR quickly reads the timer chip’s
counter register, negates the value (so 0FFFFh becomes one, 0FFFEh becomes two, etc.),
and then adds it to a running total. The ISR also increments a counter so that it can keep
track of the number of times it has added a counter value to the total. Then the ISR jumps
to the original int 8 handler. The main program, in the mean time, simply computes and
displays the current average read from the counter. When the user presses any key, this
program terminates.

; This program measures the latency of an INT 08 ISR.
; It works by reading the timer chip immediately upon entering
; the INT 08 ISR By averaging this value for some number of
; executions, we can determine the average latency for this
; code.

.xlist

.386
option segment:use16
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume cs:cseg, ds:nothing

; All the variables are in the code segment in order to reduce ISR
; latency (we don’t have to push and set up DS, saving a few instructions
; at the beginning of the ISR).

OldInt8 dword ?
SumLatency dword 0

10. On a fast CPU (.e.g, 100 MHz Pentium), you might expect this loop to execute in much less time than one
microsecond. However, the in instruction is probably going to be quite slow because of the wait states associated
with external I/O devices.
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Executions dword 0
Average dword 0

; This program reads the 8254 timer chip. This chip counts from
; 0FFFFh down to zero and then generates an interrupt. It wraps
; around from 0 to 0FFFFh and continues counting down once it
; generates the interrupt.
;
; 8254 Timer Chip port addresses:

Timer0_8254 equ 40h
Cntrl_8254 equ 43h

; The following ISR reads the 8254 timer chip, negates the result
; (because the timer counts backwards), adds the result to the
; SumLatency variable, and then increments the Executions variable
; that counts the number of times we execute this code. In the
; mean time, the main program is busy computing and displaying the
; average latency time for this ISR.
;
; To read the 16 bit 8254 counter value, this code needs to
; write a zero to the 8254 control port and then read the
; timer port twice (reads the L.O. then H.O. bytes). There
; needs to be a short delay between reading the two bytes
; from the same port address.

TimerISR proc near
push ax
mov eax, 0    ;Ch 0, latch & read data.
out Cntrl_8254, al  ;Output to 8253 cmd register.
in al, Timer0_8254 ;Read latch #0 (LSB) & ignore.
mov ah, al
jmp SettleDelay    ;Settling delay for 8254 chip.

SettleDelay: in al, Timer0_8254 ;Read latch #0 (MSB)
xchg ah, al
neg ax    ;Fix, ‘cause timer counts down.
add cseg:SumLatency, eax
inc cseg:Executions
pop ax
jmp cseg:OldInt8

TimerISR endp

Main proc
meminit

; Begin by patching in the address of our ISR into int 8’s vector.
; Note that we must turn off the interrupts while actually patching
; the interrupt vector and we must ensure that interrupts are turned
; back on afterwards; hence the cli and sti instructions. These are
; required because a timer interrupt could come along between the two
; instructions that write to the int 8 interrupt vector. Since the
; interrupt vector is in an inconsistent state at that point, this
; could cause the system to crash.

mov ax, 0
mov es, ax
mov ax, es:[8*4]
mov word ptr OldInt8, ax
mov ax, es:[8*4 + 2]
mov word ptr OldInt8+2, ax

cli
mov word ptr es:[8*4], offset TimerISR
mov es:[8*4 + 2], cs
sti

; First, wait for the first call to the ISR above. Since we will be dividing
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; by the value in the Executions variable, we need to make sure that it is
; greater than zero before we do anything.

Wait4Non0: cmp cseg:Executions, 0
je Wait4Non0

; Okay, start displaying the good values until the user presses a key at
; the keyboard to stop everything:

DisplayLp: mov eax, SumLatency
cdq ;Extends eax->edx.
div Executions
mov Average, eax
printf
byte “Count: %ld, average: %ld\n”,0
dword Executions, Average

mov ah, 1 ;Test for keystroke.
int 16h
je DisplayLp
mov ah, 0 ;Read that keystroke.
int 16h

; Okay, restore the interrupt vector. We need the interrupts off
; here for the same reason as above.

mov ax, 0
mov es, ax
cli
mov ax, word ptr OldInt8
mov es:[8*4], ax
mov ax, word ptr OldInt8+2
mov es:[8*4+2], ax
sti

Quit: ExitPgm ;DOS macro to quit program.
Main endp

cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

On a 66 MHz 80486 DX/2 processor, the above code reports an average value of 44 after it
has run for about 10,000 iterations. This works out to about 37 µsec between the device
signalling the interrupt and the ISR being able to process it11. The latency of polled I/O would
probably be an order of magnitude less than this!

Generally, if you have some high speed application like audio or video recording or
playback, you probably cannot afford the latencies associated with interrupt I/O. On the
other hand, such applications demand such high performance out of the system, that you
probably wouldn’t have any CPU cycles left over to do other processing while waiting for
I/O.

11. Patching into the int 1Ch interrupt vector produces latencies in the 137 µsec range.
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Another issue with respect to ISR latency is latency consistency. That is, is there the
same amount of latency from interrupt to interrupt? Some ISRs can tolerate considerable
latency as long as it is consistent (that is, the latency is roughly the same from interrupt to
interrupt). For example, suppose you want to patch into the timer interrupt so you can
read an input port every 55 msec and store this data away. Later, when processing the
data, your code might work under the assumption that the data readings are 55 msec (or
54.9…) apart. This might not be true if there are other ISRs in the timer interrupt chain
before your ISR. For example, there may be an ISR that counts off 18 interrupts and then
executes some code sequence that requires 10 msec. This means that 16 out of every 18
interrupts your data collection routine would collect data at 55 msec intervals right on the
nose. But when that 18th interrupt occurs, the other timer ISR will delay 10 msec before
passing control to your routine. This means that your 17th reading will be 65 msec since
the last reading. Don’t forget, the timer chip is still counting down during all of this, that
means there are now only 45 msec to the next interrupt. Therefore, your 18th reading
would occur 45 msec after the 17th. Hardly a consistent pattern. If your ISR needs a consis-
tent latencies, you should try to install your ISR as early in the interrupt chain as possible.

17.7.4 Prioritized Interrupts

Suppose you have the interrupts turned off for a brief spell (perhaps you are process-
ing some interrupt) and two  interrupt requests come in while the interrupts are off. What
happens when you turn the interrupts back on? Which interrupt will the CPU first ser-
vice? The obvious answer would be “whichever interrupt occurred first.” However, sup-
pose the both occurred at exactly the same time (or, at least, within a short enough time
frame that we cannot determine which occurred first), or maybe, as is really the case, the
8259 PIC cannot keep track of which interrupt occurred first? Furthermore, what if one
interrupt is more important that another? Suppose for example, that one interrupt tells
that the user has just pressed a key on the keyboard and a second interrupt tells you that
your nuclear reactor is about to melt down if you don’t do something in the next 100 µsec.
Would you want to process the keystroke first, even if its interrupt came in first? Probably
not. Instead, you would want to prioritizes  the interrupts on the basis of their importance;
the nuclear reactor interrupt is probably a little more important than the keystroke inter-
rupt, you should probably handle it first.

The 8259 PIC provides several priority schemes, but the PC BIOS initializes the 8259
to use fixed  priority. When using fixed priorities, the device on IRQ 0 (the timer) has the
highest priority and the device on IRQ 7 has the lowest priority. Therefore, the 8259 in the
PC (running DOS) always resolves conflicts in this manner. If you were  going to hook that
nuclear reactor up to your PC, you’d probably want to use the nonmaskable  interrupt since
it has a higher priority than anything provided by the 8259 (and you can’t mask it with a
CLI instruction).

17.8 Debugging ISRs

Although writing ISRs can simplify the design of many types of programs, ISRs are
almost always very difficult to debug. There are two main reasons ISRs are more difficult
than standard applications to debug. First, as mentioned earlier, errant ISRs can modify
values the main program uses (or, worse yet, that some other  program in memory is
using) and it is difficult to pin down the source of the error. Second, most debuggers have
fits when you attempt to set breakpoints within an ISR.

If your code includes some ISRs and the program seems to be misbehaving and you
cannot immediately see the reason, you should immediately suspect interference by the
ISR. Many programmers have forgotten about ISRs appearing in their code and have
spent weeks attempting to locate a bug in their non-ISR code, only to discover the prob-
lem was with the ISR. Always suspect the ISR first. Generally, ISRs are short and you can
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quickly eliminate the ISR as the cause of your problem before trying to track the bug
down elsewhere.

Debuggers often have problems because they are not reentrant or they call BIOS or
DOS (that are not reentrant) so if you set a breakpoint in an ISR that has interrupted BIOS
or DOS and the debugger calls BIOS or DOS, the system may crash because of the reen-
trancy problems. Fortunately, most modern debuggers have a remote  debugging mode
that lets you connect a terminal or another PC to a serial port and execute the debug com-
mands on that second display and keyboard. Since the debugger talks directly to the serial
chip, it avoids calling BIOS or DOS and avoids the reentrancy problems. Of course, this
doesn’t help much if you’re writing a serial  ISR, but it works fine with most other pro-
grams.

A big problem when debugging interrupt service routines is that the system crashes
immediately after you patch the interrupt vector. If you do not have a remote debugging
facility, the best approach to debug this code is to strip the ISR to its bare essentials. This
might be the code that simply passes control on to the next ISR in the interrupt chain (if
applicable). Then add one section of code at a time back to your ISR until the ISR fails.

Of course, the best debugging strategy is to write code that doesn’t have any bugs.
While this is not a practical solution, one thing you can do is attempt to do as little as pos-
sible in the ISR. Simply read or write the device’s data and buffer any inputs for the main
program to handle later. The smaller your ISR is, the less complex it is, the higher the
probability is that it will not contain any bugs.

Debugging ISRs, unfortunately, is not easy and it is not something you can learn right
out of a book. It takes lots of experience and you will need to make a lot of mistakes. There
is unfortunately, but there is no substitute for experience when debugging ISRs.

17.9 Summary

This chapter discusses three phenomena occurring in PC systems: interrupts (hard-
ware), traps, and exceptions. An interrupt is an asynchronous procedure call the CPU gen-
erates in response to an external hardware signal. A trap is a programmer-supplied call to
a routine and is a special form of a procedure call. An exception occurs when a program
executes and instruction that generates some sort of error. For additional details, see

• “Interrupts, Traps, and Exceptions” on page 995.

When an interrupt, trap, or exception occurs, the 80x86 CPU pushes the flags and
transfers control to an interrupt service routine (ISR). The 80x86 supports an interrupt vector
table  that provides segmented addresses for up to 256 different interrupts. When writing
your own ISR, you need to store the address of you ISR in an appropriate location in the
interrupt vector table to activate that ISR. Well-behaved programs also save the original
interrupt vector value so they can restore it when they terminate. For the details, see

• “80x86 Interrupt Structure and Interrupt Service Routines (ISRs)” on
page 996

A trap, or software interrupt, is nothing more than the execution of an 80x86 “int n”
instruction. Such an instruction transfers control to the ISR whose vector appears in the
nth entry in the interrupt vector table. Generally, you would use a trap to call a routine in a
resident program appearing somewhere in memory (like DOS or BIOS). For more infor-
mation, see

• “Traps” on page 999

An exception occurs whenever the CPU executes an instruction and that instruction is
illegal or the execution of that instruction generates some sort of error (like division by
zero). The 80x86 provides several built-in exceptions, although this text only deals with
the exceptions available in real mode. For the details, see

• “Exceptions” on page 1000
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• “Divide Error Exception (INT 0)” on page 1000
• “Single Step (Trace) Exception (INT 1)” on page 1000
• “Breakpoint Exception (INT 3)” on page 1001
• “Overflow Exception (INT 4/INTO)” on page 1001
• “Bounds Exception (INT 5/BOUND)” on page 1001
• “Invalid Opcode Exception (INT 6)” on page 1004
• “Coprocessor Not Available (INT 7)” on page 1004

The PC provides hardware support for up to 15 vectored interrupts using a pair of
8259A programmable interrupt controller chips (PICs). Devices that normally generate
hardware interrupts include a timer, the keyboard, serial ports, parallel ports, disk drives,
sound cards, the real time clock, and the FPU. The 80x86 lets you enable and disable all
maskable  interrupts with the cli and sti instructions. The PIC also lets you individually
mask the devices that can interrupt the system. However, the 80x86 provides a special
nonmaskable  interrupt that has a higher priority than the other hardware interrupts and
cannot be disabled by a program. For more details on these hardware interrupts, see

• “Hardware Interrupts” on page 1004
• “The 8259A Programmable Interrupt Controller (PIC)” on page 1005
• “The Timer Interrupt (INT 8)” on page 1007
• “The Keyboard Interrupt (INT 9)” on page 1008
• “The Serial Port Interrupts (INT 0Bh and INT 0Ch)” on page 1008
• “The Parallel Port Interrupts (INT 0Dh and INT 0Fh)” on page 1008
• “The Diskette and Hard Drive Interrupts (INT 0Eh and INT 76h)” on

page 1009
• “The Real-Time Clock Interrupt (INT 70h)” on page 1009
• “The FPU Interrupt (INT 75h)” on page 1009
• “Nonmaskable Interrupts (INT 2)” on page 1009
• “Other Interrupts” on page 1009

Interrupt service routines that you write may need to coexist with other ISRs in mem-
ory. In particular, you may not be able to simply replace an interrupt vector with the
address of your ISR and let your ISR take over from there. Often, you will need to create
an interrupt chain  and call the previous ISR in the interrupt chain once you are done pro-
cessing the interrupt. To see why you create interrupt chains, and to learn how to create
them, see

• “Chaining Interrupt Service Routines” on page 1010

With interrupts comes the possibility of reentrancy. that is, the possibility that a routine
might be interrupt and called again before the first call finished execution. This chapter
introduces the concept of reentrancy and gives some examples that demonstrate problems
with nonreentrant code. For details, see

• “Reentrancy Problems” on page 1012

The whole purpose of an interrupt driven system is to improve the efficiency of that
system. Therefore, it should come as no surprise that ISRs should be as efficient as possi-
ble. This chapter discusses why interrupt driven I/O systems can be more efficient and
contrasts interrupt driven I/O with polled  I/O. However, interrupts can cause problems if
the corresponding ISR is too slow. Therefore, programmers who write ISRs need to be
aware of such parameters as interrupt service time, frequency of interrupts, and interrupt
latency. To learn about these concepts, see

• “The Efficiency of an Interrupt Driven System” on page 1014
• “Interrupt Driven I/O vs. Polling” on page 1014
• “Interrupt Service Time” on page 1015
• “Interrupt Latency” on page 1016

If multiple interrupts occur simultaneously, the CPU must decide which interrupt to
handle first. The 8259 PIC and the PC use a prioritized interrupt scheme assigning the
highest priority to the timer and work down from there. The 80x86 always processes the
interrupt with the highest priority first. For more details, see
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• “Prioritized Interrupts” on page 1020
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