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Resident Programs Chapter 18

 

Most MS-DOS applications are 

 

transient

 

. They load into memory, execute, terminate, and DOS uses
the memory allocated to the application for the next program the user executes. Resident programs follow
these same rules, except for the last. A resident program, upon termination, does not return all memory
back to DOS. Instead, a portion of the program remains 

 

resident

 

, ready to be reactivated by some other
program at a future time.

Resident programs, also known as 

 

terminate and stay resident programs

 

  or 

 

TSRs

 

, provide a tiny
amount of 

 

multitasking

 

  to an otherwise single tasking operating system. Until Microsoft Windows
became popular, resident programs were the most popular way to allow multiple applications to coexist
in memory at one time. Although Windows has diminished the need for TSRs for background processing,
TSRs are still valuable for writing 

 

device drivers

 

, 

 

antiviral tools

 

, and 

 

program patches.

 

 This chapter will dis-
cuss the issues you must deal with when writing resident programs.

 

18.1 DOS Memory Usage and TSRs

 

When you first boot DOS, the memory layout will look something like the following:  

DOS maintains a 

 

free memory pointer

 

  that points the the beginning of the block of free memory.
When the user runs an application program, DOS loads this application starting at the address the free
memory pointer contains. Since DOS generally runs only a single application at a time, all the memory
from the free memory pointer to the end of RAM (0BFFFFh) is available for the application’s use: 

When the program terminates normally via DOS function 4Ch (the Standard Library 

 

exitpgm

 

 macro),
MS-DOS reclaims the memory in use by the application and resets the free memory pointer to just above
DOS in low memory.

High Memory Area (HMA) and Upper Memory Blocks (UMB)

Video, ROM, and Adapter memory space
0BFFFFh (640K)

Interrupt vectors, BIOS  variables, DOS variables, and
lower memory portion of DOS.

Memory available for application use

Free Memory Pointer

DOS Memory Map (no active application)

00000h

0FFFFFh

0BFFFFh (640K)
Free Memory Pointer

DOS Memory Map (w/active application)

00000h

0FFFFFh

Memory in use by application
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MS-DOS provides a second termination call which is identical to the terminate call with one excep-
tion, it does not reset the free memory pointer to reclaim all the memory in use by the application. Instead,
this 

 

terminate and stay resident

 

  call frees all but a specified block of memory. The TSR call (

 

ah

 

=31h)
requires two parameters, a process termination code in the 

 

al

 

 register (usually zero) and 

 

dx

 

 must contain
the size of the memory block to protect, in paragraphs. When DOS executes this code, it adjusts the free
memory pointer so that it points at a location dx*16 bytes above the program’s PSP (see “MS-DOS,
PC-BIOS, and File I/O” on page 699). This leaves memory looking like this: 

When the user executes a new application, DOS loads it into memory at the new free memory pointer
address, protecting the resident program in memory: 

When this new application terminates, DOS reclaims its memory and readjusts the free memory pointer to
its location before running the application – just above the resident program. By using this free memory
pointer scheme, DOS can protect the memory in use by the resident program

 

1

 

. 

The trick to using the terminate and stay resident call is to figure out how many paragraphs should
remain resident. Most TSRs contain two sections of code: a 

 

resident

 

  portion and a 

 

transient

 

  portion. The
transient portion is the data, main program, and support routines that execute when you run the program
from the command line. This code will probably never execute again. Therefore, you should not leave it in
memory when your program terminates. After all, every byte consumed by the TSR program is one less
byte available to other application programs.

The resident portion of the program is the code that remains in memory and provides whatever func-
tions are necessary of the TSR. Since the PSP is usually right before the first byte of program code, to effec-
tively use the DOS TSR call, your program must be organized as follows:

 

1. Of course, DOS could never protect the resident program from an errant application. If the application decides to write zeros all over memory,
the resident program, DOS, and many other memory areas will be destroyed.

0BFFFFh (640K)

Free Memory Pointer

DOS Memory Map (w/resident application)

00000h

0FFFFFh

Memory in use by resident application

0BFFFFh (640K)
Free Memory Pointer

DOS Memory Map (w/resident and normal application)

00000h

0FFFFFh

Memory in use by resident application

Memory in use by normal application
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To use TSRs effectively, you need to organize your code and data so that the resident portions of your
program loads into lower memory addresses and the transient portions load into the higher memory
addresses. MASM and the Microsoft Linker both provide facilities that let you control the loading order of
segments within your code (see “MASM: Directives & Pseudo-Opcodes” on page 355). The simple solu-
tion, however, is to put all your resident code and data in a single segment and make sure that this seg-
ment appears 

 

first

 

  in every source module of your program. In particular, if you are using the UCR
Standard Library SHELL.ASM file, you must make sure that you define your resident segments 

 

before

 

  the
include directives for the standard library files. Otherwise MS-DOS will load all the standard library rou-
tines 

 

before

 

  your resident segment and that would waste considerable memory. Note that you only need
to define your resident segment first, you do not have to place all the resident code and data before the
includes. The following will work just fine:

 

ResidentSeg segment para public ‘resident’
ResidentSeg ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

ResidentSeg segment para public ‘resident’
assume cs:ResidentSeg, ds:ResidentSeg

PSP word ? ;This var must be here!

; Put resident code and data here

ResidentSeg ends

dseg segment para public ‘data’

; Put transient data here

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg

; Put Transient code here.

cseg ends
etc.

 

The purpose of the 

 

EndResident

 

 segment will become clear in a moment. For more information on
DOS memory ordering, see Chapter Six.

Memory  Organization for a Resident Program

Low addresses

High addresses

PSP

Resident code and data

Transient code

SSEG, ZZZZZZSEG, etc.
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Now the only problem is to figure out the size of the resident code, in paragraphs. With your code
structured in the manner shown above, determining the size of the resident program is quite easy, just use
the following statements to terminate the transient portion of your code (in cseg):

 

mov ax, ResidentSeg ;Need access to ResidentSeg
mov es, ax
mov ah, 62h ;DOS 

 

Get PSP

 

 call.
int 21h
mov es:PSP, bx ;Save PSP value in PSP variable.

; The following code computes the sixe of the resident portion of the code.
; The EndResident segment is the first segment in memory after resident code.
; The program’s PSP value is the segment address of the start of the resident
; block. By computing EndResident-PSP we compute the size of the resident
; portion in paragraphs.

mov dx, EndResident ;Get EndResident segment address.
sub dx, bx ;Subtract PSP.

; Okay, execute the TSR call, preserving only the resident code.

mov ax, 3100h ;AH=31h (TSR), AL=0 (return code).
int 21h

 

Executing the code above returns control to MS-DOS, preserving your resident code in memory.

There is one final memory management detail to consider before moving on to other topics related to
resident programs – accessing data within an resident program. Procedures within a resident program
become active in response to a direct call from some other program or a hardware interrupt (see the next
section). Upon entry, the resident routine 

 

may

 

  specify that certain registers contain various parameters,
but one thing you cannot expect is for the calling code to properly set up the segment registers for you.
Indeed, the only segment register that will contain a meaningful value (to the resident code) is the code
segment register. Since many resident functions will want to access local data, this means that those func-
tions may need to set up 

 

ds

 

 or some other segment register(s) upon initial entry. For example, suppose
you have a function, count, that simply counts the number of times some other code calls it once it has
gone resident. One would thing that the body of this function would contain a single instruction:

 

inc counter

 

. Unfortunately, such an instruction would increment the variable at 

 

counter

 

’s offset in the
current data segment (that is, the segment pointed at by the 

 

ds

 

 register). It is unlikely that 

 

ds

 

 would be
pointing at the data segment associated with the count procedure. Therefore, you would be incrementing
some word in a different segment (probably the caller’s data segment). This would produce disastrous
results. 

There are two solutions to this problem. The first is to put all variables in the code segment (a very
common practice in resident sections of code) and use a 

 

cs:

 

 segment override prefix on all your variables.
For example, to increment the 

 

counter

 

 variable you could use the instruction 

 

inc cs:counter

 

. This
technique works fine if there are only a few variable references in your procedures. However, it suffers
from a few serious drawbacks. First, the segment override prefix makes your instructions larger and
slower; this is a serious problem if you access many different variables throughout your resident code. Sec-
ond, it is easy to forget to place the segment override prefix on a variable, thereby causing the TSR func-
tion to wipe out memory in the caller’s data segment. Another solution to the segment problem is to
change the value in the 

 

ds

 

 register upon entry to a resident procedure and restore it upon exit. The fol-
lowing code demonstrates how to do this:

 

push ds ;Preserve original DS value.
push cs ;Copy CS’s value to DS.
pop ds
inc Counter ;Bump the variable’s value.
pop ds ;Restore original DS value.

 

Of course, using the cs: segment override prefix is a much more reasonable solution here. However, had
the code been extensive and had accessed many local variables, loading ds with cs (assuming you put
your variables in the resident segment) would be more efficient.
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18.2 Active vs. Passive TSRs

 

Microsoft identifies two types of TSR routines: active and passive. A passive TSR is one that activates
in response to an explicit call from an executing application program. An active TSR is one that responds
to a hardware interrupt or one that a hardware interrupt calls.

TSRs are almost always interrupt service routines (see “80x86 Interrupt Structure and Interrupt Service
Routines (ISRs)” on page 996). Active TSRs are typically hardware interrupt service routines and passive
TSRs are generally trap handlers (see “Traps” on page 999). Although, in theory, it is possible for a TSR to
determine the address of a routine in a passive TSR and call that routine directly, the 80x86 trap mecha-
nism is the perfect device for calling such routines, so most TSRs use it.

Passive TSRs generally provide a callable library of routines or extend some DOS or BIOS call. For
example, you might want to reroute all characters an application sends to the printer to a file. By patching
into the int 17h vector (see “The PC Parallel Ports” on page 1199) you can intercept all characters destined
for the printer

 

2

 

. Or you could add additional functionality to a BIOS routine by chaining into its interrupt
vector. For example, you could add new function calls to the int 10h BIOS video services routine (see
“MS-DOS, PC-BIOS, and File I/O” on page 699) by looking for a special value in ah and passing all other
int 10h calls on through to the original handler. Another use of a passive TSR is to provide a brand new set
of services through a new interrupt vector that the BIOS does not already provide. The mouse services,
provided by the mouse.com driver, is a good example of such a TSR.

Active TSRs generally serve one of two functions. They either service a hardware interrupt directly, or
they piggyback off the hardware interrupt so they can activate themselves on a periodic basis without an
explicit call from an application. 

 

Pop-up

 

  programs are a good example of active TSRs. A pop-up program
chains itself into the PC’s keyboard interrupt (int 9). Pressing a key activates such a program. The program
can read the PC’s keyboard port (see “The PC Keyboard” on page 1153) to see if the user is pressing a spe-
cial key sequence. Should this keysequence appear, the application can save a portion of the screen mem-
ory and “pop-up” on the screen, perform some user-requested function, and then restore the screen when
done. Borland’s Sidekick

 



 

 program is an example of an extremely popular TSR program, though many
others exist.

Not all active TSRs are pop-ups, though. Certain viruses are good examples of active TSRs. They
patch into various interrupt vectors that activate them automatically so they can go about their dastardly
deeds. Fortunately, some anti-viral programs are also good examples of active TSRs, they patch into those
same interrupt vectors and detect the activities of a virus and attempt to limit the damage the virus may
cause.

Note that a TSR may contain both active and passive components. That is, there may be certain rou-
tines that a hardware interrupt invokes and others that an application calls explicitly. However, if any rou-
tine in a resident program is active, we’ll claim that the entire TSR is active.

The following program is a short example of a TSR that provides both active and passive routines.
This program patches into the int 9 (keyboard interrupt) and int 16h (keyboard trap) interrupt vectors.
Every time the system generates a keyboard interrupt, the active routine (int 9) increments a counter. Since
the keyboard usually generates two keyboard interrupts per keystroke, dividing this value by two pro-
duces the approximate number of keys typed since starting the TSR

 

3

 

. A passive routine, tied into the
int 16h vector, returns the number of keystrokes to the calling program. The following code provides two
programs, the TSR and a short application to display the number of keystrokes since the TSR started run-
ning.

 

; This is an example of an active TSR that counts keyboard interrupts
; once activated.

; The resident segment definitions must come before everything else.

 

2. Assuming the application uses DOS or BIOS to print the characters and does not talk directly to the printer port itself.
3. It is not an exact count because some keys generate more than two keyboard interrupts.
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ResidentSeg segment para public ‘Resident’
ResidentSeg ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

; The following variable counts the number of keyboard interrupts

KeyIntCnt word 0

; These two variables contain the original INT 9 and INT 16h
; interrupt vector values:

OldInt9 dword ?
OldInt16 dword ?

; MyInt9- The system calls this routine every time a keyboard
; interrupt occus. This routine increments the
; KeyIntCnt variable and then passes control on to the
; original Int9 handler.

MyInt9 proc far
inc ResidentSeg:KeyIntCnt
jmp ResidentSeg:OldInt9

MyInt9 endp

; MyInt16- This is the passive component of this TSR. An
; application explicitly calls this routine with an
; INT 16h instruction. If AH contains 0FFh, this
; routine returns the number of keyboard interrupts
; in the AX register. If AH contains any other value,
; this routine passes control to the original INT 16h
; (keyboard trap) handler.

MyInt16 proc far
cmp ah, 0FFh
je ReturnCnt
jmp ResidentSeg:OldInt16;Call original handler.

; If AH=0FFh, return the keyboard interrupt count

ReturnCnt: mov ax, ResidentSeg:KeyIntCnt
iret

MyInt16 endp

ResidentSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax
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mov ax, 0
mov es, ax

print
byte “Keyboard interrupt counter TSR program”,cr,lf
byte “Installing....”,cr,lf,0

; Patch into the INT 9 and INT 16 interrupt vectors. Note that the
; statements above have made ResidentSeg the current data segment,
; so we can store the old INT 9 and INT 16 values directly into
; the OldInt9 and OldInt16 variables.

cli ;Turn off interrupts!
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], seg ResidentSeg

mov ax, es:[16h*4]
mov word ptr OldInt16, ax
mov ax, es:[16h*4 + 2]
mov word ptr OldInt16+2, ax
mov es:[16h*4], offset MyInt16
mov es:[16h*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov ah, 62h ;Get this program’s PSP
int 21h ; value.

mov dx, EndResident ;Compute size of program.
sub dx, bx
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

Here’s the application that calls MyInt16 to print the number of keystrokes:

 

; This is the companion program to the keycnt TSR.
; This program calls the “MyInt16” routine in the TSR to
; determine the number of keyboard interrupts. It displays
; the approximate number of keystrokes (keyboard ints/2)
; and quits.

.xlist
include stdlib.a
includelib stdlib.lib
.list

cseg segment para public ‘code’
assume cs:cseg, ds:nothing

Main proc
meminit

print
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byte “Approximate number of keys pressed: “,0
mov ah, 0FFh
int 16h
shr ax, 1 ;Must divide by two.
putu
putcr
ExitPgm

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

 

18.3 Reentrancy 

 

One big problem with active TSRs is that their invocation is asynchronous. They can activate at the
touch of a keystroke, timer interrupt, or via an incoming character on the serial port, just to name a few.
Since they activate on a hardware interrupt, the PC could have been executing just about any code when
the interrupt came along. This isn’t a problem unless the TSR itself decides to call some foreign code, such
as DOS, a BIOS routine, or some other TSR. For example, the main application may be making a DOS call
when a timer interrupt activates a TSR, interrupting the call to DOS while the CPU is still executing code
inside DOS. If the TSR attempts to make a call to DOS at this point, then this will 

 

reenter

 

  DOS. Of course,
DOS is not reentrant, so this creates all kinds of problems (usually, it hangs the system). When writing
active TSRs that call other routines besides those provided directly in the TSR, you must be aware of possi-
ble reentrancy problems.

Note that passive TSRs never suffer from this problem. Indeed, any TSR routine you call passively will
execute in the caller’s environment. Unless some other hardware ISR or active TSR makes the call to your
routine, you do not need to worry about reentrancy with passive routines. However, reentrancy is an issue
for active TSR routines and passive routines that active TSRs call.

 

18.3.1 Reentrancy Problems with DOS

 

DOS is probably the biggest sore point to TSR developers. DOS is not reentrant yet DOS contains
many services a TSR might use. Realizing this, Microsoft has added some support to DOS to allow TSRs to
see if DOS is currently active. After all, reentrancy is only a problem if you call DOS while it is already
active. If it isn’t already active, you can certainly call it from a TSR with no ill effects.

MS-DOS provides a special one-byte flag (InDOS) that contains a zero if DOS is currently active and a
non-zero value if DOS is already processing an application request. By testing the InDOS flag your TSR
can determine if it can safely make a DOS call. If this flag is zero, you can always make the DOS call. If this
flag contains one, you may not be able to make the DOS call. MS-DOS provides a function call, 

 

Get InDOS
Flag Address

 

, that returns the address of the InDOS flag. To use this function, load 

 

ah

 

 with 34h and call
DOS. DOS will return the address of the InDOS flag in 

 

es:bx

 

. If you save this address, your resident pro-
grams will be able to test the InDOS flag to see if DOS is active.

Actually, there are two flags you should test, the InDOS flag and the 

 

critical error flag

 

  (criterr). Both
of these flags should contain zero before you call DOS from a TSR. In DOS version 3.1 and later, the criti-
cal error flag appears in the byte just before the InDOS flag.
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So what should you do if these flags aren’t both zero? It’s easy enough to say “hey, come back and do
this stuff later when MS-DOS returns back to the user program.” But how do you do this? For example, if a
keyboard interrupt activates your TSR and you pass control on to the real keyboard handler because DOS
is busy, you can’t expect your TSR to be magically restarted later on when DOS is no longer active. 

The trick is to patch your TSR into the timer interrupt as well as the keyboard interrupt. When the key-
stroke interrupt wakes your TSR and you discover that DOS is busy, the keyboard ISR can simply set a flag
to tell itself to try again later; then it passes control to the original keyboard handler. In the meantime, a
timer ISR you’ve written is constantly checking this flag you’ve created. If the flag is clear, it simply passes
control on to the original timer interrupt handler, if the flag is set, then the code checks the InDOS and
CritErr flags. If these guys say that DOS is busy, the timer ISR passes control on to the original timer han-
dler. Shortly after DOS finishes whatever it was doing, a timer interrupt will come along and detect that
DOS is no longer active. Now your ISR can take over and make any necessary calls to DOS that it wants.
Of course, once your timer code determines that DOS is not busy, it should clear the “I want service” flag
so that future timer interrupts don’t inadvertently restart the TSR.

There is only one problem with this approach. There are certain DOS calls that can take an indefinite
amount of time to execute. For example, if you call DOS to read a key from the keyboard (or call the Stan-
dard Library’s 

 

getc

 

 routine that calls DOS to read a key), it could be 

 

hours

 

, 

 

days

 

, or even longer before
somebody actually bothers to press a key. Inside DOS there is a loop that waits until the user actually
presses a key. And until the user presses some key, the InDOS flag is going to remain non-zero. If you’ve
written a timer-based TSR that is buffering data every few seconds and needs to write the results to disk
every now and then, you will overflow your buffer with new data if you wait for the user, who just went to
lunch, to press a key in DOS’ command.com program.

Luckily, MS-DOS provides a solution to this problem as well – the idle interrupt. While MS-DOS is in
an indefinite loop wait for an I/O device, it continually executes an

 

 int 28h i

 

nstruction. By patching into
the int 28h vector, your TSR can determine when DOS is sitting in such a loop. When DOS executes the
int 28h instruction, it is safe to make any DOS call whose function number (the value in 

 

ah

 

) is greater than
0Ch. 

So if DOS is busy when your TSR wants to make a DOS call, you must use either a timer interrupt or
the idle interrupt (int 28h) to activate the portion of your TSR that must make DOS calls. One final thing to
keep in mind is that 

 

whenever you test or modify any of the above mentioned flags, you are in a critical
section

 

. Make sure the interrupts are off. If not, your TSR make activate two copies of itself or you may
wind up entering DOS at the same time some other TSR enters DOS.

An example of a TSR using these techniques will appear a little later, but there are some additional
reentrancy problems we need to discuss first.

 

18.3.2 Reentrancy Problems with BIOS

 

DOS isn’t the only non-reentrant code a TSR might want to call. The PC’s BIOS routines also fall into
this category. Unfortunately, BIOS doesn’t provide an “InBIOS” flag or a multiplex interrupt. You will have
to supply such functionality yourself.

The key to preventing reentering a BIOS routine you want to call is to use a 

 

wrapper

 

. A wrapper is a
short ISR that patches into an existing BIOS interrupt specifically to manipulate an InUse flag. For exam-
ple, suppose you need to make an int 10h (video services) call from within your TSR. You could use the
following code to provide an “Int10InUse” flag that your TSR could test:

 

MyInt10 proc far
inc cs:Int10InUse
pushf
call cs:OldInt10
dec cs:Int10InUse
iret

MyInt10 endp
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Assuming you’ve initialized the Int10InUse variable to zero, the in use flag will contain zero when it is
safe to execute an int 10h instruction in your TSR, it will contain a non-zero value when the interrupt 10h
handler is busy. You can use this flag like the InDOS flag to defer the execution of your TSR code.

Like DOS, there are certain BIOS routines that may take an indefinite amount of time to complete.
Reading a key from the keyboard buffer, reading or writing characters on the serial port, or printing char-
acters to the printer are some examples. While, in some cases, it is possible to create a wrapper that lets
your TSR activate itself while a BIOS routine is executing one of these polling loops, there is probably no
benefit to doing so. For example, if an application program is waiting for the printer to take a character
before it sends another to printer, having your TSR preempt this and attempt to send a character to the
printer won’t accomplish much (other than scramble the data sent to the print). Therefore, BIOS wrappers
generally don’t worry about 

 

indefinite postponement  

 

in a BIOS routine.

5, 8, 9, D, E, 10, 13, 16, 17, 21, 28

If you run into problems with your TSR code and certain application programs, you may want to
place wrappers around the following interrupts to see if this solves your problem: int 5, int 8, int 9, int B,
int C, int D, int E, int 10, int 13, int 14, int 16, or int 17. These are common culprits when TSR problems
develop.

 

18.3.3 Reentrancy Problems with Other Code

 

Reentrancy problems occur in other code you might call as well. For example, consider the UCR Stan-
dard Library. The UCR Standard Library is not reentrant. This usually isn’t much of a problem for a couple
of reasons. First, most TSRs do 

 

not

 

  call Standard Library subroutines. Instead, they provide results that
normal applications can use; those applications use the Standard Library routines to manipulate such
results. A second reason is that were you to include some Standard Library routines in a TSR, the applica-
tion would have a 

 

separate

 

  copy of the library routines. The TSR might execute an strcmp instruction
while the application is in the middle of an strcmp routine, 

 

but these are not the same routines!

 

  The TSR is
not reentering the application’s code, it is executing a separate routine.

However, many of the Standard Library functions make DOS or BIOS calls. Such calls do not check to
see if DOS or BIOS is already active. Therefore, calling many Standard Library routines from within a TSR
may cause you to reenter DOS or BIOS.

One situation does exist where a TSR could reenter a Standard Library routine. Suppose your TSR has
both passive and active components. If the main application makes a call to a passive routine in your TSR
and that routine call a Standard Library routine, there is the possibility that a system interrupt could inter-
rupt the Standard Library routine and the active portion of the TSR reenter that same code. Although such
a situation would be extremely rare, you should be aware of this possibility.

Of course, the best solution is to avoid using the Standard Library within your TSRs. If for no other
reason, the Standard Library routines are quite large and TSRs should be as small as possible.

 

18.4 The Multiplex Interrupt (INT 2Fh)

 

When installing a passive TSR, or an active TSR with passive components, you will need to choose
some interrupt vector to patch so other programs can communicate with your passive routines. You could
pick an interrupt vector almost at random, say int 84h, but this could lead to some compatibility problems.
What happens if someone else is already using that interrupt vector? Sometimes, the choice of interrupt
vector is clear. For example, if your passive TSR is extended the int 16h keyboard services, it makes sense
to patch in to the int 16h vector and add additional functions above and beyond those already provided by
the BIOS. On the other hand, if you are creating a driver for some brand new device for the PC, you prob-
ably would not want to piggyback the support functions for this device on some other interrupt. Yet arbi-
trarily picking an unused interrupt vector is risky; how many other programs out there decided to do the
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same thing? Fortunately, MS-DOS provides a solution: the multiplex interrupt. Int 2Fh provides a general
mechanism for installing, testing the presence of, and communicating with a TSR.

To use the multiplex interrupt, an application places an identification value in 

 

ah

 

 and a function
number in 

 

al

 

 and then executes an 

 

int 2Fh

 

 instruction. Each TSR in the int 2Fh chain compares the
value in 

 

ah

 

 against its own unique identifier value. If the values match, the TSR process the command
specified by the value in the 

 

al

 

 register. If the identification values do not match, the TSR passes control to
the next int 2Fh handler in the chain.

Of course, this only reduces the problem somewhat, it doesn’t eliminate it. Sure, we don’t have to
guess an interrupt vector number at random, but we still have to choose a random identification number.
After all, it seems reasonable that we must choose this number before designing the TSR and any applica-
tions that call it, after all, how will the applications know what value to load into 

 

ah

 

 if we dynamically
assign this value when the TSR goes resident?

Well, there is a little trick we can play to dynamically assign TSR identifiers 

 

and

 

  let any interested
applications determine the TSR’s ID. By convention, function zero is the “Are you there?” call. An applica-
tion should always execute this function to determine if the TSR is actually present in memory before mak-
ing any service requests. Normally, function zero returns a zero in al if the TSR is 

 

not

 

  present, it returns
0FFh if it is present. However, when this function returns 0FFh it only tells you that 

 

some

 

  TSR has
responded to your query; it does not guarantee that the TSR you are interested in is actually present in
memory. However, by extending the convention somewhat, it is very easy to verify the presence of the
desired TSR. Suppose the function zero call also returns a pointer to a unique identification string in the

 

es:di 

 

registers. Then the code testing for the presence of a specific TSR could test this string when the
int 2Fh call detects the presence of a TSR. the following code segment demonstrates how a TSR could
determine if a TSR identified as “Randy’s INT 10h Extension” is present in memory; this code will also
determine the unique identification code for that TSR, for future reference:

 

; Scan through all the possible TSR IDs. If one is installed, see if
; it’s the TSR we’re interested in.

mov cx, 0FFh ;This will be the ID number.
IDLoop: mov ah, cl ;ID -> AH.

push cx ;Preserve CX across call
mov al, 0 ;Test presence function code.
int 2Fh ;Call multiplex interrupt.
pop cx ;Restore CX.
cmp al, 0 ;Installed TSR?
je TryNext ;Returns zero if none there.
strcmpl ;See if it’s the one we want.
byte “Randy’s INT “
byte “10h Extension”,0
je Success ;Branch off if it is ours.

TryNext: loop IDLoop ;Otherwise, try the next one.
jmp NotInstalled ;Failure if we get to this point.

Success: mov FuncID, cl ;Save function result.
 .
 .
 .

 

If this code succeeds, the variable FuncId contains the identification value for resident TSR. If it fails, the
application program probably needs to abort, or otherwise ensure that it never calls the missing TSR.

The code above lets an application easily detect the presence of and determine the ID number for a
specific TSR. The next question is “How do we pick the ID number for the TSR in the first place?” The next
section will address that issue, as well as how the TSR must respond to the multiplex interrupt.

 

18.5 Installing a TSR

 

Although we’ve already discussed how to make a program go resident (see “DOS Memory Usage and
TSRs” on page 1025), there are a few aspects to installing a TSR that we need to address. First, what hap-
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pens if a user installs a TSR and then tries to install it a second time without first removing the one that is
already resident? Second, how can we assign a TSR identification number that won’t conflict with a TSR
that is already installed? This section will address these issues.

The first problem to address is an attempt to reinstall a TSR program. Although one could imagine a
type of TSR that allows multiple copies of itself in memory at one time, such TSRs are few and far in-be-
tween. In most cases, having multiple copies of a TSR in memory will, at best, waste memory and, at
worst, crash the system. Therefore, unless you are specifically written a TSR that allows multiple copies of
itself in memory at one time, you should check to see if the TSR is installed before actually installing it.
This code is identical to the code an application would use to see if the TSR is installed, the only difference
is that the TSR should print a nasty message and refuse to go TSR if it finds a copy of itself already installed
in memory. The following code does this:

 

mov cx, 0FFh
SearchLoop: mov ah, cl

push cx
mov al, 0
int 2Fh
pop cx
cmp al, 0
je TryNext
strcmpl
byte “Randy’s INT “
byte “10h Extension”,0
je AlreadyThere

TryNext: loop SearchLoop
jmp NotInstalled

AlreadyThere: print
byte “A copy of this TSR already exists in memory”,cr,lf
byte “Aborting installation process.”,cr,lf,0
ExitPgm
 .
 .
 .

 

In the previous section, you saw how to write some code that would allow an application to deter-
mine the TSR ID of a specific resident program. Now we need to look at how to dynamically choose an
identification number for the TSR, one that does not conflict with any other TSRs. This is yet another mod-
ification to the scanning loop. In fact, we can modify the code above to do this for us. All we need to do is
save away some ID value that does not does not have an installed TSR. We need only add a few lines to
the above code to accomplish this:

 

mov FuncID, 0 ;Initialize FuncID to zero.
mov cx, 0FFh

SearchLoop: mov ah, cl
push cx
mov al, 0
int 2Fh
pop cx
cmp al, 0
je TryNext
strcmpl
byte “Randy’s INT “
byte “10h Extension”,0
je AlreadyThere
loop SearchLoop
jmp NotInstalled

; Note: presumably DS points at the resident data segment that contains
; the FuncID variable. Otherwise you must modify the following to
; point some segment register at the segment containing FuncID and
; use the appropriate segment override on FuncID.

TryNext: mov FuncID, cl ;Save possible function ID if this
loop SearchLoop ; identifier is not in use.
jmp NotInstalled

AlreadyThere: print
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byte “A copy of this TSR already exists in memory”,cr,lf
byte “Aborting installation process.”,cr,lf,0
ExitPgm

NotInstalled: cmp FuncID, 0 ;If there are no available IDs, this
jne GoodID ; will still contain zero.
print
byte “There are too many TSRs already installed.”,cr,lf
byte “Sorry, aborting installation process.”,cr,lf,0
ExitPgm

GoodID:

 

If this code gets to label “

 

GoodID

 

” then a previous copy of the TSR is not present in memory and the

 

FuncID

 

 variable contains an unused function identifier.

Of course, when you install your TSR in this manner, you must not forget to patch your interrupt 2Fh
handler into the int 2Fh chain. Also, you have to write an interrupt 2Fh handler to process int 2Fh calls.
The following is a very simple multiplex interrupt handler for the code we’ve been developing:

 

FuncID byte 0 ;Should be in resident segment.
OldInt2F dword ? ; Ditto.

MyInt2F proc far
cmp ah, cs:FuncID ;Is this call for us?
je ItsUs
jmp cs:OldInt2F ;Chain to previous guy, if not.

; Now decode the function value in AL:

ItsUs: cmp al, 0 ;Verify presence call?
jne TryOtherFunc
mov al, 0FFh ;Return “present” value in AL.
lesi IDString ;Return pointer to string in es:di.
iret ;Return to caller.

IDString byte ““Randy’s INT “
byte “10h Extension”,0

; Down here, handle other multiplex requests.
; This code doesn’t offer any, but here’s where they would go.
; Just test the value in AL to determine which function to execute.

TryOtherFunc:
 .
 .
 .
iret

MyInt2F endp

 

18.6 Removing a TSR

 

Removing a TSR is quite a bit more difficult that installing one. There are three things the removal
code must do in order to properly remove a TSR from memory: first, it needs to stop any pending activities
(e.g., the TSR may have some flags set to start some activity at a future time); second it needs to restore all
interrupt vectors to their former values; third, it needs to return all reserved memory back to DOS so other
applications can make use of it. The primary difficulty with these three activities is that it is not always pos-
sible to properly restore the interrupt vectors. 

If your TSR removal code simply restores the old interrupt vector values, you may create a really big
problem. What happens if the user runs some other TSRs after running yours and they patch into the same
interrupt vectors as your TSR? This would produce interrupt chains that look something like the following: 

Interrupt Vector TSR  #1 TSR  #1 Your TSR Original TSR
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If you restore the interrupt vector with your original value, you will create the following:  

This effectively disables the TSRs that chain into your code. Worse yet, this only disables the interrupts that
those TSRs have in common with your TSR. the other interrupts those TSRs patch into are still active. Who
knows how those interrupts will behave under such circumstances?

One solution is to simply print an error message informing the user that they cannot remove this TSR
until they remove all TSRs installed prior to this one. This is a common problem with TSRs and most DOS
users who install and remove TSRs should be comfortable with the fact that they must remove TSRs in the
reverse order that they install them.

It would be tempting to suggest a new convention that TSRs should obey; perhaps if the function
number is 0FFh, a TSR should store the value in

 

 es:bx 

 

away in the interrupt vector specified in 

 

cl

 

. This
would allow a TSR that would like to remove itself to pass the address of its original interrupt handler to
the previous TSR in the chain. There are only three problems with this approach: first, almost no TSRs in
existence currently support this feature, so it would be of little value; second, some TSRs might use func-
tion 0FFh for something else, calling them with this value, 

 

even if you knew their ID number

 

, could create
a problem; finally, just because you’ve removed the TSR from the interrupt chain doesn’t mean you can
(truly) free up the memory the TSR uses. DOS’ memory management scheme (the free pointer business)
works like a stack. If there are other TSRs installed above yours in memory, most applications wouldn’t be
able to use the memory freed up by removing your TSR anyway.

Therefore, we’ll also adopt the strategy of simply informing the user that they cannot remove a TSR if
there are others installed in shared interrupt chains. Of course, that does bring up a good question, how
can we determine if there are other TSRs chained in to our interrupts? Well, this isn’t so hard. We know
that the 80x86’s interrupt vectors should still be pointing at our routines if we’re the last TSR run. So all
we’ve got to do is compare the patched interrupt vectors against the addresses of our interrupt service rou-
tines. If they 

 

all

 

  match, then we can safely remove our TSR from memory. If only one of them does not
match, then we cannot remove the TSR from memory. The following code sequence tests to see if it is
okay to detach a TSR containing ISRs for int 2fH and int 9:

 

; OkayToRmv- This routine returns the carry flag set if it is okay to
; remove the current TSR from memory. It checks the interrupt
; vectors for int 2F and int 9 to make sure they
; are still pointing at our local routines.
; This code assumes DS is pointing at the resident code’s
; data segment.

OkayToRmv proc near
push es
mov ax, 0 ;Point ES at interrupt vector
mov es, ax ; table.
mov ax, word ptr OldInt2F
cmp ax, es:[2fh*4]
jne CantRemove
mov ax, word ptr OldInt2F+2
cmp ax, es:[2Fh*4 + 2]
jne CantRemove

mov ax, word ptr OldInt9
cmp ax, es:[9*4]
jne CantRemove
mov ax, word ptr OldInt9+2
cmp ax, es:[9*4 + 2]
jne CantRemove

; We can safely remove this TSR from memory.

stc
pop es
ret

Interrupt Vector TSR  #1 TSR  #1 Original TSR?
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‘ Someone else is in the way, we cannot remove this TSR.

CantRemove: clc
pop es
ret

OkayToRmv endp

 

Before the TSR attempts to remove itself, it should call a routine like this one to see if removal is possible.

Of course, the fact that no other TSR has chained into the same interrupts does 

 

not  

 

guarantee that
there are not TSRs above yours in memory. However, removing the TSR in that case will not crash the sys-
tem. True, you may not be able to reclaim the memory the TSR is using (at least until you remove the other
TSRs), but at least the removal will not create complications.

To remove the TSR from memory requires two DOS calls, one to free the memory in use by the TSR
and one to free the memory in use by the environment area assigned to the TSR. To do this, you need to
make the DOS deallocation call (see “MS-DOS, PC-BIOS, and File I/O” on page 699). This call requires that
you pass the segment address of the block to release in the 

 

es

 

 register. For the TSR program itself, you
need to pass the address of the TSR’s PSP. This is one of the reasons a TSR needs to save its PSP when it
first installs itself. The other free call you must make frees the space associated with the TSR’s 

 

environment
block

 

. The address of this block is at offset 2Ch in the PSP. So we should probably free it first. The follow-
ing calls handle the job of free the memory associated with a TSR:

; Presumably, the PSP variable was initialized with the address of this
; program’s PSP before the terminate and stay resident call.

mov es, PSP
mov es, es:[2Ch] ;Get address of environment block.
mov ah, 49h ;DOS deallocate block call.
int 21h

mov es, PSP ;Now free the program’s memory
mov ah, 49h ; space.
int 21h

Some poorly-written TSRs provide no facilities to allow you to remove them from memory. If some-
one wants remove such a TSR, they will have to reboot the PC. Obviously, this is a poor design. Any TSR
you design for anything other than a quick test should be capable of removing itself from memory. The
multiplex interrupt with function number one is often used for this purpose. To remove a TSR from mem-
ory, some application program passes the TSR ID and a function number of one to the TSR. If the TSR can
remove itself from memory, it does so and returns a value denoting success. If the TSR cannot remove
itself from memory, it returns some sort of error condition.

Generally, the removal program is the TSR itself with a special parameter that tells it to remove the
TSR currently loaded into memory. A little later this chapter presents an example of a TSR that works pre-
cisely in this fashion (see “A Keyboard Monitor TSR” on page 1041).

18.7 Other DOS Related Issues

In addition to reentrancy problems with DOS, there are a few other issues your TSRs must deal with if
they are going to make DOS calls. Although your calls might not cause DOS to reenter itself, it is quite pos-
sible for your TSR’s DOS calls to disturb data structures in use by an executing application. These data
structures include the application’s stack, PSP, disk transfer area (DTA), and the DOS extended error infor-
mation record.

When an active or passive TSR gains control of the CPU, it is operating in the environment of the main
(foreground) application. For example, the TSR’s return address and any values it saves on the stack are
pushed onto the application’s stack. If the TSR does not use much stack space, this is fine, it need not
switch stacks. However, if the TSR consumes considerable amounts of stack space because of recursive
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calls or the allocation of local variables, the TSR should save the application’s ss and sp values and switch
to a local stack. Before returning, of course, the TSR should switch back to the foreground application’s
stack.

Likewise, if the TSR execute’s DOS’ get psp address  call, DOS returns the address of the foreground
application’s PSP, not the TSR’s PSP4. The PSP contains several important address that DOS uses in the
event of an error. For example, the PSP contains the address of the termination handler, ctrl-break handler,
and critical error handler. If you do not switch the PSP from the foreground application to the TSR’s and
one of the exceptions occurs (e.g., someone hits control-break or a disk error occurs), the handler associ-
ated with the application may take over. Therefore, when making DOS calls that can result in one of these
conditions, you need to switch PSPs. Likewise, when your TSR returns control to the foreground applica-
tion, it must restore the PSP value. MS-DOS provides two functions that get and set the current PSP
address. The DOS Set PSP  call (ah=51h) sets the current program’s PSP address to the value in the bx reg-
ister. The DOS Get PSP  call (ah=50h) returns the current program’s PSP address in the bx register. Assum-
ing the transient portion of your TSR has saved it’s PSP address in the variable PSP, you switch between
the TSR’s PSP and the foreground application’s PSP as follows:

; Assume we’ve just entered the TSR code, determined that it’s okay to
; call DOS, and we’ve switch DS so that it points at our local variables.

mov ah, 51h ;Get application’s PSP address
int 21h
mov AppPSP, bx ;Save application’s PSP locally.
mov bx, PSP ;Change system PSP to TSR’s PSP.
mov ah, 50h ;Set PSP call
int 21h
 .
 . ;TSR code
 .
mov bx, AppPSP ;Restore system PSP address to
mov ah, 50h ; point at application’s PSP.
int 21h

« clean up and return from TSR »

Another global data structure that DOS uses is the disk transfer area. This buffer area was used exten-
sively for disk I/O in DOS version 1.0. Since then, the main use for the DTA has been the find first file and
find next file functions (see “MS-DOS, PC-BIOS, and File I/O” on page 699). Obviously, if the application
is in the middle of using data in the DTA and your TSR makes a DOS call that changes the data in the DTA,
you will affect the operation of the foreground process. MS-DOS provides two calls that let you get and set
the address of the DTA. The Get DTA Address  call, with ah=2Fh, returns the address of the DTA in the
es:bx registers. The Set DTA  call (ah=1Ah) sets the DTA to the value found in the ds:dx register pair.
With these two calls you can save and restore the DTA as we did for the PSP address above. The DTA is
usually at offset 80h in the PSP, the following code preserve’s the foreground application’s DTA and sets
the current DTA to the TSR’s at offset PSP:80.

; This code makes the same assumptions as the previous example.

mov ah, 2Fh ;Get application DTA
int 21h
mov word ptr AppDTA, bx
mov word ptr AppDTA+2, es

push ds
mov ds, PSP ;DTA is in PSP
mov dx, 80h ; at offset 80h
mov ah, 1ah ;Set DTA call.
int 21h
pop ds
 .
 . ;TSR code.
 .

4. This is another reason the transient portion of the TSR must save the PSP address in a resident variable for the TSR.
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push ds
mov dx, word ptr AppDTA
mov ds, word ptr AppDTA+2
mov ax, 1ah ;Set DTA call.
int 21h

The last issue a TSR must deal with is the extended error information in DOS. If a TSR interrupts a pro-
gram immediately after DOS returns to that program, there may be some error information the foreground
application needs to check in the DOS extended error information. If the TSR makes any DOS calls, DOS
may replace this information with the status of the TSR DOS call. When control returns to the foreground
application, it may read the extended error status and get the information generated by the TSR DOS call,
not the application’s DOS call. DOS provides two asymmetrical calls, Get Extended Error  and Set
Extended Error  that read and write these values, respectively. The call to Get Extended Error returns the
error status in the ax, bx, cx, dx, si, di, es, and ds registers. You need to save the registers in a data struc-
ture that takes the following form:

ExtError struct
eeAX word ?
eeBX word ?
eeCX word ?
eeDX word ?
eeSI word ?
eeDI word ?
eeDS word ?
eeES word ?

word 3 dup (0) ;Reserved.
ExtError ends

The Set Extended Error call requires that you pass an address to this structure in the ds:si register pair
(which is why these two calls are asymmetrical). To preserve the extended error information, you would
use code similar to the following:

; Save assumptions as the above routines here. Also, assume the error
; data structure is named ERR and is in the same segment as this code.

push ds ;Save ptr to our DS.
mov ah, 59h ;Get extended error call
mov bx, 0 ;Required by this call
int 21h

mov cs:ERR.eeDS, ds
pop ds ;Retrieve ptr to our data.
mov ERR.eeAX, ax
mov ERR.eeBX, bx
mov ERR.eeCX, cx
mov ERR.eeDX, dx
mov ERR.eeSI, si
mov ERR.eeDI, di
mov ERR.eeES, es
 .
 . ;TSR code goes here.
 .
mov si, offset ERR ;DS already points at correct seg.
mov ax, 5D0Ah ;5D0Ah is Set Extended Error code.
int 21h

« clean up and quit »

18.8 A Keyboard Monitor TSR

The following program extends the keystroke counter program presented a little earlier in this chap-
ter. This particular program monitors keystrokes and each minute writes out data to a file listing the date,
time, and approximate number of keystrokes in the last minute.
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This program can help you discover how much time you spend typing versus thinking at a display
screen5. 

; This is an example of an active TSR that counts keyboard interrupts
; once activated. Every minute it writes the number of keyboard
; interrupts that occurred in the previous minute to an output file.
; This continues until the user removes the program from memory.
;
;
; Usage:
; KEYEVAL filename - Begins logging keystroke data to
; this file.
;
; KEYEVAL REMOVE - Removes the resident program from
; memory.
;
;
; This TSR checks to make sure there isn’t a copy already active in
; memory. When doing disk I/O from the interrupts, it checks to make
; sure DOS isn’t busy and it preserves application globals (PSP, DTA,
; and extended error info). When removing itself from memory, it
; makes sure there are no other interrupts chained into any of its
; interrupts before doing the remove.
;
; The resident segment definitions must come before everything else.

ResidentSeg segment para public ‘Resident’
ResidentSeg ends

EndResident segment para public ‘EndRes’
EndResident ends

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

; Resident segment that holds the TSR code:

ResidentSeg segment para public ‘Resident’
assume cs:ResidentSeg, ds:nothing

; Int 2Fh ID number for this TSR:

MyTSRID byte 0

; The following variable counts the number of keyboard interrupts

KeyIntCnt word 0

; Counter counts off the number of milliseconds that pass, SecCounter
; counts off the number of seconds (up to 60).

Counter word 0
SecCounter word 0

; FileHandle is the handle for the log file:

FileHandle word 0

; NeedIO determines if we have a pending I/O opearation.

NeedIO word 0

; PSP is the psp address for this program.

PSP word 0

5. This program is intended for your personal enjoyment only, it is not intended to be used for unethical purposes such as monitoring employees for
evaluation purposes.
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; Variables to tell us if DOS, INT 13h, or INT 16h are busy:

InInt13 byte 0
InInt16 byte 0
InDOSFlag dword ?

; These variables contain the original values in the interrupt vectors
; we’ve patched.

OldInt9 dword ?
OldInt13 dword ?
OldInt16 dword ?
OldInt1C dword ?
OldInt28 dword ?
OldInt2F dword ?

; DOS data structures:

ExtErr struct
eeAX word ?
eeBX word ?
eeCX word ?
eeDX word ?
eeSI word ?
eeDI word ?
eeDS word ?
eeES word ?

word 3 dup (0)
ExtErr ends

XErr ExtErr {} ;Extended Error Status.
AppPSP word ? ;Application PSP value.
AppDTA dword ? ;Application DTA address.

; The following data is the output record. After storing this data
; to these variables, the TSR writes this data to disk.

month byte 0
day byte 0
year word 0
hour byte 0
minute byte 0
second byte 0
Keystrokes word 0
RecSize = $-month

; MyInt9- The system calls this routine every time a keyboard
; interrupt occus. This routine increments the
; KeyIntCnt variable and then passes control on to the
; original Int9 handler.

MyInt9 proc far
inc ResidentSeg:KeyIntCnt
jmp ResidentSeg:OldInt9

MyInt9 endp

; MyInt1C- Timer interrupt. This guy counts off 60 seconds and then
; attempts to write a record to the output file. Of course,
; this call has to jump through all sorts of hoops to keep
; from reentering DOS and other problematic code.
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MyInt1C proc far
assume ds:ResidentSeg

push ds
push es
pusha ;Save all the registers.
mov ax, ResidentSeg
mov ds, ax

pushf
call OldInt1C

; First things first, let’s bump our interrupt counter so we can count
; off a minute. Since we’re getting interrupted about every 54.92549
; milliseconds, let’s shoot for a little more accuracy than 18 times
; per second so the timings don’t drift too much.

add Counter, 549 ;54.9 msec per int 1C.
cmp Counter, 10000 ;1 second.
jb NotSecYet
sub Counter, 10000
inc SecCounter

NotSecYet:

; If NEEDIO is not zero, then there is an I/O operation in progress.
; Do not disturb the output values if this is the case.

cli ;This is a critical region.
cmp NeedIO, 0
jne SkipSetNIO

; Okay, no I/O in progress, see if a minute has passed since the last
; time we logged the keystrokes to the file. If so, it’s time to start
; another I/O operation.

cmp SecCounter, 60 ;One minute passed yet?
jb Int1CDone
mov NeedIO, 1 ;Flag need for I/O.
mov ax, KeyIntCnt ;Copy this to the output
shr ax, 1 ; buffer after computing
mov KeyStrokes, ax ; # of keystrokes.
mov KeyIntCnt, 0 ;Reset for next minute.
mov SecCounter, 0

SkipSetNIO: cmp NeedIO, 1 ;Is the I/O already in
jne Int1CDone ; progress? Or done?

call ChkDOSStatus ;See if DOS/BIOS are free.
jnc Int1CDone ;Branch if busy.

call DoIO ;Do I/O if DOS is free.

Int1CDone: popa ;Restore registers and quit.
pop es
pop ds
iret

MyInt1C endp
assume ds:nothing

; MyInt28- Idle interrupt. If DOS is in a busy-wait loop waiting for
; I/O to complete, it executes an int 28h instruction each
; time through the loop. We can ignore the InDOS and CritErr
; flags at that time, and do the I/O if the other interrupts
; are free.

MyInt28 proc far
assume ds:ResidentSeg

push ds
push es
pusha ;Save all the registers.
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mov ax, ResidentSeg
mov ds, ax

pushf ;Call the next INT 28h
call OldInt28 ; ISR in the chain.

cmp NeedIO, 1 ;Do we have a pending I/O?
jne Int28Done

mov al, InInt13 ;See if BIOS is busy.
or al, InInt16
jne Int28Done

call DoIO ;Go do I/O if BIOS is free.

Int28Done: popa
pop es
pop ds
iret

MyInt28 endp
assume ds:nothing

; MyInt16- This is just a wrapper for the INT 16h (keyboard trap)
; handler.

MyInt16 proc far
inc ResidentSeg:InInt16

; Call original handler:

pushf
call ResidentSeg:OldInt16

; For INT 16h we need to return the flags that come from the previous call.

pushf
dec ResidentSeg:InInt16
popf
retf 2 ;Fake IRET to keep flags.

MyInt16 endp

; MyInt13- This is just a wrapper for the INT 13h (disk I/O trap)
; handler.

MyInt13 proc far
inc ResidentSeg:InInt13
pushf
call ResidentSeg:OldInt13
pushf
dec ResidentSeg:InInt13
popf
retf 2 ;Fake iret to keep flags.

MyInt13 endp

; ChkDOSStatus- Returns with the carry clear if DOS or a BIOS routine
; is busy and we can’t interrupt them.

ChkDOSStatus proc near
assume ds:ResidentSeg
les bx, InDOSFlag
mov al, es:[bx] ;Get InDOS flag.
or al, es:[bx-1] ;OR with CritErr flag.
or al, InInt16 ;OR with our wrapper
or al, InInt13 ; values.
je Okay2Call
clc
ret

Okay2Call: clc
ret

ChkDOSStatus endp
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assume ds:nothing

; PreserveDOS-Gets a copy’s of DOS’ current PSP, DTA, and extended
; error information and saves this stuff. Then it sets
; the PSP to our local PSP and the DTA to PSP:80h.

PreserveDOS proc near
assume ds:ResidentSeg

mov ah, 51h ;Get app’s PSP.
int 21h
mov AppPSP, bx ;Save for later

mov ah, 2Fh ;Get app’s DTA.
int 21h
mov word ptr AppDTA, bx
mov word ptr AppDTA+2, es

push ds
mov ah, 59h ;Get extended err info.
xor bx, bx
int 21h

mov cs:XErr.eeDS, ds
pop ds
mov XErr.eeAX, ax
mov XErr.eeBX, bx
mov XErr.eeCX, cx
mov XErr.eeDX, dx
mov XErr.eeSI, si
mov XErr.eeDI, di
mov XErr.eeES, es

; Okay, point DOS’s pointers at us:

mov bx, PSP
mov ah, 50h ;Set PSP.
int 21h

push ds ;Set the DTA to
mov ds, PSP ; address PSP:80h
mov dx, 80h
mov ah, 1Ah ;Set DTA call.
int 21h
pop ds

ret
PreserveDOS endp

assume ds:nothing

; RestoreDOS- Restores DOS’ important global data values back to the
; application’s values.

RestoreDOS proc near
assume ds:ResidentSeg

mov bx, AppPSP
mov ah, 50h ;Set PSP
int 21h

push ds
lds dx, AppDTA
mov ah, 1Ah ;Set DTA
int 21h
pop ds
push ds

mov si, offset XErr ;Saved extended error stuff.
mov ax, 5D0Ah ;Restore XErr call.
int 21h
pop ds
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ret
RestoreDOS endp

assume ds:nothing

; DoIO- This routine processes each of the I/O operations
; required to write data to the file.

DoIO proc near
assume ds:ResidentSeg

mov NeedIO, 0FFh ;A busy flag for us.

; The following Get Date DOS call may take a while, so turn the
; interrupts back on (we’re clear of the critical section once we
; write 0FFh to NeedIO).

sti
call PreserveDOS ;Save DOS data.

mov ah, 2Ah ;Get Date DOS call
int 21h
mov month, dh
mov day, dl
mov year, cx

mov ah, 2Ch ;Get Time DOS call
int 21h
mov hour, ch
mov minute, cl
mov second, dh

mov ah, 40h ;DOS Write call
mov bx, FileHandle ;Write data to this file.
mov cx, RecSize ;This many bytes.
mov dx, offset month ;Starting at this address.
int 21h ;Ignore return errors (!).
mov ah, 68h ;DOS Commit call
mov bx, FileHandle ;Write data to this file.
int 21h ;Ignore return errors (!).

mov NeedIO, 0 ;Ready to start over.
call RestoreDOS

PhasesDone: ret
DoIO endp

assume ds:nothing

; MyInt2F- Provides int 2Fh (multiplex interrupt) support for this
; TSR. The multiplex interrupt recognizes the following
; subfunctions (passed in AL):
;
; 00- Verify presence. Returns 0FFh in AL and a pointer
; to an ID string in es:di if the
; TSR ID (in AH) matches this
; particular TSR.
;
; 01- Remove. Removes the TSR from memory.
; Returns 0 in AL if successful,
; 1 in AL if failure.

MyInt2F proc far
assume ds:nothing

cmp ah, MyTSRID ;Match our TSR identifier?
je YepItsOurs
jmp OldInt2F

; Okay, we know this is our ID, now check for a verify vs. remove call.

YepItsOurs: cmp al, 0 ;Verify Call
jne TryRmv
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mov al, 0ffh ;Return success.
lesi IDString
iret ;Return back to caller.

IDString byte “Keypress Logger TSR”,0

TryRmv: cmp al, 1 ;Remove call.
jne IllegalOp

call TstRmvable ;See if we can remove this guy.
je CanRemove ;Branch if we can.
mov ax, 1 ;Return failure for now.
iret

; Okay, they want to remove this guy *and* we can remove it from memory.
; Take care of all that here.

assume ds:ResidentSeg

CanRemove: push ds
push es
pusha
cli ;Turn off the interrupts while
mov ax, 0 ; we mess with the interrupt
mov es, ax ; vectors.
mov ax, cs
mov ds, ax

mov ax, word ptr OldInt9
mov es:[9*4], ax
mov ax, word ptr OldInt9+2
mov es:[9*4 + 2], ax

mov ax, word ptr OldInt13
mov es:[13h*4], ax
mov ax, word ptr OldInt13+2
mov es:[13h*4 + 2], ax

mov ax, word ptr OldInt16
mov es:[16h*4], ax
mov ax, word ptr OldInt16+2
mov es:[16h*4 + 2], ax

mov ax, word ptr OldInt1C
mov es:[1Ch*4], ax
mov ax, word ptr OldInt1C+2
mov es:[1Ch*4 + 2], ax

mov ax, word ptr OldInt28
mov es:[28h*4], ax
mov ax, word ptr OldInt28+2
mov es:[28h*4 + 2], ax

mov ax, word ptr OldInt2F
mov es:[2Fh*4], ax
mov ax, word ptr OldInt2F+2
mov es:[2Fh*4 + 2], ax

; Okay, with that out of the way, let’s close the file.
; Note: INT 2F shouldn’t have to deal with DOS busy because it’s
; a passive TSR call.

mov ah, 3Eh ;Close file command
mov bx, FileHandle
int 21h

; Okay, one last thing before we quit- Let’s give the memory allocated
; to this TSR back to DOS.

mov ds, PSP
mov es, ds:[2Ch] ;Ptr to environment block.
mov ah, 49h ;DOS release memory call.
int 21h
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mov ax, ds ;Release program code space.
mov es, ax
mov ah, 49h
int 21h

popa
pop es
pop ds
mov ax, 0 ;Return Success.
iret

; They called us with an illegal subfunction value. Try to do as little
; damage as possible.

IllegalOp: mov ax, 0 ;Who knows what they were thinking?
iret

MyInt2F endp
assume ds:nothing

; TstRmvable- Checks to see if we can remove this TSR from memory.
; Returns the zero flag set if we can remove it, clear
; otherwise.

TstRmvable proc near
cli
push ds
mov ax, 0
mov ds, ax

cmp word ptr ds:[9*4], offset MyInt9
jne TRDone
cmp word ptr ds:[9*4 + 2], seg MyInt9
jne TRDone

cmp word ptr ds:[13h*4], offset MyInt13
jne TRDone
cmp word ptr ds:[13h*4 + 2], seg MyInt13
jne TRDone

cmp word ptr ds:[16h*4], offset MyInt16
jne TRDone
cmp word ptr ds:[16h*4 + 2], seg MyInt16
jne TRDone

cmp word ptr ds:[1Ch*4], offset MyInt1C
jne TRDone
cmp word ptr ds:[1Ch*4 + 2], seg MyInt1C
jne TRDone

cmp word ptr ds:[28h*4], offset MyInt28
jne TRDone
cmp word ptr ds:[28h*4 + 2], seg MyInt28
jne TRDone

cmp word ptr ds:[2Fh*4], offset MyInt2F
jne TRDone
cmp word ptr ds:[2Fh*4 + 2], seg MyInt2F

TRDone: pop ds
sti
ret

TstRmvable endp
ResidentSeg ends

cseg segment para public ‘code’
assume cs:cseg, ds:ResidentSeg
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; SeeIfPresent- Checks to see if our TSR is already present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
push di
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Keypress Logger TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: pop di
pop ds
pop es
ret

SeeIfPresent endp

; FindID- Determines the first (well, last actually) TSR ID available
; in the multiplex interrupt chain. Returns this value in
; the CL register.
;
; Returns the zero flag set if it locates an empty slot.
; Returns the zero flag clear if failure.

FindID proc near
push es
push ds
push di

mov cx, 0ffh ;Start with ID 0FFh.
IDLoop: mov ah, cl

push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je Success
dec cl ;Test USER IDs of 80h..FFh
js IDLoop
xor cx, cx
cmp cx, 1 ;Clear zero flag

Success: pop di
pop ds
pop es
ret

FindID endp

Main proc
meminit

mov ax, ResidentSeg
mov ds, ax

mov ah, 62h ;Get this program’s PSP
int 21h ; value.
mov PSP, bx

; Before we do anything else, we need to check the command line
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; parameters. We must have either a valid filename or the
; command “remove”. If remove appears on the command line, then remove
; the resident copy from memory using the multiplex (2Fh) interrupt.
; If remove is not on the command line, we’d better have a filename and
; there had better not be a copy already loaded into memory.

argc
cmp cx, 1 ;Must have exactly 1 parm.
je GoodParmCnt
print
byte “Usage:”,cr,lf
byte “ KeyEval filename”,cr,lf
byte “or KeyEval REMOVE”,cr,lf,0
ExitPgm

; Check for the REMOVE command.

GoodParmCnt: mov ax, 1
argv
stricmpl
byte “REMOVE”,0
jne TstPresent

call SeeIfPresent
je RemoveIt
print
byte “TSR is not present in memory, cannot remove”
byte cr,lf,0
ExitPgm

RemoveIt: mov MyTSRID, cl
printf
byte “Removing TSR (ID #%d) from memory...”,0
dword MyTSRID

mov ah, cl
mov al, 1 ;Remove cmd, ah contains ID
int 2Fh
cmp al, 1 ;Succeed?
je RmvFailure
print
byte “removed.”,cr,lf,0
ExitPgm

RmvFailure: print
byte cr,lf
byte “Could not remove TSR from memory.”,cr,lf
byte “Try removing other TSRs in the reverse order “
byte “you installed them.”,cr,lf,0
ExitPgm

; Okay, see if the TSR is already in memory. If so, abort the
; installation process.

TstPresent: call SeeIfPresent
jne GetTSRID
print
byte “TSR is already present in memory.”,cr,lf
byte “Aborting installation process”,cr,lf,0
ExitPgm

; Get an ID for our TSR and save it away.

GetTSRID: call FindID
je GetFileName
print
byte “Too many resident TSRs, cannot install”,cr,lf,0
ExitPgm
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; Things look cool so far, check the filename and open the file.

GetFileName: mov MyTSRID, cl
printf
byte “Keypress logger TSR program”,cr,lf
byte “TSR ID = %d”,cr,lf
byte “Processing file:”,0
dword MyTSRID

puts
putcr

mov ah, 3Ch ;Create file command.
mov cx, 0 ;Normal file.
push ds
push es ;Point ds:dx at name
pop ds
mov dx, di
int 21h ;Open the file
jnc GoodOpen
print
byte “DOS error #”,0
puti
print
byte “ opening file.”,cr,lf,0
ExitPgm

GoodOpen: pop ds
mov FileHandle, ax ;Save file handle.

InstallInts: print
byte “Installing interrupts...”,0

; Patch into the INT 9, 13h, 16h, 1Ch, 28h, and 2Fh interrupt vectors.
; Note that the statements above have made ResidentSeg the current data
; segment, so we can store the old values directly into
; the OldIntxx variables.

cli ;Turn off interrupts!
mov ax, 0
mov es, ax
mov ax, es:[9*4]
mov word ptr OldInt9, ax
mov ax, es:[9*4 + 2]
mov word ptr OldInt9+2, ax
mov es:[9*4], offset MyInt9
mov es:[9*4+2], seg ResidentSeg

mov ax, es:[13h*4]
mov word ptr OldInt13, ax
mov ax, es:[13h*4 + 2]
mov word ptr OldInt13+2, ax
mov es:[13h*4], offset MyInt13
mov es:[13h*4+2], seg ResidentSeg

mov ax, es:[16h*4]
mov word ptr OldInt16, ax
mov ax, es:[16h*4 + 2]
mov word ptr OldInt16+2, ax
mov es:[16h*4], offset MyInt16
mov es:[16h*4+2], seg ResidentSeg

mov ax, es:[1Ch*4]
mov word ptr OldInt1C, ax
mov ax, es:[1Ch*4 + 2]
mov word ptr OldInt1C+2, ax
mov es:[1Ch*4], offset MyInt1C
mov es:[1Ch*4+2], seg ResidentSeg

mov ax, es:[28h*4]
mov word ptr OldInt28, ax
mov ax, es:[28h*4 + 2]
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mov word ptr OldInt28+2, ax
mov es:[28h*4], offset MyInt28
mov es:[28h*4+2], seg ResidentSeg

mov ax, es:[2Fh*4]
mov word ptr OldInt2F, ax
mov ax, es:[2Fh*4 + 2]
mov word ptr OldInt2F+2, ax
mov es:[2Fh*4], offset MyInt2F
mov es:[2Fh*4+2], seg ResidentSeg
sti ;Okay, ints back on.

; We’re hooked up, the only thing that remains is to terminate and
; stay resident.

print
byte “Installed.”,cr,lf,0

mov dx, EndResident ;Compute size of program.
sub dx, PSP
mov ax, 3100h ;DOS TSR command.
int 21h

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

The following is a short little application that reads the data file produced by the above program and pro-
duces a simple report of the date, time, and keystrokes:

; This program reads the file created by the KEYEVAL.EXE TSR program.
; It displays the log containing dates, times, and number of keystrokes.

.xlist

.286
include stdlib.a
includelib stdlib.lib
.list

dseg segment para public ‘data’

FileHandle word ?

month byte 0
day byte 0
year word 0
hour byte 0
minute byte 0
second byte 0
KeyStrokes word 0
RecSize = $-month

dseg ends

cseg segment para public ‘code’
assume cs:cseg, ds:dseg
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; SeeIfPresent- Checks to see if our TSR is present in memory.
; Sets the zero flag if it is, clears the zero flag if
; it is not.

SeeIfPresent proc near
push es
push ds
pusha
mov cx, 0ffh ;Start with ID 0FFh.

IDLoop: mov ah, cl
push cx
mov al, 0 ;Verify presence call.
int 2Fh
pop cx
cmp al, 0 ;Present in memory?
je TryNext
strcmpl
byte “Keypress Logger TSR”,0
je Success

TryNext: dec cl ;Test USER IDs of 80h..FFh
js IDLoop
cmp cx, 0 ;Clear zero flag.

Success: popa
pop ds
pop es
ret

SeeIfPresent endp

Main proc
meminit

mov ax, dseg
mov ds, ax

argc
cmp cx, 1 ;Must have exactly 1 parm.
je GoodParmCnt
print
byte “Usage:”,cr,lf
byte “ KEYRPT filename”,cr,lf,0
ExitPgm

GoodParmCnt: mov ax, 1
argv

print
byte “Keypress logger report program”,cr,lf
byte “Processing file:”,0
puts
putcr

mov ah, 3Dh ;Open file command.
mov al, 0 ;Open for reading.
push ds
push es ;Point ds:dx at name
pop ds
mov dx, di
int 21h ;Open the file
jnc GoodOpen
print
byte “DOS error #”,0
puti
print
byte “ opening file.”,cr,lf,0
ExitPgm
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GoodOpen: pop ds
mov FileHandle, ax ;Save file handle.

; Okay, read the data and display it:

ReadLoop: mov ah, 3Fh ;Read file command
mov bx, FileHandle
mov cx, RecSize ;Number of bytes.
mov dx, offset month ;Place to put data.
int 21h
jc ReadError
test ax, ax ;EOF?
je Quit

mov cx, year
mov dl, day
mov dh, month
dtoam
puts
free
print
byte “, “,0

mov ch, hour
mov cl, minute
mov dh, second
mov dl, 0
ttoam
puts
free
printf
byte “, keystrokes = %d\n”,0
dword KeyStrokes
jmp ReadLoop

ReadError: print
byte “Error reading file”,cr,lf,0

Quit: mov bx, FileHandle
mov ah, 3Eh ;Close file
int 21h
ExitPgm

Main endp
cseg ends

sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends

zzzzzzseg segment para public ‘zzzzzz’
LastBytes db 16 dup (?)
zzzzzzseg ends

end Main

18.9 Semiresident Programs

A semiresident  program is one that temporarily loads itself into memory, executes another program
(a child process), and then removes itself from memory after the child process terminates. Semiresident
programs behave like resident programs while the child executes, but they do not stay in memory once
the child terminates.

The main use for semiresident programs is to extend an existing application or patch  an application6

(the child process). The nice thing about a semiresident program patch is that it does not have to modify

6. Patching  a program means to replace certain opcode bytes in the object file. Programmers apply patches to correct bugs or extend a product
whose sources are not available.
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the application’s “.EXE” file directly on the disk. If for some reason the patch fails, you haven’t destroyed
the ‘.EXE” file, you’ve only wiped out the object code in memory.

A semiresident application, like a TSR, has a transient and a resident part. The resident part remains in
memory while the child process executes. The transient part initializes the program and then transfers con-
trol to the resident part that loads the child application over the resident portion. The transient code
patches the interrupt vectors and does all the things a TSR does except it doesn’t issue the TSR command.
Instead, the resident program loads the application into memory and transfers control to that program.
When the application returns control to the resident program, it exits to DOS using the standard ExitPgm
call (ah=4Ch).

While the application is running, the resident code behaves like any other TSR. Unless the child pro-
cess is aware of the semiresident program, or the semiresident program patches interrupt vectors the
application normally uses, the semiresident program will probably be an active resident program, patch-
ing into one or more of the hardware interrupts. Of course, all the rules that apply to active TSRs also
apply to active semiresident programs.

The following is a very generic example of s semiresident program. This program, “RUN.ASM”, runs
the application whose name and command line parameters appear as command line parameters to run. In
other words:

c:> run pgm.exe parm1 parm2 etc.

is equivalent to

pgm parm1 parm2 etc.

Note that you must supply the “.EXE” or “.COM” extension to the program’s filename. This code begins by
extracting the program’s filename and command line parameters from run’s command line. Run builds an
exec structure (see “MS-DOS, PC-BIOS, and File I/O” on page 699) and then calls DOS to execute the pro-
gram. On return, run fixes up the stack and returns to DOS.

; RUN.ASM - The barebones semiresident program.
;
; Usage:
; RUN <program.exe> <program’s command line>
;  or RUN <program.com> <program’s command line>
;
; RUN executes the specified program with the supplied command line parameters.
; At first, this may seem like a stupid program. After all, why not just run
; the program directly from DOS and skip the RUN altogether? Actually, there
; is a good reason for RUN-- It lets you (by modifying the RUN source file)
; set up some environment prior to running the program and clean up that
; environment after the program terminates (“environment” in this sense does
; not necessarily refer to the MS-DOS ENVIRONMENT area).
;
; For example, I have used this program to switch the mode of a TSR prior to
; executing an EXE file and then I restored the operating mode of that TSR
; after the program terminated.
;
; In general, you should create a new version of RUN.EXE (and, presumbably,
; give it a unique name) for each application you want to use this program
; with.
;
;
;----------------------------------------------------------------------------
;
;
; Put these segment definitions 1st because we want the Standard Library
; routines to load last in memory, so they wind up in the transient portion.

CSEG segment para public ‘CODE’
CSEG ends
SSEG segment para stack ‘stack’
SSEG ends
ZZZZZZSEG segment para public ‘zzzzzzseg’
ZZZZZZSEG ends
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; Includes for UCR Standard Library macros.

include consts.a
include stdin.a
include stdout.a
include misc.a
include memory.a
include strings.a

includelib stdlib.lib

CSEG segment para public ‘CODE’
assume cs:cseg, ds:cseg

; Variables used by this program.

; MS-DOS EXEC structure.

ExecStruct dw 0 ;Use parent’s Environment blk.
dd CmdLine ;For the cmd ln parms.
dd DfltFCB
dd DfltFCB

DfltFCB db 3,” “,0,0,0,0,0
CmdLine db 0, 0dh, 126 dup (“ “) ;Cmd line for program.
PgmName dd ? ;Points at pgm name.

Main proc
mov ax, cseg ;Get ptr to vars segment
mov ds, ax

MemInit ;Start the memory mgr.

; If you want to do something before the execution of the command-line
; specified program, here is a good place to do it:

; -------------------------------------

; Now let’s fetch the program name, etc., from the command line and execute
; it.

argc ;See how many cmd ln parms
or cx, cx ; we have.
jz Quit ;Just quit if no parameters.

mov ax, 1 ;Get the first parm (pgm name)
argv
mov word ptr PgmName, di;Save ptr to name
mov word ptr PgmName+2, es

; Okay, for each word on the command line after the filename, copy
; that word to CmdLine buffer and separate each word with a space,
; just like COMMAND.COM does with command line parameters it processes.

lea si, CmdLine+1 ;Index into cmdline.
ParmLoop: dec cx

jz ExecutePgm

inc ax ;Point at next parm.
argv ;Get the next parm.
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push ax
mov byte ptr [si], ‘ ‘ ;1st item and separator on ln.
inc CmdLine
inc si

CpyLp: mov al, es:[di]
cmp al, 0
je StrDone
inc CmdLine ;Increment byte cnt
mov ds:[si], al
inc si
inc di
jmp CpyLp

StrDone: mov byte ptr ds:[si], cr ;In case this is the end.
pop ax ;Get current parm #
jmp ParmLoop

; Okay, we’ve built the MS-DOS execute structure and the necessary
; command line, now let’s see about running the program.
; The first step is to free up all the memory that this program
; isn’t using. That would be everything from zzzzzzseg on.

ExecutePgm: mov ah, 62h ;Get our PSP value
int 21h
mov es, bx
mov ax, zzzzzzseg ;Compute size of
sub ax, bx ; resident run code.
mov bx, ax
mov ah, 4ah ;Release unused memory.
int 21h

; Warning! No Standard Library calls after this point. We’ve just
; released the memory that they’re sitting in. So the program load
; we’re about to do will wipe out the Standard Library code.

mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b00h ;Exec pgm
int 21h

; When we get back, we can’t count on *anything* being correct. First, fix
; the stack pointer and then we can finish up anything else that needs to
; be done.

mov ax, sseg
mov ss, ax
mov sp, offset EndStk
mov ax, seg cseg
mov ds, ax

; Okay, if you have any great deeds to do after the program, this is a
; good place to put such stuff.

; -------------------------------------

; Return control to MS-DOS

Quit: ExitPgm
Main endp
cseg ends

sseg segment para stack ‘stack’
dw 128 dup (0)

endstk dw ?
sseg ends

; Set aside some room for the heap.

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 200h dup (?)
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zzzzzzseg ends

end Main

Since RUN.ASM is rather simple perhaps a more complex example is in order. The following is a fully
functional patch for the Lucasart’s game XWING. The motivation for this patch can about because of the
annoyance of having to look up a password everytime you play the game. This little patch searches for the
code that calls the password routine and stores NOPs over that code in memory.

The operation of this code is a little different than that of RUN.ASM. The RUN program sends an exe-
cute command to DOS that runs the desired program. All system changes RUN needs to make must be
made before or after the application executes. XWPATCH operates a little differently. It loads the
XWING.EXE program into memory and searches for some specific code (the call to the password routine).
Once it finds this code, it stores NOP instructions over the top of the call.

Unfortunately, life isn’t quite that simple. When XWING.EXE loads, the password code isn’t yet
present in memory. XWING loads that code as an overlay later on. So the XWPATCH program finds some-
thing that XWING.EXE does load into memory right away – the joystick code. XWPATCH patches the joy-
stick code so that any call to the joystick routine (when detecting or calibrating the joystick) produces a
call to XWPATCH’s code that searches for the password code. Once XWPATCH locates and NOPs out the
call to the password routine, it restores the code in the joystick routine. From that point forward,
XWPATCH is simply taking up memory space; XWING will never call it again until XWING terminates.

; XWPATCH.ASM
;
; Usage:
; XWPATCH - must be in same directory as XWING.EXE
;
; This program executes the XWING.EXE program and patches it to avoid
; having to enter the password every time you run it.
;
; This program is intended for educational purposes only.
; It is a demonstration of how to write a semiresident program.
; It is not intended as a device to allow the piracy of commercial software.
; Such use is illegal and is punishable by law.
;
; This software is offered without warranty or any expectation of
; correctness. Due to the dynamic nature of software design, programs
; that patch other programs may not work with slight changes in the
; patched program (XWING.EXE). USE THIS CODE AT YOUR OWN RISK.
;
;----------------------------------------------------------------------------

byp textequ <byte ptr>
wp textequ <word ptr>

; Put these segment definitions here so the UCR Standard Library will
; load after zzzzzzseg (in the transient section).

cseg segment para public ‘CODE’
cseg ends

sseg segment para stack ‘STACK’
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
zzzzzzseg ends

.286
include stdlib.a
includelib stdlib.lib

CSEG segment para public ‘CODE’
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assume cs:cseg, ds:nothing

; CountJSCalls-Number of times xwing calls the Joystick code before
; we patch out the password call.

CountJSCalls dw 250

; PSP- Program Segment Prefix. Needed to free up memory before running
; the real application program.

PSP dw 0

; Program Loading data structures (for DOS).

ExecStruct dw 0 ;Use parent’s Environment blk.
dd CmdLine ;For the cmd ln parms.
dd DfltFCB
dd DfltFCB

LoadSSSP dd ?
LoadCSIP dd ?
PgmName dd Pgm

DfltFCB db 3,” “,0,0,0,0,0
CmdLine db 2, “ “, 0dh, 16 dup (“ “);Cmd line for program
Pgm db “XWING.EXE”,0

;****************************************************************************
; XWPATCH begins here. This is the memory resident part. Only put code
; which which has to be present at run-time or needs to be resident after
; freeing up memory.
;****************************************************************************

Main proc
mov cs:PSP, ds
mov ax, cseg ;Get ptr to vars segment
mov ds, ax

mov ax, zzzzzzseg
mov es, ax
mov cx, 1024/16
meminit2

; Now, free up memory from ZZZZZZSEG on to make room for XWING.
; Note: Absolutely no calls to UCR Standard Library routines from
; this point forward! (ExitPgm is okay, it’s just a macro which calls DOS.)
; Note that after the execution of this code, none of the code & data
; from zzzzzzseg on is valid.

mov bx, zzzzzzseg
sub bx, PSP
inc bx
mov es, PSP
mov ah, 4ah
int 21h
jnc GoodRealloc

; Okay, I lied. Here’s a StdLib call, but it’s okay because we failed
; to load the application over the top of the standard library code.
; But from this point on, absolutely no more calls!

print
byte “Memory allocation error.”
byte cr,lf,0
jmp Quit

GoodRealloc:

; Now load the XWING program into memory:
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mov bx, seg ExecStruct
mov es, bx
mov bx, offset ExecStruct ;Ptr to program record.
lds dx, PgmName
mov ax, 4b01h ;Load, do not exec, pgm
int 21h
jc Quit ;If error loading file.

; Unfortunately, the password code gets loaded dynamically later on.
; So it’s not anywhere in memory where we can search for it. But we
; do know that the joystick code is in memory, so we’ll search for
; that code. Once we find it, we’ll patch it so it calls our SearchPW
; routine. Note that you must use a joystick (and have one installed)
; for this patch to work properly.

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset JoyStickCode
mov cx, JoyLength
call FindCode
jc Quit ;If didn’t find joystick code.

; Patch the XWING joystick code here

mov byp ds:[si], 09ah;Far call
mov wp ds:[si+1], offset SearchPW
mov wp ds:[si+3], cs

; Okay, start the XWING.EXE program running

mov ah, 62h ;Get PSP
int 21h
mov ds, bx
mov es, bx
mov wp ds:[10], offset Quit
mov wp ds:[12], cs
mov ss, wp cseg:LoadSSSP+2
mov sp, wp cseg:LoadSSSP
jmp dword ptr cseg:LoadCSIP

Quit: ExitPgm
Main endp

; SearchPW gets call from XWING when it attempts to calibrate the joystick.
; We’ll let XWING call the joystick several hundred times before we
; actually search for the password code. The reason we do this is because
; XWING calls the joystick code early on to test for the presence of a
; joystick. Once we get into the calibration code, however, it calls
; the joystick code repetitively, so a few hundred calls doesn’t take
; very long to expire. Once we’re in the calibration code, the password
; code has been loaded into memory, so we can search for it then.

SearchPW proc far
cmp cs:CountJSCalls, 0
je DoSearch
dec cs:CountJSCalls
sti ;Code we stole from xwing for
neg bx ; the patch.
neg di
ret

; Okay, search for the password code.

DoSearch: push bp
mov bp, sp
push ds
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push es
pusha

; Search for the password code in memory:

mov si, zzzzzzseg
mov ds, si
xor si, si

mov di, cs
mov es, di
mov di, offset PasswordCode
mov cx, PWLength
call FindCode
jc NotThere ;If didn’t find pw code.

; Patch the XWING password code here. Just store NOPs over the five
; bytes of the far call to the password routine.

mov byp ds:[si+11], 090h ;NOP out a far call
mov byp ds:[si+12], 090h
mov byp ds:[si+13], 090h
mov byp ds:[si+14], 090h
mov byp ds:[si+15], 090h

; Adjust the return address and restore the patched joystick code so
; that it doesn’t bother jumping to us anymore.

NotThere: sub word ptr [bp+2], 5 ;Back up return address.
les bx, [bp+2] ;Fetch return address.

; Store the original joystick code over the call we patched to this
; routine.

mov ax, word ptr JoyStickCode
mov es:[bx], ax
mov ax, word ptr JoyStickCode+2
mov es:[bx+2], ax
mov al, byte ptr JoyStickCode+4
mov es:[bx+4], al

popa
pop es
pop ds
pop bp
ret

SearchPW endp

;****************************************************************************
;
; FindCode: On entry, ES:DI points at some code in *this* program which
;  appears in the XWING game. DS:SI points at a block of memory
;  in the XWING game. FindCode searches through memory to find the
;  suspect piece of code and returns DS:SI pointing at the start of
;  that code. This code assumes that it *will* find the code!
;  It returns the carry clear if it finds it, set if it doesn’t.

FindCode proc near
push ax
push bx
push dx

DoCmp: mov dx, 1000h ;Search in 4K blocks.
CmpLoop:  push di ;Save ptr to compare code.

push si ;Save ptr to start of string.
push cx ;Save count.

repe cmpsb
pop cx
pop si
pop di
je FoundCode
inc si
dec dx
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jne CmpLoop
sub si, 1000h
mov ax, ds
inc ah
mov ds, ax
cmp ax, 9000h ;Stop at address 9000:0
jb DoCmp ; and fail if not found.

pop dx
pop bx
pop ax
stc
ret

FoundCode: pop dx
pop bx
pop ax
clc
ret

FindCode endp

;****************************************************************************
;
; Call to password code that appears in the XWING game. This is actually
; data that we’re going to search for in the XWING object code.

PasswordCode proc near
call $+47h
mov [bp-4], ax
mov [bp-2], dx
push dx
push ax
byte 9ah, 04h, 00

PasswordCode endp
EndPW:

PWLength = EndPW-PasswordCode

; The following is the joystick code we’re going to search for.

JoyStickCode proc near
sti
neg bx
neg di
pop bp
pop dx
pop cx
ret
mov bp, bx
in al, dx
mov bl, al
not al
and al, ah
jnz $+11h
in al, dx

JoyStickCode endp
EndJSC:

JoyLength = EndJSC-JoyStickCode
cseg ends

sseg segment para stack ‘STACK’
dw 256 dup (0)

endstk dw ?
sseg ends

zzzzzzseg segment para public ‘zzzzzzseg’
Heap db 1024 dup (0)
zzzzzzseg ends

end Main
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18.10 Summary

Resident programs provide a small amount of multitasking to DOS’ single tasking world. DOS pro-
vides support for resident programs through a rudimentary memory management system. When an appli-
cation issues the terminate and stay resident call, DOS adjusts its memory pointers so the memory space
reserved by the TSR code is protected from future program loading operations. For more information on
how this process works, see

• “DOS Memory Usage and TSRs” on page 1025

TSRs come in two basic forms: active and passive. Passive TSRs are not self-activating. A foreground
application must call a routine in a passive TSR to activate it. Generally, an application interfaces to a pas-
sive TSR using the 80x86 trap mechanism (software interrupts). Active TSRs, on the other hand, do not rely
on the foreground application for activation. Instead, they attach themselves to a hardware interrupt that
activates them independently of the foreground process. For more information, see

• “Active vs. Passive TSRs” on page 1029

The nature of an active TSR introduces many compatibility problems. The primary problem is that an
active TSR might want to call a DOS or BIOS routine after having just interrupted either of these systems.
This creates problems because DOS and BIOS are not reentrant. Fortunately, MS-DOS provides some
hooks that give active TSRs the ability to schedule DOS calls with DOS is inactive. Although the BIOS rou-
tines do not provide this same facility, it is easy to add a wrapper  around a BIOS call to let you schedule
calls appropriately. One additional problem with DOS is that an active TSR might disturb some global vari-
able in use by the foreground process. Fortunately, DOS lets the TSR save and restore these values, pre-
venting some nasty compatibility problems. For details, see

• “Reentrancy” on page 1032
• “Reentrancy Problems with DOS” on page 1032
• “Reentrancy Problems with BIOS” on page 1033
• “Reentrancy Problems with Other Code” on page 1034
• “Other DOS Related Issues” on page 1039

MS-DOS provides a special interrupt to coordinate communication between TSRs and other applica-
tions. The multiplex  interrupt lets you easily check for the presence of a TSR in memory, remove a TSR
from memory, or pass various information between the TSR and an active application. For more informa-
tion, see

• “The Multiplex Interrupt (INT 2Fh)” on page 1034

Well written TSRs follow stringent rules. In particular, a good TSR follows certain conventions during
installation and always provide the user with a safe removal mechanism that frees all memory in use by the
TSR. In those rare cases where a TSR cannot remove itself, it always reports an appropriate error and
instructs the user how to solve the problem. For more information on load and removing TSRs, see

• “Installing a TSR” on page 1035
• “Removing a TSR” on page 1037
• “A Keyboard Monitor TSR” on page 1041

A semiresident routine is one that is resident during the execution of some specific program. It auto-
matically unloads itself when that application terminates. Semiresident applications find application as
program patchers and “time-release TSRs.” For more information on semiresident programs, see

• “Semiresident Programs” on page 1055


