The PC Keyboard Chapter 20

The PC’s keyboard is the primary human input device on the system. Although it seems rather mun-
dane, the keyboard is the primary input device for most software, so learning how to program the key-
board properly is very important to application developers.

IBM and countless keyboard manufacturers have produced numerous keyboards for PCs and com-
patibles. Most modern keyboards provide at least 101 different keys and are reasonably compatible with
the IBM PC/AT 101 Key Enhanced Keyboard. Those that do provide extra keys generally program those
keys to emit a sequence of other keystrokes or allow the user to program a sequence of keystrokes on the
extra keys. Since the 101 key keyboard is ubiquitous, we will assume its use in this chapter.

When IBM first developed the PC, they used a very simple interface between the keyboard and the
computer. When I1BM introduced the PC/AT, they completely redesigned the keyboard interface. Since the
introduction of the PC/AT, almost every keyboard has conformed to the PC/AT standard. Even when IBM
introduced the PS/2 systems, the changes to the keyboard interface were minor and upwards compatible
with the PC/AT design. Therefore, this chapter will also limit its attention to PC/AT compatible devices
since so few PC/XT keyboards and systems are still in use.

There are five main components to the keyboard we will consider in this chapter — basic keyboard
information, the DOS interface, the BIOS interface, the int 9 keyboard interrupt service routine, and the
hardware interface to the keyboard. The last section of this chapter will discuss how to fake keyboard
input into an application.

20.1 Keyboard Basics

The PC's keyboard is a computer system in its own right. Buried inside the keyboards case is an 8042
microcontroller chip that constantly scans the switches on the keyboard to see if any keys are down. This
processing goes on in parallel with the normal activities of the PC, hence the keyboard never misses a key-
stroke because the 80x86 in the PC is busy.

A typical keystroke starts with the user pressing a key on the keyboard. This closes an electrical con-
tact in the switch so the microcontroller and sense that you've pressed the switch. Alas, switches (being
the mechanical things that they are) do not always close (make contact) so cleanly. Often, the contacts
bounce off one another several times before coming to rest making a solid contact. If the microcontroller
chip reads the switch constantly, these bouncing contacts will look like a very quick series of key presses
and releases. This could generate multiple keystrokes to the main computers, a phenomenon known as
keybounce, common to many cheap and old keyboards. But even on the most expensive and newest key-
boards, keybounce is a problem if you look at the switch a million times a second; mechanical switches
simply cannot settle down that quickly. Most keyboard scanning algorithms, therefore, control how often
they scan the keyboard. A typical inexpensive key will settle down within five milliseconds, so if the key-
board scanning software only looks at the key every ten milliseconds, or so, the controller will effectively
miss the keybounce?.

Simply noting that a key is pressed is not sufficient reason to generate a key code. A user may hold a
key down for many tens of milliseconds before releasing it. The keyboard controller must not generate a
new key sequence every time it scans the keyboard and finds a key held down. Instead, it should generate
asingle key code value when the key goes from an up position to the down position (a down key opera-
tion). Upon detecting a down key stroke, the microcontroller sends a keyboard scan code to the PC. The
scan code is not related to the ASCII code for that key, it is an arbitrary value IBM chose when they first
developed the PC’s keyboard.

1. Attypical user cannot type 100 characters/sec nor reliably press a key for less than 1/50th of a second, so scanning the keyboard at 10 msec inter-
vals will not lose any keystrokes.

Page 1153

Chapter 20

The PC keyboard actually generates two scan codes for every key you press. It generates a down
code when you press a key and an up code when you release the key. The 8042 microcontroller chip
transmits these scan codes to the PC where they are processed by the keyboard's interrupt service routine.
Having separate up and down codes is important because certain keys (like shift, control, and alt) are only
meaningful when held down. By generating up codes for all the keys, the keyboard ensures that the key-
board interrupt service routine knows which keys are pressed while the user is holding down one of these
modifier keys. The following table lists the scan codes that the keyboard microcontroller transmits to the
PC:

Table 72: PC Keyboard Scan Codes (in hex)

Key | Down Up Key | Down Up Key | Down Up Key | Down Up
Esc 1 81 [{ 1A %A , < 33 B3 || center | 4C cC
1! 2 82 11 1B 9B > 34 B4 right 4D CcD
20 3 83 Enter 1C 9C /7 35 B5 + 4E CE
3# 4 84 Ctrl 1D 9D || Rshift | 36 B6 end 4F CF
4% 5 85 A 1E 9 || *PrtSc | 37 B7 down 50 DO
5% 6 86 S 1F 9F alt 38 B8 pgdn 51 D1
6" 7 87 D 20 A0 space 39 B9 ins 52 D2
& 8 88 F 21 Al CAPS 3A BA del 53 D3
8* 9 89 G 22 A2 F1 3B BB / E0 35 B5
9(0A 8A H 23 A3 F2 3C BC enter | E01C 9C
0) 0B 8B J 24 Ad F3 3D BD F11 57 D7
_ 0C 8C K 25 A5 F4 3E BE F12 58 D8
=+ 0D 8D L 26 A6 F5 3F BF ins E0 52 D2
Bksp OE 8E i 27 A7 F6 40 Co del E0 53 D3
Tab OF 8F o 28 A8 F7 41 C1 home | EO047 C7
Q 10 9 T~ 29 A9 F8 42 C2 end | E04F CF
w 1 91 Lshift | 2A AA F9 43 C3 pgup | E049 C9
E 12 92 \ 2B AB F10 44 C4 pgdn | EO051 D1
R 13 93 YA 2C AC NUM 45 C5 left | EO4B | CB
T 14 % X 2D AD SCRL 46 C6 right | EO4D | CD
Y 15 95 C 2E AE home 47 C7 up E0 48 C8
U 16 96 % 2F AF up 48 C8 down | EO50 DO
I 17 97 B 30 BO pgup 49 C9 Ralt | E038 B8
0 18 93 N 31 Bl - 4A CA Rctrl | EOID | 9D

P 19 9 M 32 B2 left 4B CB || Pause | E11D

45E1

9D C5

Page 1154

The keys in italics are found on the numeric keypad. Note that certain keys transmit two or more scan
codes to the system. The keys that transmit more than one scan code were new keys added to the key-
board when IBM designed the 101 key enhanced keyboard.

The PC Keyboard

When the scan code arrives at the PC, a second microcontroller chip receives the scan code, does a
conversion on the scan code, makes the scan code available at /0 port 60h, and then interrupts the pro-
cessor and leaves it up to the keyboard ISR to fetch the scan code from the 1/0 port.

The keyboard (int 9) interrupt service routine reads the scan code from the keyboard input port and
processes the scan code as appropriate. Note that the scan code the system receives from the keyboard
microcontroller is a single value, even though some keys on the keyboard represent up to four different
values. For example, the “A” key on the keyboard can produce A, a, ctrl-A, or alt-A. The actual code the
system yields depends upon the current state of the modifier keys (shift, ctrl, alt, capslock, and numlock).
For example, if an A key scan code comes along (1Eh) and the shift key is down, the system produces the
ASCII code for an uppercase A. If the user is pressing multiple modifier keys the system prioritizes them
from low to high as follows:

« No modifier key down

« Numlock/Capslock (same precedence, lowest priority)
e shift

e ctrl

e alt (highest priority)

Numlock and capslock affect different sets of keys®, so there is no ambiguity resulting from their equal
precedence in the above chart. If the user is pressing two modifier keys at the same time, the system only
recognizes the modifier key with the highest priority above. For example, if the user is pressing the ctrl
and alt keys at the same time, the system only recognizes the alt key. The numlock, capslock, and shift
keys are a special case. If numlock or capslock is active, pressing the shift key makes it inactive. Likewise,
if numlock or capslock is inactive, pressing the shift key effectively “activates” these modifiers.

Not all modifiers are legal for every key. For example, ctrl-8 is not a legal combination. The keyboard
interrupt service routine ignores all keypresses combined with illegal modifier keys. For some unknown
reason, IBM decided to make certain key combinations legal and others illegal. For example, ctrl-left and
ctrl-right are legal, but ctrl-up and ctrl-down are not. You'll see how to fix this problem a little later.

The shift, ctrl, and alt keys are active modifiers. That is, modification to a keypress occurs only while
the user holds down one of these modifier keys. The keyboard ISR keeps track of whether these keys are
down or up by setting an associated bit upon receiving the down code and clearing that bit upon receiving
the up code for shift, ctrl, or alt. In contrast, the numlock, scroll lock, and capslock keys are toggle modifi-
ers®. The keyboard ISR inverts an associated bit every time it sees a down code followed by an up code for
these keys.

Most of the keys on the PC's keyboard correspond to ASCII characters. When the keyboard ISR
encounters such a character, it translates it to a 16 bit value whose L.O. byte is the ASCII code and the H.O.
byte is the key’s scan code. For example, pressing the “A” key with no modifier, with shift, and with con-
trol produces 1E61h, 1E41h, and 1EQ1h, respectively (“a”, “A”, and ctrl-A). Many key sequences do not
have corresponding ASCII codes. For example, the function keys, the cursor control keys, and the alt key
sequences do not have corresponding ASCII codes. For these special extended code, the keyboard ISR
stores a zero in the L.O. byte (where the ASCII code typically goes) and the extended code goes in the
H.O. byte. The extended code is usually, though certainly not always, the scan code for that key.

The only problem with this extended code approach is that the value zero is a legal ASCII character
(the NUL character). Therefore, you cannot directly enter NUL characters into an application. If an applica-
tion must input NUL characters, IBM has set aside the extended code 0300h (ctrl-3) for this purpose. You
application must explicitly convert this extended code to the NUL character (actually, it need only recog-

2. The keyboard doesn't actually transmit the scan codes appearing in the previous table. Instead, it transmits its own scan code that the PC's micro-
controller translates to the scan codes in the table. Since the programmer never sees the native scan codes so we will ignore them.

3. Numlock only affects the keys on the numeric keypad, capslock only affects the alphabetic keys.

4. 1t turns out the INS key is also a toggle modifier, since it toggles a bit in the BIOS variable area. However, INS also returns a scan code, the other

modifiers do not.

Page 1155

Chapter 20

Page 1156

nize the H.O. value 03, since the L.O. byte already is the NUL character). Fortunately, very few programs

need to allow the input of the NUL character from the keyboard, so this problem is rarely an issue.

The following table lists the scan and extended key codes the keyboard ISR generates for applications
in response to a keypress with various modifiers. Extended codes are in italics. All other values (except the
scan code column) represent the L.O. eight bits of the 16 bit code. The H.O. byte comes from the scan

code column.
Table 73: Keyboard Codes (in hex)
Key Scan ASCII Shift? Ctrl Alt Num Caps Shift Shift
Code Caps Num
Esc 01 1B 1B 1B 1B 1B 1B 1B
1! 02 31 21 7800 31 31 31 31
20 03 32 40 0300 7900 32 32 32 32
3# 04 33 23 7A00 33 33 33 33
4% 05 34 24 7B00 34 34 34 34
5% 06 35 25 7C00 35 35 35 35
6" 07 36 5E 1E 7D00 36 36 36 36
7& 08 37 26 7E00 37 37 37 37
8* 09 38 2A 7F00 38 38 38 38
9(0A 39 28 8000 39 39 39 39
0) 0B 30 29 8100 30 30 30 30
_ 0C 2D 5F 1F 8200 2D 2D 5F 5F
=+ 0D 3D 2B 8300 3D 3D 2B 2B
Bksp OE 08 08 7F 08 08 08 08
Tab OF 09 0F00 09 09 0F00 0F00
Q 10 71 51 11 1000 71 51 71 51
w 11 77 57 17 1100 77 57 77 57
E 12 65 45 05 1200 65 45 65 45
R 13 72 52 12 1300 72 52 72 52
T 14 74 54 14 1400 74 54 74 54
Y 15 79 59 19 1500 79 59 79 59
U 16 75 55 15 1600 75 55 75 55
| 17 69 49 09 1700 69 49 69 49
0] 18 6F 4F OF 1800 6F 4F 6F 4F
P 19 70 50 10 1900 70 50 70 50
[{ 1A 5B 7B 1B 5B 5B 7B 7B
1} 1B 5D 7D 1D 5D 5D 7D 7D
enter 1C 0D 0D 0A 0D 0D 0A 0A
ctrl 1D
A 1E 61 41 01 1E00 61 41 61 41
S 1F 73 53 13 1F00 73 53 73 53
D 20 64 44 04 2000 64 44 64 44
F 21 66 46 06 2100 66 46 66 46
G 22 67 47 07 2200 67 47 67 47
H 23 68 48 08 2300 68 48 68 48
J 24 6A 4A 0A 2400 6A 4A 6A 4A
K 25 6B 4B 0B 2500 6B 4B 6B 4B
L 26 6C 4C 0C 2600 6C 4C 6C 4C
; 27 3B 3A 3B 3B 3A 3A
e 28 27 22 27 27 22 22
Key Scan ASCII Shift Ctrl Alt Num Caps Shift Shift
Code Caps Num

Table 73: Keyboard Codes (in hex)

The PC Keyboard

Key Scan ASCII Shift? Ctrl Alt Num Caps Shift Shift
Code Caps Num
~ 29 60 TE 60 60 TE TE
Lshift 2A
\ 2B 5C 7C 1C 5C 5C 7C 7C
z 2C 7A 5A 1A 2C00 7A 5A 7A 5A
X 2D 8 58 18 2D00 8 58 8 58
C 2E 63 43 03 2EQ0 63 43 63 43
v 2F 76 56 16 2F00 76 56 76 56
B 30 62 42 02 3000 62 42 62 42
N 31 6E 4E OE 3100 6E 4E 6E 4E
M 32 6D 4D 0D 3200 6D 4D 6D 4D
, < 33 2C 3C 2C 2C 3C 3C
> 34 2E 3E 2E 2E 3E 3E
/7 35 2F 3F 2F 2F 3F 3F
Rshift 36
*PrtSc 37 2A INT 5° 10° 2A 2A INT 5 INT 5
alt 38
space 39 20 20 20 20 20 20 20
caps 3A
F1 3B 3B00 5400 5E00 6800 3B00 3B00 5400 5400
F2 3C 3C00 5500 5F00 6900 3C00 3C00 5500 5500
F3 3D 3D00 5600 6000 6A00 3D00 3D00 5600 5600
F4 3E 3E00 5700 6100 6B00 3E00 3E00 5700 5700
F5 3F 3F00 5800 6200 6C00 3F00 3F00 5800 5800
F6 40 4000 5900 6300 6D00 4000 4000 5900 5900
F7 4 4100 5A00 6400 6E00 4100 4100 5A00 5A00
F8 42 4200 5B00 6500 6F00 4200 4200 5B00 5B00
F9 43 4300 5C00 6600 7000 4300 4300 5C00 5C00
F10 44 4400 5D00 6700 7100 4400 4400 5D00 5D00
num 45
scrl 46
home 47 4700 37 7700 37 4700 37 4700
up 48 4800 38 38 4800 38 4800
pgup 49 4900 39 8400 39 4900 39 4900
R 4A 2D 2D 2D 2D 2D 2D
left 4B 4B00 34 7300 34 4B00 34 4B00
center 4C 4C00 35 35 4C00 35 4C00
right 4D 4D00 36 7400 36 4D00 36 4D00
+€ 4E 2B 2B 2B 2B 2B 2B
end 4F 4F00 31 7500 31 4F00 31 4F00
down 50 5000 32 32 5000 32 5000
pgdn 51 5100 33 7600 33 5100 33 5100
ins 52 5200 30 30 5200 30 5200
del 53 5300 2E 2E 5300 2E 5300
Key Scan ASCII Shift Ctrl Alt Num Caps Shift Shift
Code Caps Num

a. For the alphabetic characters, if capslock is active then see the shift-capslock column.

b. Pressing the PrtSc key does not produce a scan code. Instead, BIOS executes an int 5 instruction which
should print the screen.

¢. This is the control-P character that will activate the printer under MS-DOS.
d. This is the minus key on the keypad.

e. This is the plus key on the keypad.

Page 1157

Chapter 20

The 101-key keyboards generally provide an enter key and a “/” key on the numeric keypad. Unless
you write your own int 9 keyboard ISR, you will not be able to differentiate these keys from the ones on
the main keyboard. The separate cursor control pad also generates the same extended codes as the
numeric keypad, except it never generates numeric ASCII codes. Otherwise, you cannot differentiate these
keys from the equivalent keys on the numeric keypad (assuming numlock is off, of course).

The keyboard ISR provides a special facility that lets you enter the ASCII code for a keystroke directly
from the keyboard. To do this, hold down the alt key and typing out the decimal ASCII code (0..255) for a
character on the numeric keypad. The keyboard ISR will convert these keystrokes to an eight-bit value,
attach at H.O. byte of zero to the character, and use that as the character code.

The keyboard ISR inserts the 16 bit value into the PC's type ahead buffer. The system type ahead
buffer is a circular queue that uses the following variables
40: 1A - HeadPtr word ?

40: 1C - TailPtr word ?
40: 1E - Buffer word 16 dup (?)

The keyboard ISR inserts data at the location pointed at by TailPtr. The BIOS keyboard function
removes characters from the location pointed at by the HeadPtr variable. These two pointers almost
always contain an offset into the Buffer array®. If these two pointers are equal, the type ahead buffer is
empty. If the value in HeadPtr is two greater than the value in TailPtr (or HeadPtr is 1Eh and
TailPtr is 3Ch), then the buffer is full and the keyboard ISR will reject any additional keystrokes.

Note that the TailPtr variable always points at the next available location in the type ahead buffer.
Since there is no “count” variable providing the number of entries in the buffer, we must always leave one
entry free in the buffer area; this means the type ahead buffer can only hold 15 keystrokes, not 16.

In addition to the type ahead buffer, the BIOS maintains several other keyboard-related variables in
segment 40h. The following table lists these variables and their contents:

Table 74:. Keyboard Related BIOS Variables

Name Address? Size Description

KbdFlagsl | 40:17 Byte This byte maintains the current status of the modifier
(modifier keys on the keyboard. The bits have the following
flags) meanings:

bit 7: Insert mode toggle

bit 6: Capslock toggle (1=capslock on)

bit 5: Numlock toggle (1=numlock on)

bit 4. Scroll lock toggle (1=scroll lock on)
bit 3: Alt key (1=alt is down)

bit 2; Ctrl key (1=ctrl is down)

bit 1: Left shift key (1=left shift is down)
bit 0: Right shift key (1=right shift is down)

5. Itis possible to change these pointers so they point elsewhere in the 40H segment, but this is not a good idea because many applications assume
that these two pointers contain a value in the range 1Eh..3Ch.

Page 1158

The PC Keyboard

Table 74: Keyboard Related BIOS Variables

Name

Address?

Size

Description

KbdFlags2
(Toggle
keys
down)

40:18

Byte

Specifies if a toggle key is currently down.

bit 7: Insert key (currently down if 1)

bit 6: Capslock key (currently down if 1)

bit 5: Numlock key (currently down if 1)

bit 4: Scroll lock key (currently down if 1)

bit 3: Pause state locked (ctrl-Numlock) if one
bit 2: SysReq key (currently down if 1)

bit 1: Left alt key (currently down if 1)

bit 0: Left ctrl key (currently down if 1)

AltKpd

40:19

Byte

BIOS uses this to compute the ASCII code for an alt--
Keypad sequence.

BufStart

40:80

Word

Offset of start of keyboard buffer (1Eh). Note: this vari-
able is not supported on many systems, be careful if
you use it.

BufEnd

40:82

Word

Offset of end of keyboard buffer (3Eh). See the note
above.

KbdFlags3

40:96

Byte

Miscellaneous keyboard flags.

bit 7: Read of keyboard ID in progress

bit 6: Last char is first kbd ID character
bit 5: Force numlock on reset

hit 4: 1 if 101-key kbd, 0 if 83/84 key kbd.
bit 3: Right alt key pressed if 1

bit 2; Right ctrl key pressed if 1

bit 1: Last scan code was EOh

bit 0: Last scan code was E1h

KbdFlags4

40:97

Byte

More miscellaneous keyboard flags.
hit 7: Keyboard transmit error

bit 6: Mode indicator update

bit 5: Resend receive flag

bit 4. Acknowledge received

bit 3: Must always be zero

bit 2: Capslock LED (1=on)

bit 1: Numlock LED (1=on)

bit 0: Scroll lock LED (1=0n)

a. Addresses are all given in hexadecimal

One comment is in order about KbdFlags1 and KbdFlags4. Bits zero through two of the
KbdFlags4 variable is BIOS’ current settings for the LEDs on the keyboard. periodically, BIOS compares
the values for capslock, numlock, and scroll lock in KbdFlags1 against these three bits in KbdFlags4.
If they do not agree, BIOS will send an appropriate command to the keyboard to update the LEDs and it
will change the values in the KbdFlags4 variable so the system is consistent. Therefore, if you mask in
new values for numlock, scroll lock, or caps lock, the BIOS will automatically adjust KbdFlags4 and set
the LEDs accordingly.

20.2 The Keyboard Hardware Interface

IBM used a very simple hardware design for the keyboard port on the original PC and PC/XT
machines. When they introduced the PC/AT, IBM completely resigned the interface between the PC and

Page 1159

Chapter 20

the keyboard. Since then, almost every PC model and PC clone has followed this keyboard interface stan-
dard®. Although IBM extended the capabilities of the keyboard controller when they introduced their PS/2
systems, the PS/2 models are still upwards compatible from the PC/AT design. Since there are so few orig-
inal PCs in use today (and fewer people write original software for them), we will ignore the original PC
keyboard interface and concentrate on the AT and later designs.

There are two keyboard microcontrollers that the system communicates with - one on the PC's moth-
erboard (the on-board microcontroller) and one inside the keyboard case (the keyboard microcontrol-
ler). Communication with the on-board microcontroller is through 1/0 port 64h. Reading this byte
provides the status of the keyboard controller. Writing to this byte sends the on-board microcontroller a
command. The organization of the status byte is

7.6 5 4 3 2 1 O

| Output Buffer Status (1 = full, 0 = empty)
Input Buffer Status (1= full, 0 = empty)

System Flag (1 = self test passed, 0 = failed)

Command/Data Available (0 = data available at port 60,
1=command available at port 64h)

Keyboard active (1=enabled, 0=disabled)

Error detected (1 = error in transmission, 0 = no error)

Time-out error (1 = keyboard timed out, 0 = no time out error)

Parity error (1 = parity error on transmission, 0 = no error)

On-Board 8042 Keyboard Microcontroller Status Byte (Read Port 64h)

Communication to the microcontroller in the keyboard unit is via the bytes at I/O addresses 60h and
64h. Bits zero and one in the status byte at port 64h provide the necessary handshaking control for these
ports. Before writing any data to these ports, bit zero of port 64h must be zero; data is available for reading
from port 60h when bit one of port 64h contains a one. The keyboard enable and disable bits in the com-
mand byte (port 64h) determine whether the keyboard is active and whether the keyboard will interrupt
the system when the user presses (or releases) a key, etc.

Bytes written to port 60h are sent to the keyboard microcontroller and bytes written to port 64h are
sent to the on-board microcontroller. Bytes read from port 60h generally come from the keyboard,
although you can program the on-board microcontroller to return certain values at this port, as well. The
following tables lists the commands sent to the keyboard microcontroller and the values you can expect
back. The following table lists the allowable commands you can write to port 64h:

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) | Description
20 Transmit keyboard controller's command byte to system as a scan code at port 60h.
60 The next byte written to port 60h will be stored in the keyboard controller's command
byte.

6. We will ignore the PCjr machine in this discussion.

Page 1160

The PC Keyboard

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) | Description

A4 Test if a password is installed (PS/2 only). Result comes back in port 60h. OFAh means a
password is installed, 0F1h means no password.

A5 Transmit password (PS/2 only). Starts receipt of password. The next sequence of scan
codes written to port 60h, ending with a zero byte, are the new password.

A6 Password match. Characters from the keyboard are compared to password until a match
oceurs.

A7 Disable mouse device (PS/2 only). Identical to setting bit five of the command byte.

A8 Enable mouse device (PS/2 only). Identical to clearing bit five of the command byte.

A9 Test mouse device. Returns 0 if okay, 1 or 2 if there is a stuck clock, 3 or 4 if there is a
stuck data line. Results come back in port 60h.

AA Initiates self-test. Returns 55h in port 60h if successful.

AB Keyboard interface test. Tests the keyboard interface. Returns 0 if okay, 1 or 2 if there is
astuck clock, 3 or 4 if there is a stuck data line. Results come back in port 60h.

AC Diagnostic. Returns 16 bytes from the keyboard's microcontroller chip. Not available on
PS/2 systems.

AD Disable keyboard. Same operation as setting bit four of the command register.

AE Enable keyboard. Same operation as clearing bit four of the command register.

C0 Read keyboard input port to port 60h. This input port contains the following values:

bit 7. Keyboard inhibit keyswitch (0 = inhibit, 1 = enabled).
bit 6: Display switch (0=color, 1=mono).

bit 5: Manufacturing jumper.

bit 4: System board RAM (always 1).

bits 0-3: undefined.

Cl Copy input port (above) bits 0-3 to status bits 4-7. (PS/2 only)

C2 Copy input pot (above) bits 4-7 to status port bits 4-7. (PS/2 only).

DO Copy microcontroller output port value to port 60h (see definition below).

D1 Write the next data byte written to port 60h to the microcontroller output port. This port
has the following definition:

bit 7: Keyboard data.

bit 6: Keyboard clock.

bit 5: Input buffer empty flag.

bit 4. Output buffer full flag.

bit 3: Undefined.

bit 2: Undefined.

bit 1: Gate A20 line.

bit 0: System reset (if zero).

Note: writing a zero to bit zero will reset the machine.
Writing a one to it one combines address lines 19 and 20 on the PC’s address bus.

D2 Write keyboard buffer. The keyboard controller returns the next value sent to port 60h as
though a keypress produced that value. (PS/2 only).
D3 Write mouse buffer. The keyboard controller returns the next value sent to port 60h as

though a mouse operation produced that value. (PS/2 only).

D4 Writes the next data byte (60h) to the mouse (auxiliary) device. (PS/2 only).

Page 1161

Chapter 20

Table 75: On-Board Keyboard Controller Commands (Port 64h)

Value (hex) | Description

EO Read test inputs. Returns in port 60h the status of the keyboard serial lines. Bit zero con-
tains the keyboard clock input, bit one contains the keyboard data input.
Fx Pulse output port (see definition for D1). Bits 0-3 of the keyboard controller command

byte are pulsed onto the output port. Resets the system if bit zero is a zero.

Commands 20h and 60h let you read and write the keyboard controller command byte. This byte is
internal to the on-board microcontroller and has the following layout;

Keyboard interrupt (1 = enabled, 0= disabled)

Mouse device interrupt (1 = enabled, 0 = disabled)

System Flag (1 = self test passed, 0 = failed)

PC/AT inhibit override (1 = enabled always)
Must be zero on PS/2 systems

Keyboard disable (1 = disable keyboard, 0 = no action)

PC/AT keyhoard enable (1 = enable keyboard, 0 = no action)
PS/2 mouse disable (1 = disable, 0 = no action)

PC Compatibility mode (1 = translate kbd codes to PC scan codes)

Must be zero.

On-Board 8042 Keyboard Microcontroller Command byte (see commands 20h and 60h)

The system transmits bytes written to /0 port 60h directly to the keyboard’s microcontroller. Bit zero
of the status register must contain a zero before writing any data to this port. The commands the keyboard
recognizes are

Table 76: Keyboard Microcontroller Commands (Port 60h)

Value (hex) | Description

ED Send LED bits. The next byte written to port 60h updates the LEDs on the keyboard. The
parameter (next) byte contains:

bits 3-7: Must be zero.

bit 2: Capslock LED (1 = on, 0 = off).

bit 1: Numlock LED (1 = on, 0 = off).

bit 0: Scroll lock LED (1 = on, 0 = off).

EE Echo commands. Returns OEEh in port 60h as a diagnostic aid.

Page 1162

The PC Keyboard

Table 76: Keyboard Microcontroller Commands (Port 60h)

Value (hex) | Description

FO Select alternate scan code set (PS/2 only). The next byte written to port 60h selects one
of the following options:

00: Report current scan code set in use (next value read from port 60h).

01: Select scan code set #1 (standard PC/AT scan code set).

02: Select scan code set #2.

03: Select scan code set #3.

F2 Send two-byte keyboard ID code as the next two bytes read from port 60h (PS/2 only).

F3 Set Autorepeat delay and repeat rate. Next byte written to port 60h determines rate:
bit 7: must be zero

bits 5,6: Delay. 00- 1/, sec, 01- 1/, sec, 10-*/, sec, 11- 1 sec.

bits 0-4: Repeat rate. 0- approx 30 chars/sec to 1Fh- approx 2 chars/sec.

F4 Enable keyboard.

F5 Reset to power on condition and wait for enable command.

F6 Reset to power on condition and begin scanning keyboard.

F7 Make all keys autorepeat (PS/2 only).

F8 Set all keys to generate an up code and a down code (PS/2 only).

F9 Set all keys to generate an up code only (PS/2 only).

FA Set all keys to autorepeat and generate up and down codes (PS/2 only).

FB Set an individual key to autorepeat. Next byte contains the scan code of the desired key.
(PS/2 only).

FC Set an individual key to generate up and down codes. Next byte contains the scan code
of the desired key. (PS/2 only).

FD Set an individual key to generate only down codes. Next byte contains the scan code of
the desired key. (PS/2 only).

FE Resend last result. Use this command if there is an error receiving data.

FF Reset keyboard to power on state and start the self-test.

The following short program demonstrates how to send commands to the keyboard’s controller. This
little TSR utility programs a “light show” on the keyboard's LEDs.

; LEDSHOW ASM

; This short TSR creates a |ight show on the keyboard' s LEDs. For space
; reasons, this code does not inplenent a nmultiplex handl er nor can you
; rermove this TSR once installed. See the chapter on resident prograns
; for details on howto do this.

cseg and EndResident nust occur before the standard |ibrary segments!

cseg segment para public ‘code’
cseg ends

; Marker segrment, to find the end of the resident section.

EndResi dent segnent para public ‘ Resident’
EndResi dent ends

.xlist

i ncl ude stdlib.a
includelib stdlib.lib
list

Page 1163

Chapter 20

byp equ <byte ptr>
cseg segment para public ‘code’
assume cs:cseg, ds:cseg
;. Set Qm- Sends the command byte in the AL register to the 8042
; keyboard m crocontrol | er chip (command regi ster at
; port 64h).
Set Omd proc near
push CX
push ax ; Save conmand val ue.
cli ;Oritical region, no ints now

; Wit until the 8042 is done processing the current comrand.

xor CX, CX ; All ow 65,536 times thru | oop.
Wi t 4Enpt y: in al, 64h ; Read keyboard status register.

t est al, 10b ;I nput buffer full?

| oopnz Wai t 4Enpty ;1f so, wait until enpty.

; Ckay, send the command to the 8042:

pop ax ; Retrieve conmand.
out 64h, al
sti ; Ckay, ints can happen again.
pop cX
ret
Set O endp
;. SendOnd- The follow ng routi ne sends a command or data byte to the
; keyboard data port (port 60h).
SendOnd pr oc near
push ds
push bx
push cX
nmov cX, 40h
nmov ds, cx
nov bx, ax ; Save data byte
nov al, OADh ; Di sabl e kbd for now
call Set Omd
cli ;Dsable ints whil e accessing HW

; Wait until the 8042 is done processing the current command.

Xxor CX, CX ; All ow 65,536 times thru | oop.
i t 4Enpt y: in al, 64h ; Read keyboard status register.

t est al, 10b ;I nput buffer full?

| oopnz Wi t 4Enpty ;1f so, wait until enpty.

; Ckay, send the data to port 60h

mv al, bl
out 60h, al
nmov al, OAEh ; Reenabl e keyboar d.
cal | Set Omd
sti ;Allow interrupts now
pop CX
pop bx
pop ds
ret
SendOnd endp

Page 1164

The PC Keyboard

;. Set LEDs- Wites the value in AL to the LEDs on the keyboard.
; Bits 0..2 correspond to scroll, num and caps |ock,
; respectively.

Set LEDs proc near
push ax
push cX
nmov ah, al :Save LED bits.
nmov al, OEDh ;8042 set LEDs cnd.
call SendOnd ; Send the conmand to 8042.
nmov al, ah ; Get paraneter byte
call SendOvd ; Send paraneter to the 8042.
pop cX
pop ax
ret

Set LEDs endp

i Mint1G Every 1/4 seconds (every 4th call) this routine

; rotates the LEDs to produce an interesting |ight show

Cal | sPerlter equ 4

Cal | Ont byt e Cal | sPerlter

LED ndex wor d LEDTabl e

LEDTabl e byt e 111b, 110b, 101b, 011b, 111b, 110b, 101b, 011b
byte 111b, 110b, 101b, 011b, 111b, 110b, 101b, 011b
byt e 111b, 110b, 101b, 011b, 111b, 110b, 101b, 011b
byt e 111b, 110b, 101b, 011b, 111b, 110b, 101b, 011b
byt e 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byt e 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byt e 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byt e 000b, 100b, 010b, 001b, 000b, 100b, 010b, 001b
byt e 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byt e 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byt e 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byt e 000b, 001b, 010b, 100b, 000b, 001b, 010b, 100b
byt e 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byt e 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byt e 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byt e 010b, 001b, 010b, 100b, 010b, 001b, 010b, 100b
byt e 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byt e 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byt e 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b
byt e 000b, 111b, 000b, 111b, 000b, 111b, 000b, 111b

Tabl eEnd equ this byte

ddintlC dword ?

M/l nt 1C proc far
assume ds: cseg
push ds
push ax
push bx
nov ax, cs
nmov ds, ax
dec Cal | Ont
j ne Not Yet
nov Call Cnt, CallsPerlter ; Reset call count.
nov bx, LED ndex
nmv al, [bx]
call Set LEDs

Page 1165

Chapter 20

Page 1166

inc bx
cnp bx, offset Tabl eEnd
j ne Set Thl
| ea bx, LEDTabl e
Set Thl : nov LEDI ndex, bx
Not Vet : pop bx
pop ax
pop ds
jnp cs:ddint1C
M/ nt1C endp
Mai n proc
nov ax, cseg
nov ds, ax
print
byt e “LED Light Show',cr,|f
byt e “Installing....”,cr,1f,0

Patch into the INT 1Ch interrupt vector. Note that the
statenents above have nade cseg the current data segment,
so we can store the old INT 1Ch values directly into

the Adintl1C vari abl e.

cli ; Turn of f interrupts!
nmov ax, 0

nov es, ax

nmov ax, es:[1lCth*4]

nmov word ptr AdintlC ax

nmov ax, es:[1Ch*4 + 2]

nmov word ptr Adlnt1C+2, ax

nov es:[1th*4], offset M/IntlC

nov es: [1Ch*4+42], cs

sti ; kay, ints back on.

; W're hooked up, the only thing that remains is to termnate and
; stay resident.

print
byte “Installed.”,cr,If,0
nmov ah, 62h ;CGet this programs PSP
int 21h ; val ue.
nmov dx, EndResi dent ; Conput e si ze of program
sub dx, bx
nov ax, 3100h ; DOS TSR comand.
int 21h
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
z7277775€g segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
zz77277s€g ends
end Mai n

The keyboard microcontroller also sends data to the on-board microcontroller for processing and
release to the system through port 60h. Most of these values are key press scan codes (up or down codes),
but the keyboard transmits several other values as well. A well designed keyboard interrupt service rou-
tine should be able to handle (or at least ignore) the non-scan code values. Any particular, any program
that sends commands to the keyboard needs to be able to handle the resend and acknowledge commands

The PC Keyboard

that the keyboard microcontroller returns in port 60h. The keyboard microcontroller sends the following
values to the system:

Table 77: Keyboard to System Transmissions

Value (hex) | Description

00 Data overrun. System sends a zero byte as the last value when the keyboard controller's
internal buffer overflows.

1.58 Scan codes for key presses. The positive values are down codes, the negative values
81..D8 (H.O. bit set) are up codes.

83AB Keyboard ID code returned in response to the F2 command (PS/2 only).

AA Returned during basic assurance test after reset. Also the up code for the left shift key.
EE Returned by the ECHO command.

FO Prefix to certain up codes (N/A on PS/2).

FA Keyboard acknowledge to keyboard commands other than resend or ECHO.

FC Basic assurance test failed (PS/2 only).

FD Diagnostic failure (not available on PS/2).

FE Resend. Keyboard requests the system to resend the last command.

FF Key error (PS/2 only).

Assuming you have not disabled keyboard interrupts (see the keyboard controller command byte),
any value the keyboard microcontroller sends to the system through port 60h will generate an interrupt on
IRQ line one (int 9). Therefore, the keyboard interrupt service routine normally handles all the above
codes. If you are patching into int 9, don't forget to send and end of interrupt (EOI) signal to the 8259A PIC
at the end of your ISR code. Also, don't forget you can enable or disable the keyboard interrupt at the
8259A.

In general, your application software should not access the keyboard hardware directly. Doing so
will probably make your software incompatible with utility software such as keyboard enhancers (key-
board macro programs), pop-up software, and other resident programs that read the keyboard or insert
data into the system’s type ahead buffer. Fortunately, DOS and BIOS provide an excellent set of functions
to read and write keyboard data. Your programs will be much more robust if you stick to using those func-
tions. Accessing the keyboard hardware directly should be left to keyboard ISRs and those keyboard
enhancers and pop-up programs that absolutely have to talk directly to the hardware.

20.3 The Keyboard DOS Interface

MS-DOS provides several calls to read characters from the keyboard (see “MS-DOS, PC-BIOS, and File
I/0” on page 699). The primary thing to note about the DOS calls is that they only return a single byte.
This means that you lose the scan code information the keyboard interrupt service routine saves in the
type ahead buffer.

If you press a key that has an extended code rather than an ASCII code, MS-DOS returns two key-
codes. On the first call MS-DOS returns a zero value. This tells you that you must call the get character rou-
tine again. The code MS-DOS returns on the second call is the extended key code.

Note that the Standard Library routines call MS-DOS to read characters from the keyboard. Therefore,
the Standard Library getc routine also returns extended keycodes in this manner. The gets and getsm

Page 1167

Chapter 20

routines throw away any non-ASCII keystrokes since it would not be a good thing to insert zero bytes into
the middle of a zero terminated string.

20.4 The Keyboard BIOS Interface

Although MS-DOS provides a reasonable set of routines to read ASCII and extended character codes
from the keyboard, the PC's BIOS provides much better keyboard input facilities. Furthermore, there are
lots of interesting keyboard related variables in the BIOS data area you can poke around at. In general, if
you do not need the 1/0O redirection facilities provided by MS-DOS, reading your keyboard input using
BIOS functions provides much more flexibility.

To call the MS-DOS BIOS keyboard services you use the int 16h instruction. The BIOS provides the
following keyboard functions:

Table 78: BIOS Keyboard Support Functions

Function #
(AH)

Input Output Description
Parameters Parameters

0

al- ASCIl character | Read character. Reads next available character from the
ah- scan code system’s type ahead buffer. Wait for a keystroke if the
buffer is empty.

ZF- Setif no key. Checks to see if a character is available in the type ahead
ZF- Clear if key buffer. Sets the zero flag if not key is available, clears the
available. zero flag if a key is available. If there is an available key,
al- ASCII code this function returns the ASCII and scan code value in ax.
ah- scan code The value in ax is undefined if no key is available.

al- shift flags Returns the current status of the shift flags in al. The shift
flags are defined as follows:

bit 7: Insert toggle

bit 6: Capslock toggle

bit 5: Numlock toggle

bit 4: Scroll lock toggle

bit 3: Alt key is down

bit 2: Ctrl key is down

bit 1. Left shift key is down
bit 0: Right shift key is down

al=5 Set auto repeat rate. The bh register contains the amount
bh=0,1,2,3for of time to wait before starting the autorepeat operation,
1/4,1/2, 3/4, 0or 1 the b1 register contains the autorepeat rate.

second delay
bl=0..1Fh for
30/sec to 2/sec.

ch =scan code Store keycode in buffer. This function stores the value in
¢l = ASCll code the cx register at the end of the type ahead buffer. Note
that the scan code in ch doesn't have to correspond to the
ASCII code appearing in c1. This routine will simply insert
the data you provide into the system type ahead buffer.

Page 1168

The PC Keyboard

Table 78: BIOS Keyboard Support Functions

Function # Input Output Description

(AH) Parameters Parameters

10h al- ASCII character | Read extended character. Like ah=0 call, except this one
ah- scan code passes all key codes, the ah=0 call throws away codes that

are not PC/XT compatible.

11h ZF- Set if no key. Like the ah=01h call except this one does not throw away
ZF- Clear if key keycodes that are not PC/XT compatible (i.e., the extra
available. keys found on the 101 key keyboard).
al- ASClI code
ah- scan code

12h al- shift flags Returns the current status of the shift flags in ax. The shift

ah- extended shift
flags

flags are defined as follows:

bit 15: SysReq key pressed

bit 14: Capslock key currently down
bit 13: Numlock key currently down
bit 12: Scroll lock key currently down
bit 11: Right alt key is down

bit 10:Right ctrl key is down

bit 9: Left alt key is down

bit 8: Left ctrl key is down

bit 7: Insert toggle

bit 6: Capslock toggle

bit 5: Numlock toggle

bit 4. Scroll lock toggle

bit 3: Either alt key is down (some machines, left only)
bit 2; Either ctrl key is down

bit 1: Left shift key is down

bit 0: Right shift key is down

’
’

’

Note that many of these functions are not supported in every BIOS that was ever written. In fact, only
the first three functions were available in the original PC. However, since the AT came along, most BIOSes
have supported at least the functions above. Many BIOS provide extra functions, and there are many TSR
applications you can buy that extend this list even farther. The following assembly code demonstrates
how to write an int 16h TSR that provides all the functions above. You can easily extend this if you desire.

I NT16. ASM

; A short passive TSR that replaces the BIOS int 16h handl er.

; This routine denonstrates the function of each of the int 16h
; functions that a standard Bl G5 woul d provide.

; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you renove this code frommenory except by rebooting

; If you want to be able to do these two things (as well as check for

; a previous installation), see the chapter on resident prograns. Such

)
’
’
’

cseg
cseg

segnent
ends

; code was omtted fromthis programbecause of |ength constraints

; cseg and EndResi dent must occur before the standard |ibrary segnents!

para public ‘code

; Marker segnent, to find the end of the resident section

Page 1169

Chapter 20

Page 1170

EndResi dent
EndResi dent

byp

cseg

adint16

segment
ends

.Xli st

i ncl ude
includelib
i st

equ

segnent
assume

dwor d

; BICB vari abl es:

KbdFl ags1
KbdFl ags2
Al t Kpd
HeadPt r
Tai |l Ptr
Buf f er
EndBuf

KbdFl ags3
KbdFl ags4

incptr

NoW ap:

M/l nt 16-

M/ nt 16

o Vel

equ
equ
equ
equ
equ
equ
equ

equ
equ

nacro
| ocal
add
cnp
ib
nov
nov
endm

para public ‘ Resident’

stdlib.a
stdlib.lib

<byte ptr>

para public ‘code’
cs: cseg, ds:cseg

?

<ds:[17h] >
<ds: [18h] >
<ds:[19h] >
<ds: [lah] >
<ds: [1lch] >
leh

3eh

<ds: [96h] >
<ds: [97h] >

whi ch
NoW ap
bx, 2
bx, EndBuf
NoW ap
bx, Buffer
whi ch, bx

This routine processes the int 16h function requests.

AH
00h
01lh

02h
03h

05h
10h
11h
12h

pr oc
test
je
cnp
ib
je
cnp
je
cnp
je
cnp
je
cnp
je

it’s a function we don’t know about,

Description

Get a key fromthe keyboard, return code in AX
Test for available key, ZF=1 if none, ZF=0 and
AX contains next key code if key avail abl e.

Get shift status. Returns shift key status in AL.
Set Autorepeat rate. BH=0,1,2,3 (delay time in
quarter seconds), BL=0..1Fh for 30 char/sec to

2 char/sec repeat rate.

Store scan code (in CX) in the type ahead buffer.
Get a key (sane as 00h in this inplenentation).
Test for key (same as 01h).

Get extended key status. Returns status in AX

far

ah, OEFh
Gt Key
ah, 2
Test Key
Cet Stat us
ah, 3
Set Aut oRpt
ah, 5

St or eKey
ah, 11h
Test Key
ah, 12h
Ext St at us

; Check for Oh and 10h
; Check for 01h and 02h

; Check for AutoRpt function.
; Check for StoreKey function.
; Extended test key opcode.

; Ext ended status call

so just return to the caller.

The PC Keyboard
iret

If the user specified ah=0 or ah=10h, come down here (we will not
; differentiate between extended and original PC getc calls).

CGet Key: nov ah, 11h
int 16h ;See if key is available.
je Get Key ; Vit for keystroke.
push ds
push bx
nmov ax, 40h
nmov ds, ax
cli ;Oritical region! Ints off.
nmov bx, HeadPtr ;Ptr to next character.
nov ax, [bx] ; Get the character.
incptr HeadPt r ; Bunp up HeadPtr
pop bx
pop ds
iret ;Restores interrupt flag.
Test Key- Checks to see if a key is available in the keyboard buffer.

; VW need to turn interrupts on here (so the kbd ISR can

; pl ace a character in the buffer if one is pending).

; General |y, you would want to save the interrupt flag here.
; But Bl G5 al ways forces interrupts on, so there may be some
; programs out there that depend on this, so we won't “fix”
; this problem

Returns key status in ZF and AX. If ZF=1 then no key is
avail able and the value in AXis indetermnnate. |f ZF=0
then a key is avail able and AX contains the scan/ ASC |
code of the next available key. This call does not renove
the next character fromthe input buffer.

Test Key: sti ;Turn on the interrupts.
push ds
push bx
nov ax, 40h
nov ds, ax
cli ;Oitical region, ints off!
nmov bx, HeadPtr
nmov ax, [bx] ; BICS returns avail keycode.
cnp bx, TailPtr ;ZF=1, if enpty buffer
pop bx
pop ds
sti ;Inst back on.
retf 2 ;Pop flags (ZF is inportant!)

; The GetStatus call sinply returns the KbdFl agsl variable in AL

Get St at us: push ds
mov ax, 40h
nmov ds, ax
nmov al, KbdFl agsl ;Just return Std Status.
pop ds
iret

; StorekKey- Inserts the value in CXinto the type ahead buffer.

St or eKey: push ds
push bx
mov ax, 40h
nmov ds, ax
cli ;Ints off, critical region.
nmov bx, TailPtr ; Address where we can put
push bx ; next key code.
nmov [bx], cx ; Store the key code away.
incptr Tail Ptr ;Move on to next entry in buf.
cnp bx, HeadPtr ; Data overrun?
j ne St or eCkay ;1f not, junp, if so
pop Tai |l Ptr ; ignore key entry.

Page 1171

Chapter 20

Page 1172

St or eCkay:

; Ext St at us-

)

Ext St at us:

NoSysReq:

;. Set Aut oRpt -

’

Set Aut oRpt :

M/l nt 16

. Set Od-

Set Omd

sub
add
pop
pop
iret

sp, 2
sp, 2
bx
ds

; So stack matches alt path.
; Renove junk data fromstk.

;Restores interrupts.

Retrieve the extended keyboard status and return it in
AH also returns the standard keyboard status in AL.

push
nov
nov

nov
and
test
je
or

and
nov
and
or

nov
and
or

nov

pop
1ret

ds

ax, 40h

ds, ax

ah, KbdFl ags2
ah, 7Fh

ah, 100b
NoSysReq

ah, 80h

ah, OFOh

al, KbdFl ags3
al, 1100b

ah, al

al, KbdFl ags2
al, 11b

ah, a

al, KbdFl agsl
ds

;Aear final sysreq field.
; Test cur sysreq bit.
;Skipif it's zero.

;Set final sysreq bit.

;dear alt/ctrl bits.

cQabrt alt/ctrl bits.
; Merge into AH

;Qab left alt/ctrl bits.
;Merge into AH

;AL contains normal flags.

Sets the autorepeat rate. On entry, bh=0, 1, 2, or 3 (del ay
in 1/4 sec before autorepeat starts) and bl =0..1Fh (repeat
rate, about 2:1 to 30:1 (chars: sec).

push
push

nov
cal |

and
nov
shl
and
or
nov
call
nov
cal |

nov
call
nov
cal |

pop
pop
iret

endp

cX
bx

al, OADh
Set Od
bh, 11b
cl, 5
bh, cl
bl, 1Fh
bh, bl
al, OF3h
SendQmd
al, bh
SendQrd
al, OAEh
Set Od
al, OF4h
SendOmd
bx

CX

: Di sabl e kbd for now.

; Force into proper range.

; Move to final position.

; Force into proper range.

; 8042 command data byte.
;8042 set repeat rate cnd.

; Send the conmand to 8042.

; Get paraneter byte

; Send paraneter to the 8042.

; Reenabl e keyboar d.

; Restart kbd scanni ng.

Sends the command byte in the AL register to the 8042
keyboard m crocontrol |l er chip (command regi ster at

port 64h).

proc
push
push
cli

near
CcX
ax

; Save command val ue.
;Oritical region, no ints now

The PC Keyboard

; Wit until the 8042 is done processing the current command.

xor CX, CX ; Al'l ow 65,536 tines thru | oop.
i t 4Enpt y: in al, 64h ; Read keyboard status register.

t est al, 10b ;I nput buffer full?

| oopnz Wi t 4Enpty ;If so, wait until enpty.

; Ckay, send the command to the 8042:

pop ax ; Retrieve conmand.
out 64h, al
sti ; kay, ints can happen again.
pop cX
ret
Set Omd endp
;. SendOnd- The follow ng routi ne sends a command or data byte to the
; keyboard data port (port 60h).
SendOnd pr oc near
push ds
push bx
push CX
nov cx, 40h
nov ds, cx
nov bx, ax ; Save data byte
nmov bh, 3 ;Retry cnt.
Ret ryLp: cli ;D sable ints while accessi ng HW

; Qear the Error, Acknow edge recei ved, and resend received flags
; in KbodFl ags4

and byte ptr KbdFl ags4, 4fh

; Wit until the 8042 is done processing the current comrand.

xor CX, CX ; All ow 65,536 times thru | oop.
Wi t 4Enpt y: in al, 64h ; Read keyboard status register.

test al, 10b ;Input buffer full?

| oopnz Wi t 4Enpty ;I1f so, wait until enpty.

; Ckay, send the data to port 60h

nmov al, bl
out 60h, al
sti ;Allow interrupts now

; Wit for the arrival of an acknow edgenent fromthe keyboard | SR

xor CX, CX ; Vit along tine, if need be.
Wi t 4Ack: test byp KbdFl ags4, 10 ; Acknow edge received bit.

j nz Got Ack

| oop Wi t 4Ack

dec bh ;Do a retry on this guy.

jne RetrylLp

; If the operation failed after 3 retries, set the error bit and quit.

or byp KbdFl ags4, 80h ;Set error bit.
Got Ack: pop cX

pop bx

pop ds

ret
SendQrd endp
Mai n proc

Page 1173

Chapter 20

nov ax, cseg
nmov ds, ax

print

byt e “INT 16h Repl acenent”,cr,|f
byt e “Installing....”,cr,1f,0

Patch into the INT 9 and INT 16 interrupt vectors. Note that the
; Statenents above have made cseg the current data segment,
; SO we can store the old INT 9 and INT 16 val ues directly into
; the AdIint9 and Adint16 vari abl es.

cli ; Turn of f interrupts!
nmov ax, 0

nov es, ax

nov ax, es:[16h*4]

nmov word ptr Adintl6, ax

nmov ax, es:[16h*4 + 2]

nmov word ptr Adlnt16+2, ax

nmov es:[16h*4], offset M/nt16

nmv es: [16h*4+2], cs

sti ; Ckay, ints back on.

; W' re hooked up, the only thing that remains is to termnate and
; stay resident.

print
byt e “Installed.”,cr,If,0
nmov ah, 62h ;Get this programs PSP
int 21h ; val ue.
nov dx, EndResi dent ; Conput e si ze of program
sub dx, bx
nmov ax, 3100h ; DCS TSR conmand.
i nt 21h
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk db 1024 dup (“stack “)
sseg ends
zz777725€g segnent para public ‘zzzzzz’
Last Byt es db 16 dup (?)
z777775€g ends
end Mai n

20.5 The Keyboard Interrupt Service Routine

Page 1174

The int 16h ISR is the interface between application programs and the keyboard. In a similar vein, the
int 9 ISR is the interface between the keyboard hardware and the int 16h ISR. It is the job of the int 9 ISR to
process keyboard hardware interrupts, convert incoming scan codes to scan/ASCII code combinations
and place them in the typeahead buffer, and process other messages the keyboard generates.

To convert keyboard scan codes to scan/ASCII codes, the int 9 ISR must keep track of the current
state of the modifier keys. When a scan code comes along, the int 9 ISR can use the xlat instruction to
translate the scan code to an ASCII code using a table int 9 selects on the basis of the modifier flags.
Another important issue is that the int 9 handler must handle special key sequences like ctrl-alt-del (reset)
and PrtSc. The following assembly code provides a simple int 9 handler for the keyboard. It does not sup-
port alt-Keypad ASCII code entry or a few other minor features, but it does support almost everything you
need for a keyboard interrupt service routine. Certainly it demonstrates all the techniques you need to
know when programming the keyboard.

I NT9. ASM

The PC Keyboard

; A short TSRto provide a driver for the keyboard hardware interrupt.

Note that this code does not patch into int 2Fh (multiplex interrupt)
nor can you renmove this code fromnmenory except by rebooting

as check for

a previous installation), see the chapter on resident programs. Such
code was onitted fromthis program because of |ength constraints

; If you want to be able to do these two things (as wel

cseg and EndResi dent nmust occur before the standard library segnents!

cseg
adint9
cseg

segment
dwor d
ends

para public
?

‘ code’

; Marker segnent, to find the end of the resident section

EndResi dent
EndResi dent

NuntockScan
Scrl LockScan
CapsLockScan
Crl Scan

Al t Scan
RShi ft Scan
LShi ft Scan

I nsScanCode
Del ScanCode

segnent
ends

.xli st

i ncl ude
includelib
Llist

equ
equ
equ
equ
equ
equ
equ
equ
equ

para public

stdlib.a
stdlib.lib

45h
46h
3ah
1dh
38h
36h
2ah
52h
53h

; Bits for the various nodifier keys

RShf Bi t
LShfBi t
CGrlBit
AtBit
SLBi t
NLBi t
CLBit
I nsBi t

KbdFl ags

KbdFl ags2
KbdFl ags3
KbdFl ags4

byp

cseg

equ
equ
equ
equ
equ
equ
equ
equ

equ
equ
equ
equ

equ

segment
assune

1
2
4
8
10h
20h
40h
80h

<byte ptr ds
<byte ptr ds
<byte ptr ds
<byte ptr ds

<byte ptr>

para public
ds: not hi ng

Scan code translation table
The incom ng scan code fromthe keyboard sel ects a row
The nodifier status selects the colum

The word at the intersection of the two is the scan/ ASCl |

‘ Resi dent’

:[17h] >
:[18h] >
:[96h] >
:[97h] >

‘ code’

code to

If the value fetched fromthe table is zero, then we do not put the
character into the type ahead buffer.

; put into the PCs type ahead buffer

ScanX at word
wor d
wor d

norm shft ctrl al t num caps shcap shnum
0000h, 0000h, 0000h, 0000h, 0000h, 0000h, 0000h, 0000h
011bh, 011bh, 011bh, 011bh, 011bh, 011lbh, 011bh, 011bh ; ESC
0231h, 0231h, 0000h, 7800h, 0231h, 0231h, 0231h, 0321h ;1!

Page 1175

Chapter 20

Page 1176

wor d
wor d
wor d
wor d
wor d

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

wor d
wor d
wor d
wor d
wor d
wor d
wor d
wor d

wor d

0332h,
0433h,
0534h,
0635h,
0736h,

0837h,
0938h,
0a39nh,
0b30h,
Oc2dh,
0d3dh,
0e08h,
0f 09h,

norm

1071h,
1177h,
1265h,
1372h,
1474h,
1579h,
1675h,
1769h,

186f h,
1970h,
la5bh,
1b5dh,
1c0dh,
1d0O0h,
1le61h,
1f 73h,

norm
2064h,
2166h,
2267h,
2368h,
246ah,
256bh,
266¢ch,
273bh,

2827h,
2960h,
2a00h,
2b5ch,
2c7ah,
2d78h,
2e63h,
2f 76h,

norm
3062h,
316eh,
326dh,
332ch,
342eh,
352f h,
3600h,
372ah,

3800h,
3920h,
3a00h,
3b00h,
3c00h,
3d00h,
3e00h,
3f 00h,

norm
4000h,

0340h,
0423h,
0524h,
0625h,
075eh,

0826h,
092ah,
0a28h,
0b29h,
0c5f h,
0d2bh,
0e08h,
0f 00h,

shft

1051h,
1057h,
1245h,
1352h,
1454h,
1559h,
1655h,
1749h,

184f h,
1950h,
la7bh,
1b7dh,
1c0dh,
1d00h,
le41h,
1f 5eh,

shft

2044h,
2146h,
2247h,
2348h,
244ah,
254bh,
264ch,
273ah,

2822h,
297eh,
2a00h,
2b7ch,
2c5ah,
2d58h,
2e43h,
2f 56h,

shft

3042h,
314eh,
324dh,
333ch,
343eh,
353fh,
3600h,
0000h,

3800h,
3920h,
3a00h,
5400h,
5500h,
5600h,
5700h,
5800h,

shft
5900h,

0300h,
0000h,
0000h,
0000h,
071eh,

0000h,
0000h,
0000h,
0000h,
0000h,
0000h,
Oe7fh,
0000h,

ctrl

1011h,
1017h,
1205h,
1312h,
1414h,
1519h,
1615h,
1709h,

180f h,
1910h,
lalbh,
1bidh,
1cOah,
1d0O0h,
1e01h,
1f 13h,

ctrl

2004h,
2106h,
2207h,
2308h,
240ah,
250bh,
260ch,
0000h,

0000h,
0000h,
2a00h,
2bich,
2clah,
2d18h,
2e03h,
2f 16h,

ctrl

3002h,
310eh,
320dh,
0000h,
0000h,
0000h,
3600h,
3710h,

3800h,
3920h,
3a00h,
5e00h,
5f 00h,
6000h,
6100h,
6200h,

ctrl
6300h,

7900h,
7a00h,
7b00h,
7c00h,
7d00h,

7e00h,
7f 00h,
8000h,
8100h,
8200h,
8300h,
0000h,
0000h,

al t

1000h,
1100h,
1200h,
1300h,
1400h,
1500h,
1600h,
1700h,

1800h,
1900h,
0000h,
0000h,
0000h,
1dOO0h,
1e00h,
1f 00h,

alt

2000h,
2100h,
2200h,
2300h,
2400h,
2500h,
2600h,
0000h,

0000h,
0000h,
2a00h,
0000h,
2c00h,
2d00h,
2e00h,
2f 00h,

alt

3000h,
3100h,
3200h,
0000h,
0000h,
0000h,
3600h,
0000h,

3800h,
0000h,
3a00h,
6800h,
6900h,
6a00h,
6b00h,
6c00h,

al t
6d00h,

0332h, 0332h, 0332h,
0433h, 0433h, 0423h,
0534h, 0534h, 0524h,
0635h, 0635h, 0625h,
0736h, 0736h, 075eh,

0837h, 0837h, 0826h,
0938h, 0938h, 092ah,
0a39h, 0a39h, 0a28h,
0b30h, 0b30h, 0b29h,
0c2dh, 0Oc2dh, 0c5fh,
0d3dh, 0d3dh, 0d2bh,
0e08h, 0e08h, 0e08h,
0f 09h, 0f 09h, Of 00h,

0332h
0423h
0524h
0625h
075eh

0826h
092ah
0a28h
0b29h
0c5fh
0d2bh
0e08h
0f 00h

num caps shcap shnum

1071h, 1051h, 1051h,
1077h, 1057h, 1057h,
1265h, 1245h, 1245h,
1272h, 1252h, 1252h,
1474h, 1454h, 1454h,
1579h, 1559h, 1579h,
1675h, 1655h, 1675h,
1769h, 1749h, 1769h,

186f h, 184fh, 186fh,
1970h, 1950h, 1970h,
la5bh, 1a5bh, 1a7bh,
1b5dh, 1b5dh, 1b7dh,
1c0dh, 1c0dh, 1cOah,
1d00h, 1d0O0h, 1d0O0h,
1le61h, 1e4lh, 1e61h,
1f 73h, 1f53h, 1f73h,

1071h
1077h
1265h
1272h
1474h
1559h
1655h
1749h

184f h
1950h
la7bh
1b7dh
1c0Oah
1d00h
le41lh
1f 53h

num caps shcap shnum

2064h, 2044h, 2064h,
2166h, 2146h, 2166h,
2267h, 2247h, 2267h,
2368h, 2348h, 2368h,
246ah, 244ah, 246ah,
256bh, 254bh, 256bh,
266¢h, 264ch, 266ch,
273bh, 273bh, 273ah,

2827h, 2827h, 2822h,
2960h, 2960h, 297eh,
2a00h, 2a00h, 2a00h,
2b5ch, 2b5ch, 2b7ch,
2c7ah, 2cbhah, 2c7ah,
2d78h, 2d58h, 2d78h,
2e63h, 2e43h, 2e63h,
2f 76h, 2f 56h, 2f 76h,

2044h
2146h
2247h
2348h
244ah
254bh
264ch
273ah

2822h
297eh
2a00h
2b7ch
2c5ah
2d58h
2e43h
2f 56h

num caps shcap shnum

3062h, 3042h, 3062h,
316eh, 314eh, 316eh,
326dh, 324dh, 326dh,
332ch, 332ch, 333ch,
342eh, 342eh, 343eh,
352fh, 352fh, 353fh,
3600h, 3600h, 3600h,
372ah, 372ah, 0000h,

3800h, 3800h, 3800h,
3920h, 3920h, 3920h,
3a00h, 3a00h, 3a00h,
3b00h, 3b00h, 5400h,
3c00h, 3c00h, 5500h,
3d00h, 3d0Oh, 5600h,
3e00h, 3e00h, 5700h,
3f 00h, 3f00h, 5800h,

3042h
314eh
324dh
333ch
343eh
353fh
3600h
0000h

3800h
3920h
3a00h
5400h
5500h
5600h
5700h
5800h

num caps shcap shnum

4000h, 4000h, 5900h,

5900h

o WN
>°\°€B:ﬁ:®

)

IN' owow-~

+

o
52
own

o

—c<—H4ImM=s0

w»Q2—"TO
S22

CTXCIOTO

The PC Keyboard

word 4100h, 5a00h, 6400h, 6e00h, 4100h, 4100h, 5a00h, 5a00h F7
word 4200h, 5b00h, 6500h, 6f00h, 4200h, 4200h, 5b00h, 5b00h ; F8
word 4300h, 5c00h, 6600h, 7000h, 4300h, 4300h, 5c00h, 5c00h ; F9
word 4400h, 5d00h, 6700h, 7100h, 4400h, 4400h, 5d00h, 5d0Oh ; F10
word 4500h, 4500h, 4500h, 4500h, 4500h, 4500h, 4500h, 4500h ; num
word 4600h, 4600h, 4600h, 4600h, 4600h, 4600h, 4600h, 4600h ;serl
word 4700h, 4737h, 7700h, 0000h, 4737h, 4700h, 4737h, 4700h ; horre

word 4800h, 4838h, 0000h, 0000h, 4838h, 4800h, 4838h, 4800h ;up
word 4900h, 4939h, 8400h, 0000h, 4939h, 4900h, 4939h, 4900h ; pgup
word 4a2dh, 4a2dh, 0000h, 0000h, 4a2dh, 4a2dh, 4a2dh, 4a2dh |-

word 4b00h, 4b34h, 7300h, 0000h, 4b34h, 4b00h, 4b34h, 4b00h cleft
word 4c00h, 4c35h, 0000h, 0000h, 4c¢35h, 4c00h, 4c35h, 4c00h ; Center
word 4d00h, 4d36h, 7400h, 0000h, 4d36h, 4d00h, 4d36h, 4d00h ;right
word 4e2bh, 4e2bh, 0000h, 0000h, 4e2bh, 4e2bh, 4e2bh, 4e2bh T+
word 4f 00h, 4f31h, 7500h, 0000h, 4f31h, 4f00h, 4f31h, 4f00h ;end

; norm shft ctrli alt num caps shcap shnum
word 5000h, 5032h, 0000h, 0000h, 5032h, 5000h, 5032h, 5000h ; down
word 5100h, 5133h, 7600h, 0000h, 5133h, 5100h, 5133h, 5100h ; pgdn
word 5200h, 5230h, 0000h, 0000h, 5230h, 5200h, 5230h, 5200h ;ins
word 5300h, 532eh, 0000h, 0000h, 532eh, 5300h, 532eh, 5300h ; del
word 0,0,0,0,0,0,0,0 ;-
word 0,0,0,0,0,0,0,0 ;-
word 0,0,0,0,0,0,0,0 ;-
word 5700h, 0000h, 0000h, 0000h, 5700h, 5700h, 0000h, 0000h ; F11

word 5800h, 0000h, 0000h, 0000h, 5800h, 5800h, 0000h, 0000h ; F12

rhkkhkhkhkkhhhkhkhhhhhhhhhdhhhhhhdhhhddhhddhhdhhhdhhhhdhhhdrdhhddhhdhhddhhddrrdrrrddx
)

’

; AL contains keyboard scan code.

Put | nBuf f er proc near

push ds

push bx

nmov bx, 40h ;Point ES at the BI CS
nov ds, bx ; variabl es

; If the current scan code is EO or El, we need to take note of this fact
; so that we can properly process cursor keys.

cnp al, 0e0h
j ne TryEL
or KbdFl ags3, 10b ;Set EO flag
and KbdFl ags3, OFEh ;dear El flag
jnp Done

TryEL: cnp al, Oelh
j ne DoScan
or KbdFl ags3, 1 ;Set E1 flag
and KbdFl ags3, OFDh ;dear EO H ag
jnp Done

; Before doing anything else, see if thisis Grl-At-Del:

DoScan: cnp al, Del ScanCode
jnz Trylns
nmov bl , KbdFl ags
and bl, AItBit or GrlIBit ;At =bit 3, ctrl =bit 2
cnp bl, AltBit or CGtrilBit
j ne DoPl B
nov word ptr ds:[72h], 1234h ; Warm boot fl ag.
jnp dword ptr cs: Reboot Adrs ; REBOOT Conput er
Reboot Adr s dwor d of f f f 0000h ; Reset address.

; Check for the INS key here. This one needs to toggle the ins bit
in the keyboard flags vari abl es.

Page 1177

Chapter 20

Page 1178

Tryl ns:

Tryl nsUp:

cnp
j ne
or

|
cnp
j ne
and
xor
Jmp

; Handl e the |eft

TryLShi ft Dn:

TryLShi ft Up:

Tr yRShi f t Dn:

TryRShi f t Up:

cnp
j ne
or

Jm
cnp
j ne
and
Jmp

cnp
j ne
or

Jm
cnp
j ne
and
Jp

al , I nsScanCode
Tryl nsUp

KbdFl ags2, InsBit
doPl B

al , | nsScanCode+80h
TryLShi ft Dn

KbdFl ags2, not InsBit
KbdFl ags, InsBit
QitPI B

and right shift keys down here.

al, LShiftScan

TryLShi ft Up

KbdFl ags, LShfBit
QitPI B

al, LShiftScan+80h
TryRShi ft Dn

KbdFl ags, not LShfBit
QitPIB

al, RShiftScan

TryRShi ft Up

KbdFl ags, RShfBit
QitPI B

al, RShiftScan+80h
TryA t Dn

KbdFl ags, not RShfBit
QitPIB

; Handl e the ALT key down here.

TryA t Dn:

Got oQP! B:

TryA t Up:

cnp
j ne
or

Jnp
cnp
j ne
and
Jmp

al, AtScan
TryA t W

KbdFl ags, AltBit
QitPIB

al, AltScan+80h
TryCQrl Dn

KbdFl ags, not AltBit
DoPI B

; Deal with the control key down here.

TryCGrl Dn:

TryCQrl Up:

cnp
j ne
or

Jmp
cnp
j ne
and
|

al, GrlScan
TryQrl Up

KbdFl ags, CrlBit
QitPIB

al, Crl Scan+80h
TryCapsDn

KbdFl ags, not CtriBit
QitPIB

; Deal with the CapsLock key down here.

Tr yCapsDn:

TryCapsUp:

cnp
j ne
or

xor
Jnp
cnp
j ne
and
call
Jnp

al, CapsLockScan
TryCapsUp

KbdFl ags2, CLBit
KbdF ags, CLBit
QitPIB

al, CapsLockScan+80h
TrySLDn
KbdFl ags2, not COLBit
Set LEDs
QitPIB

;Note INS is down.
; Pass on I NS key.

; NS up scan code.

;Note INS is up.
; Toggle INS bit.

;Note that the left
; shift key is down.

:Note that the left

; shift key is up.

; Rght shf is down.

; Rght shf is up.

;Alt key is down.

At key is up.

;&rl key is down.

;Qrl key is up.

; Capsl ock is down.
; Toggl e capsl ock.

; Capsl ock is up.

; Deal with the Scroll

TrySLDn: cnp
j ne
or
xor
Jm

TrySLUp: cnp
j ne
and
call
Jmp

Lock key down here.

al, ScrlLockScan
TrySLUWp

KbdFl ags2, SLBit
KbdFl ags, SLBit
QitPIB

al, Scrl LockScan+80h
TryNLDn
KbdFl ags2, not SLBit

; Handl e the Numiock key down here.

TryNLDn: cnp
j ne
or
xor
Jmp

TryNLUp: cnp
j ne
and
call
Jm

al, NunLockScan
TryNLUp

KbdFl ags2, NLBit
KbdF ags, NLBit

QitPIB

al, NuniLockScan+80h
DoPI B

KbdFl ags2, not NLBit
Set LEDs

QitPIB

; Handle all the other keys here:

DoPlI B: t est
jnz

al, 80h
QitPIB

The PC Keyboard

;Scrl lock is down.
; Toggl e scrl | ock.

;Serl lock is up.

; Num ock is down.

; Toggl e nuni ock.

; Num ock is up.

;lgnore other up keys.

; If the HQ bit is set at this point, we'd best only have a zero in AL.
; QGherwise, this is an up code which we can safely ignore.

call
test
je

Put Char | nBuf : push
nov
nov
int
pop

Qi tPIB: and

Done: pop bx
pop ds
ret

Put | nBuf f er endp

Convert
ax, ax
QitPIB

cX
cX, ax
ah, 5
16h

cX

KbdFl ags3, OFCh

; Chk for bad code.

;Store scan code into
; type ahead buffer.

; B0, E1 not | ast code.

IR R RS SRS S S S S S S S S S SRS EEES]

; Convert -

Convert proc
push

test
jz
nov
nov

jnp

AL contains a PC Scan code. Convert
code pair and return the result in AX This code assunes
that DS points at the Bl G5 variabl e space (40h).

near
bx

it to an ASA | char/Scan

al, 80h ;See if up code

DownScanCode
ah, al
al, 0
CSDone

Page 1179

Chapter 20

Page 1180

; Ckay, we’'ve got a down key. But before going on, let’'s see if we've
; got an ALT- Keypad sequence.

DownScanCode: nov
nov
shl
shl
shl

bh, 0

bl, al

bx, 1 ;Miltiply by eight to conpute
bx, 1 ; row index index the scan
bx, 1 ; code xlat table

; Conpute nodifier index as foll ows:

test
je
add
Jjnp

if alt then nodifier = 3

KbdFl ags, AltBit
Not Al t

bl, 3

DoConver t

; if ctrl, then nodifier = 2

Not Al t: t est
je
add
Jjnp

KbdFl ags, QrlBit
Not Cxrl

bl, 2

DoConver t

; Regardless of the shift setting, we’ ve got to deal w th num ock
; and capslock. Numock is only a concern if the scan code is greater
; than or equal to 47h. Capslock is only a concern if the scan code

is less than this.

NotCtrl: cnp
ib
test
je
test
je
add
|

NunmOnl y: add
Jm

al, 47h

DoCapsLk

KbdF ags, NLBit

NoNumck

KbdFl ags, LShfBit or RShfBit
Nuntnl y

bl, 7 ; Num ock and shift.
DoConver t

; Test Num ock bit

;Check I/r shift.

bl, 4 ; Num ock only.
DoConvert

; If numock is not active, see if a shift key is:

NoNumck: t est
je
add
Jnp

KbdFl ags, LShfBit or RShfBit ;Check I/r shift.
DoConvert ;normal i f no shift.
bl, 1

DoConvert

; If the scan code's value is bel ow 47h, we need to check for capsl ock.

DoCapsLk: t est
je
test
je
add
| mp

Capsnl y: add
|

KbdFl ags, CLBit

DoShi ft

KbdFl ags, LShfBit or RShfBit
CapsOnl y

bl, 6 ;Shift and capsl ock.
DoConver t

; Chk capsl ock bit
;Chk for I/r shift

bl, 5 ; Capsl ock
DoConver t

; Wll, nothing else is active, check for just a shift key.

Doshi ft: test
je
add

DoConvert : shl
nov

CSDone: pop
ret

Conver t endp

KbdFl ags, LShfBit or RShfBit i1/r o shift.
DoConvert

bl, 1 ; Shi ft

bx, 1 ;Word array
ax, ScanX at [bx]

bx

The PC Keyboard

;. Set Qm- Sends the command byte in the AL register to the 8042
; keyboard m crocontrol |l er chip (comrand regi ster at
; port 64h).
Set O proc near
push cX
push ax ; Save conmand val ue.
cli ;Oritical region, no ints now

; Wit until the 8042 is done processing the current command.

xor CX, CX ; All ow 65,536 tines thru | oop.
i t 4Enpt y: in al, 64h ; Read keyboard status register.

t est al, 10b ;I nput buffer full?

| oopnz Wi t 4Enpty ;If so, wait until enpty.

; Ckay, send the command to the 8042:

pop ax ; Retrieve conmand.
out 64h, al
sti ; kay, ints can happen again.
pop cX
ret
Set Ond endp
;. SendOnd- The follow ng routi ne sends a command or data byte to the
; keyboard data port (port 60h).
SendOnd pr oc near
push ds
push bx
push CX
nmov cX, 40h
nov ds, cx
nmov bx, ax ; Save data byte
nmov bh, 3 ;Retry cnt.
RetryLp: cli ;D sable ints while accessing HW

; Oear the Error, Acknow edge received, and resend received flags
; in KbdFl ags4

and byte ptr KbdFl ags4, 4fh

; Wit until the 8042 is done processing the current comrand.

xor CX, CX ; All ow 65,536 times thru | oop.
Wi t 4Enpt y: in al, 64h ; Read keyboard status register.

test al, 10b ;I nput buffer full?

| oopnz Vi t 4Enpt y ;If so, wait until enpty.

; Ckay, send the data to port 60h

nmov al, bl
out 60h, al
sti ;Allow interrupts now

; Wit for the arrival of an acknow edgenent fromthe keyboard | SR

xor CX, CX ;Vit along tine, if need be.
Wi t 4Ack: t est byp KbdFl ags4, 10h ; Acknow edge received bit.

jnz CGot Ack

| oop Wi t 4Ack

dec bh ;Do a retry on this guy.

jne RetrylLp

; If the operation failed after 3 retries, set the error bit and quit.

or byp KbdFl ags4, 80h ; Set error bit.

Page 1181

Chapter 20

CGot Ack:

SendQrd

; Set LEDs-

Set LEDs

Set LEDs

i M/lnt9-

M/l nt 9

\Mi t 4Dat a:

Not Ack

; Note: other keyboard controller commands al

Page 1182

pop
pop
pop
ret
endp

cX
bx
ds

Updat es the KbdFl ags4 LED bits fromthe KbdFl ags
variable and then transmts new flag settings to
the keyboard.

pr oc
push
push
nov
nov
shr

and
and
or

nov

nov
cal |

nov
cal |
nov
cal |

nov
cal |
nov
cal |
pop
pop
ret
endp

near

ax

CX

al, KbdFl ags

cl, 4

al, cl

al, 111b

KbdFl ags4, OF8h ;Qear LED bits

KbdFl ags4, al ;Mask in new bits

ah, al :Save LED bits

al, OADh ; Di sabl e kbd for now.
Set Omd

al, OEDnh ;8042 set LEDs cnu.
SendQrd ; Send the command to 8042.
al, ah ; Get parameter byte
SendOnd ; Send paraneter to the 8042
al, OAEh ; Reenabl e keyboar d.
Set Omd

al, OF4h ;Restart kbd scanni ng.
SendOmd

CX

ax

Interrupt service routine for the keyboard hardware

interrupt.

pr oc
push
push
push

nov
nov

nmov
call
cli
xor
in
test

| oopz
in
cnp
je
cnp

j ne
or
Jmp
cnp

j ne
or
Jm

far
ds
ax
cX
ax, 40h
ds, ax
al, OADh ; D sabl e keyboard
Set Omd

;Dsable interrupts
CcX, CX
al, 64h ; Read kbd status port.
al, 10b ;Data in buffer?
Wi t 4Dat a WAt until data avail abl e.
al, 60h ; Get keyboard dat a.
al, OEEh ; Echo response?
Qitlint9
al, OFAh ; Acknowl edge?
Not Ack
KbdFl ags4, 10h :Set ack bit.
QitInt9
al, OFEh ; Resend conmmand?
Not Resend
KbdFl ags4, 20h ;Set resend bit.
Qitint9

have their HQ bit set

The PC Keyboard

; and the PutlnBuffer routine will ignore them
Not Resend: call Put | nBuf f er ;Put in type ahead buffer.
Qitint9: nov al, OAEh ; Reenabl e the keyboard
call Set Omd
nmov al, 20h ;Send EA (end of interrupt)
out 20h, al ; to the 8259A PIC
pop cX
pop ax
pop ds
iret
M/l nt9 endp
Mai n proc
assume ds: cseg
nov ax, cseg
nmov ds, ax
print
byt e “INT 9 Repl acenent”,cr,|f
byt e “Installing....”,cr,If,0

Patch into the INT 9 interrupt vector. Note that the
statements above have nade cseg the current data segnent,
so we can store the old INT 9 value directly into

the Adint9 variable.

cli ; Turn of f interrupts!
nmov ax, 0

nov es, ax

nmov ax, es:[9*4]

nmov word ptr Adint9, ax

nov ax, es:[9*4 + 2]

nov word ptr Adint9+2, ax

nov es:[9*4], offset MInt9

nmov es: [9*4+2], cs

sti ; Ckay, ints back on.

; W’ re hooked up, the only thing that remains is to termnate and
; stay resident.

print
byt e “Installed.”,cr,If,0
nmov ah, 62h ;Get this programs PSP
int 21h ; val ue.
nmov dx, EndResident ; Conput e si ze of program
sub dx, bx
nmov ax, 3100h : DS TSR command.
i nt 21h
Mai n endp
cseg ends
sseg segment para stack ‘stack’
stk byt e 1024 dup (“stack “)
sseg ends
zz7777S€g segment para public ‘zzzzzz’
Last Byt es db 16 dup (?)
zzz7775€g ends
end Mai n

Page 1183

Chapter 20

20.6 Patching into the INT 9 Interrupt Service Routine

Page 1184

For many programs, such as pop-up programs or keyboard enhancers, you may need to intercept
certain “hot keys” and pass all remaining scan codes through to the default keyboard interrupt service rou-
tine. You can insert an int 9 interrupt service routine into an interrupt nine chain just like any other inter-
rupt. When the keyboard interrupts the system to send a scan code, your interrupt service routine can read
the scan code from port 60h and decide whether to process the scan code itself or pass control on to some
other int 9 handler. The following program demonstrates this principle; it deactivates the ctrl-alt-del reset
function on the keyboard by intercepting and throwing away delete scan codes when the ctrl and alt bits

are set in the keyboard flags byte.
NORESET. ASM

; A short TSR that patches the int 9 interrupt and intercepts the
; ctrl-alt-del keystroke sequence.

; Note that this code does not patch into int 2Fh (multiplex interrupt)
; nor can you renove this code fromnenmory except by rebooting.

; If you want to be able to do these two things (as well as check for

; a previous installation), see the chapter on resident prograns. Such
; code was omtted fromthis programbecause of |ength constraints.

cseg and EndResident nust occur before the standard |ibrary segments!

cseg segment para public ‘code’
adint9 dword ?
cseg ends

; Marker segrment, to find the end of the resident section.

EndResi dent segnent para public ‘ Resident’
EndResi dent ends

.Xxli st
i ncl ude stdlib.a
includelib stdlib.lib
list

Del ScanCode equ 53h

; Bits for the various nodifier keys

QrlBit equ 4
AtBit equ 8
KbdFl ags equ <byte ptr ds:[17h] >
cseg segnent para public ‘code’
assune ds: not hi ng
;. Set Qm- Sends the cormand byte in the AL register to the 8042
; keyboard m crocontrol |l er chip (command regi ster at
; port 64h).
Set O pr oc near
push cX
push ax ; Save command val ue.
cli ;Oritical region, no ints now.

; Wit until the 8042 is done processing the current command.

xor CX, CX ; All ow 65,536 times thru | oop.
Wi t 4Enpt y: in al, 64h ; Read keyboard status register.

The PC Keyboard

t est al, 10b ;I nput buffer full?
| oopnz Wi t 4Enpty ;1f so, wait until enpty.

; Ckay, send the command to the 8042:

Set Omd

M/ nt 9-

M1 nt 9

Wi t 4Dat a:

pop ax ; Retrieve conmand.

out 64h, al

sti ;Ckay, ints can happen agai n.
pop CX

ret

endp

Interrupt service routine for the keyboard hardware
interrupt. Tests to see if the user has pressed a

DEL key. If not, it passes control on to the original
int 9 handler. If so, it first checks to see if the

alt and ctrl keys are currently down; if not, it passes
control to the original handler. Gtherwise it eats the
scan code and doesn’'t pass the DEL through.

pr oc far

push ds

push ax

push CX

nov ax, 40h

nov ds, ax

nmov al, OADh ; D sabl e keyboard

call Set Omd

cli ;Disable interrupts.

xor CX, CX

in al, 64h ; Read kbd status port.

t est al, 10b Data in buffer?

| oopz i t 4Dat a WAt until data avail abl e.
in al, 60h ; Get keyboard dat a.

cnp al, Del ScanCode ;ls it the delete key?

j ne aiglnt9

nmov al, KbdFl ags ; Ckay, we've got DEL, is
and al, AItBit or GrlBit ; ctrl+alt dow too?
cnp al, AItBit or CtrilBit

j ne aiglnt9

; If ctri+alt+DEL is down, just eat the DEL code and don't pass it through.

;o Ifoctrl

nmv al, OAEh ; Reenabl e t he keyboard

call Set Omd

nmov al, 20h ;Send EA (end of interrupt)
out 20h, al ; to the 8259A PIC

pop cX

pop ax

pop ds

iret

and alt aren’t both down, pass DEL on to the original INT 9

; handl er routine.

aiglnt9:

M/l nt 9

Mai n

nov al, OAEh ; Reenabl e the keyboard
cal l Set Omd

pop CX

pop ax

pop ds

jnp cs:Adint9

endp

proc

assume ds: cseg

Page 1185

Chapter 20

nmov
nov

print
byt e
byt e

ax, cseg
ds, ax

“arl-At-Del Filter”,cr,If
“Installing....”,cr,1f,0

Patch into the INT 9 interrupt vector. Note that the
; Statenents above have made cseg the current data segment,
; SO we can store the old INT 9 value directly into

; the AdInt9 variabl e.

cli

nov
nov
nov
nov
nov
nov
nov
nov
sti

; Turn of f interrupts!
ax, O
es, ax
ax, es:[9*4]
word ptr Adint9, ax
ax, es:[9*4 + 2]
word ptr Adlnt9+2, ax
es:[9*4], offset MInt9
es: [9*4+2], cs
; Ckay, ints back on.

; W' re hooked up, the only thing that remains is to termnate and

; stay resident.

print

byt e

nov

int

nov

sub

nov

i nt
Mai n endp
cseg ends
sseg segment
stk db
sseg ends
zz7777S€eg segnent
Last Byt es db
z777775€g ends

end

“Installed.”,cr,If,0

ah, 62h ;Get this programs PSP
21h ; val ue.

dx, EndResi dent
dx, bx

ax, 3100h

21h

; Conput e si ze of program

; DC8 TSR command.

para stack ‘stack’
1024 dup (“stack “)

para public ‘zzzzzz’
16 dup (?)

Mai n

20.7 Simulating Keystrokes

At one point or another you may want to write a program that passes keystrokes on to another appli-
cation. For example, you might want to write a keyboard macro TSR that lets you capture certain keys on
the keyboard and send a sequence of keys through to some underlying application. Perhaps you'll want to
program an entire string of characters on a normally unused keyboard sequence (e.g., ctrl-up or ctrl--
down). In any case, your program will use some technique to pass characters to a foreground application.
There are three well-known techniques for doing this: store the scan/ASCII code directly in the keyboard
buffer, use the 80x86 trace flag to simulate in al, 60h instructions, or program the on-board 8042 micro-
controller to transmit the scan code for you. The next three sections describe these techniques in detail.

20.7.1 Stuffing Characters in the Type Ahead Buffer

Perhaps the easiest way to insert keystrokes into an application is to insert them directly into the sys-
tem'’s type ahead buffer. Most modern BIOSes provide an int 16h function to do this (see “The Keyboard

Page 1186

The PC Keyboard

BIOS Interface” on page 1168). Even if your system does not provide this function, it is easy to write your
own code to insert data in the system type ahead buffer; or you can copy the code from the int 16h han-
dler provided earlier in this chapter.

The nice thing about this approach is that you can deal directly with ASCII characters (at least, for
those key sequences that are ASCII). You do not have to worry about sending shift up and down codes
around the scan code for th “A” so you can get an upper case “A”, you need only insert 1E41h into the
buffer. In fact, most programs ignore the scan code, so you can simply insert 0041h into the buffer and
almost any application will accept the funny scan code of zero.

The major drawback to the buffer insertion technique is that many (popular) applications bypass
DOS and BIOS when reading the keyboard. Such programs go directly to the keyboard's port (60h) to read
their data. As such, shoving scan/ASCII codes into the type ahead buffer will have no effect. Ideally, you
would like to stuff a scan code directly into the keyboard controller chip and have it return that scan code
as though someone actually pressed that key. Unfortunately, there is no universally compatible way to do
this. However, there are some close approximations, keep reading...

20.7.2 Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions

One way to deal with applications that access the keyboard hardware directly is to simulate the
80x86 instruction set. For example, suppose we were able to take control of the int 9 interrupt service rou-
tine and execute each instruction under our control. We could choose to let all instructions except the in
instruction execute normally. Upon encountering an in instruction (that the keyboard ISR uses to read the
keyboard data), we check to see if it is accessing port 60h. If so, we simply load the al register with the
desired scan code rather than actually execute the in instruction. It is also important to check for the out
instruction, since the keyboard ISR will want to send and EOI signal to the 8259A PIC after reading the
keyboard data, we can simply ignore out instructions that write to port 20h.

The only difficult part is telling the 80x86 to pass control to our routine when encountering certain
instructions (like in and out) and to execute other instructions normally. While this is not directly possi-
ble in real mode’, there is a close approximation we can make. The 80x86 CPUs provide a trace flag that
generates an exception after the execution of each instruction. Normally, debuggers use the trace flag to
single step through a program. However, by writing our own exception handler for the trace exception,
we can gain control of the machine between the execution of every instruction. Then, we can look at the
opcode of the next instruction to execute. If it is not an in or out instruction, we can simply return and
execute the instruction normally. If it is an in or out instruction, we can determine the 1/0 address and
decide whether to simulate or execute the instruction.

In addition to the in and out instructions, we will need to simulate any int instructions we find as
well. The reason is because the int instruction pushes the flags on the stack and then clears the trace bit in
the flags register. This means that the interrupt service routine associated with that int instruction would
execute normally and we would miss any in or out instructions appearing therein. However, it is easy to
simulate the int instruction, leaving the trace flag enabled, so we will add int to our list of instructions to
interpret.

The only problem with this approach is that it is slow. Although the trace trap routine will only exe-
cute a few instructions on each call, it does so for every instruction in the int 9 interrupt service routine. As
a result, during simulation, the interrupt service routine will run 10 to 20 times slower than the real code
would. This generally isn’t a problem because most keyboard interrupt service routines are very short.
However, you might encounter an application that has a large internal int 9 ISR and this method would
noticeably slow the program. However, for most applications this technique works just fine and no one
will notice any performance loss while they are typing away (slowly) at the keyboard.

7. Itis possible to trap I/0 instructions when running in protected mode.

Page 1187

Chapter 20

The following assembly code provides a short example of a trace exception handler that simulates
keystrokes in this fashion:
.xlist

i ncl ude stdlib.a
includelib stdlib.lib

st
cseg segment para public ‘code’
assume ds: not hi ng

; ScanCode nust be in the Code segrent.

ScanCode byt e 0

IR R S S R S S SRS S S RS S S SRS R EEEEEEEE RS

; KbdSim Passes the scan code in AL through the keyboard control |l er

; using the trace flag. The way this works is to turn on the

; trace bit in the flags register. Each instruction then causes a trace

; trap. The (installed) trace handl er then | ooks at each instruction to

; handle IN QUJT, INT, and other special instructions. Upon encountering

; an IN AL, 60 (or equivalent) this code sinulates the instruction and

; returns the specified scan code rather than actual ly executing the IN

; instruction. Gher instructions need special treatnent as well. See

; the code for details. This code is pretty good at simulating the hardware,
; but it runs fairly slow and has a few conpatibility problens.

KbdSi m proc near
pushf
push es
push ax
push bx
xor bx, bx ;Point es at int vector tbhl
nmov es, bx ; (to sinulate INT 9).
cli ;No interrupts for now
nov cs: ScanCode, al ; Save out put scan code.
push es: [1*4] ; Save current |NT 1 vector
push es: 2[1*4] ; SO we can restore it later.

; Point the INT 1 vector at our INT 1 handler:

nmov word ptr es:[1*4], offset M/intl
nov word ptr es:[1*4 + 2], cs

; Turn on the trace trap (bit 8 of flags register):

pushf

pop ax

or ah, 1
push ax
popf

; Sinulate an INT 9 instruction. Note: cannot actually execute INT 9 here
; since INT instructions turn off the trace operation.

pushf
call dword ptr es:[9*4]

Page 1188

; Turn off the trace operation:

pushf

pop
and
push

popf

ax
ah, Of eh
ax

; Disable trace operation

pop
pop

es:[1*4 + 2]
es: [1*4]

;Oear trace hit.

The PC Keyboard

;Restore previous INT 1

handl er

; Ckay, we're done. Restore registers and return.

VMDone

KbdSi m

M/ nt 1

; If we get down here
; our having punched the trace bit.
; sinulate the 80x86 instruction set.

pop
pop
pop
popf
ret
endp

pr oc
push
nov
push
push

bx
ax
es

far
bp
bp, sp
bx

ds

M/Int1- Handles the trace trap (INT 1). This code | ooks at the next
opcode to determne if it is one of the specia
handl e oursel ves

opcodes we have to

;Gin access to return adrs via BP

it's because this trace trap is directly due to

Get the return address into DS: BX

Nextlnstr:

; The following is a special

| ds

bx, 2[bp]

; speed up this code by a tiny amount.

Not Si npl e

cnp
j nb
pop
pop
pop
iret

je

nov
cnp
je
ib

cnp
je
cnp
je
pop
pop
pop
iret

byte ptr [bx],

Not Si npl e
ds

bx

bp
Isintlnstr
bx, [bx]
bl, 0e8h
Execl nstr
TrylnQut O
bl , Oech
MayBel n60
bl, Oeeh
MayBeQut 20
ds

bx

bp

Let's process the trace trap to

case to quickly elimnate nost opcodes and

Ocdh ; Mbst opcodes are | ess than

; Ocdh, hence we quickly
return back to the rea

)

pr ogr am

;1f it’s an INT instruction

;Get current instruction’s opcode

; CALL opcode
;INal, dx instr.
;QUT dx, al instr.
; A nor na

down here.

instruction if we get

Page 1189

Chapter 20

Page 1190

Tryl nQut O: cnp
je
cnp
je

bx, 60e4h :INal, 60h instr.
I sI NAL60
bx, 20e6h ;out 20, al instr.

I sQut 20

; If it wasn't one of our magic instructions, execute it and continue.

Execlnstr: pop
pop
pop

iret

ds
bx

bp

; If this instructionis INAL DX we have to look at the value in DX to
; determine if it’s really an IN AL, 60h instruction.

MayBel n60: cnp
j ne
inc
nov
Jmp

dx, 60h

Execl nstr

word ptr 2[bp]
al, cs: ScanCode
Next I nstr

;Skip over this 1 byte instr.

; If thisis an INAL, 60h instruction, sinulate it by |oading the current

; scan code into AL.

I sl nAL60: nmov
add

jnp

; If this instructionis
; outputting to location

MayBeQut 20: cnp
j ne
inc
|

; If this is an QUT 20h,

| sQut 20: _add
Jp

al , cs: ScanCode
word ptr 2[bp], 2 ;Skip over this 2-byte instr.
Next | nstr

QJT DX, AL we have to look at DX to see if we're
20h (8259).

dx, 20h

Execl nstr

word ptr 2[bp]
Next | nstr

;SKip this 1 byte instruction.

al instruction, sinply skip over it.

word ptr 2[bp], 2 ;Skip instruction.
Next | nstr

Isintinstr- Execute this code if it’'s an INT instruction.

The problemwith the INT instructions is that they reset the trace bit

upon executi on.

For certain guys (see above) we can’'t have that.

Note: at this point the stack | ooks |ike the follow ng:

flags

rtn cs -+

rtnip +-- Points at next instr the CPUw || execute.

bp
bx

V¢ need to simulate the appropriate |NT instruction by:

(1) adding two to the return address on the stack (so it returns

beyond the I NT instruction.

(2) pushing the flags onto the stack.
(3) pushing a phony return address onto the stack whi ch sinul ates

the INT 1 interrupt return address but which “returns” us to
the specified interrupt vector handl er.

Al this results in a stack which | ooks like the foll ow ng:

flags

;
;
;
;
;
;
;
;
;
;
;
;
;
;
; ds
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

rtn cs -+

The PC Keyboard
|

rtnip +-- Points at next instr beyond the INT instruction.
flags --- Bogus flags to simulate those pushed by INT instr.
rtn cs -+

I
rtnip +-- “Return address” which points at the ISR for this INT.

bp

bx

ds

I'sINTInstr: add word ptr 2[bp], 2 ;Bunp rtn adrs beyond INT instr.
nmov bl , 1] bx]
nov bh, 0
shl bx, 1 ;Miltiply by 4 to get vector
shl bx, 1 ; address.
push [bp-0] ; Get and save BP
push [bp-2] ; Get and save BX
push [bp-4] ; Get and save DS.
push CX
xor CX, CX ;Point DS at interrupt
nmov ds, cx ; vector table.
nov cX, [bp+6] ;CGet original flags.
nmov [bp-0], cx ; Save as pushed fl ags.
nov cx, ds: 2[bx] ; Get vector and use it as
nmv [bp-2], cx ; the return address.
nmov cx, ds:[bx]
nmov [bp-4], cx
pop cX
pop ds
pop bx
pop bp
iret
iWI nt1 endp

; Main program- Simulates some keystrokes to deno the above code.

Mai n proc
nov ax, cseg
nov ds, ax
print
byte “Sinul ating keystrokes via Trace Flag”,cr,|f
byte “This programplaces ‘DR in the keyboard buffer”
byte cr,If,0
nmv al, 20h ;"D down scan code
call KbdSi m
nov al, 0aOh ;"D up scan code
call KbdSi m
nov al, 17h ;" 1" down scan code
call KbdSi m
nmov al, 97h ;"1” up scan code
cal | KbdSi m
nmov al, 13h ;"R down scan code
cal | KbdSi m
nov al, 93h ;"R up scan code
call KbdSi m
nov al, 1th ; Enter down scan code

Page 1191

Chapter 20

call KbdSi m
nmov al, 9Ch ; Enter up scan code
call KbdSi m
Exi t Pgm
Mai n endp
cseg ends
sseg segnent para stack ‘stack’
stk byte 1024 dup (“stack “)
sseg ends
zz772727s€g segment para public ‘zzzzzz
Last Byt es db 16 dup (?)
z272727s€eg ends
end Mai n

20.7.3 Using the 8042 Microcontroller to Simulate Keystrokes

Page 1192

Although the trace flag based “keyboard stuffer” routine works with most software that talks to the
hardware directly, it still has a few problems. Specifically, it doesn’'t work at all with programs that operate
in protected mode via a “DOS Extender” library (programming libraries that let programmers access more
than one megabyte of memory while running under DOS). The last technique we will look at is to pro-
gram the on-board 8042 keyboard microcontroller to transmit a keystroke for us. There are two ways to do
this: the PS/2 way and the hard way.

The PS/2's microcontroller includes a command specifically designed to return user programmable
scan codes to the system. By writing a 0D2h byte to the controller command port (64h) and a scan code
byte to port 60h, you can force the controller to return that scan code as though the user pressed a key on
the keyboard. See “The Keyboard Hardware Interface” on page 1159 for more details.

Using this technique provides the most compatible (with existing software) way to return scan codes
to an application. Unfortunately, this trick only works on machines that have keyboard controllers that are
compatible with the PS/2's; this is not the majority of machines out there. However, if you are writing code
for PS/2s or compatibles, this is the best way to go.

The keyboard controller on the PC/AT and most other PC compatible machines does not support the
0D2h command. Nevertheless, there is a sneaky way to force the keyboard controller to transmit a scan
code, if you're willing to break a few rules. This trick may not work on all machines (indeed, there are
many machines on which this trick is known to fail), but it does provide a workaround on a large number
of PC compatible machines.

The trick is simple. Although the PC's keyboard controller doesn't have a command to return a byte
you send it, it does provide a command to return the keyboard controller command byte (KCCB). It also
provides another command to write a value to the KCCB. So by writing a value to the KCCB and then issu-
ing the read KCCB command, we can trick the system into returning a user programmable code. Unfortu-
nately, the KCCB contains some undefined reserved bits that have different meanings on different brands
of keyboard microcontroller chips. That is the main reason this technique doesn't work with all machines.
The following assembly code demonstrates how to use the PS/2 and PC keyboard controller stuffing meth-
ods:

.xlist
i ncl ude stdlib.a

includelib stdlib.lib
list

cseg segment para public ‘code

The PC Keyboard

assune ds: not hi ng

IR R S S R S S SRS S SRS S SRR E RS R R R R RS R R E R EEEEEEEEEEEEEEEEEEEEE]

Put | nATBUf f er -

The followi ng code sticks the scan code into the AT-class keyboard
m crocontroller chip and asks it to send the scan code back to us
(through the hardware port).

The AT keyboard controller:

Data port is at 1/0O address 60h
Status port is at 1/0O address 64h (read only)
Command port is at 1/O address 64h (wite only)

The controller responds to the followi ng val ues sent to the cormand port:

20h - Read Keyboard Controller’s Command Byte (KCCB) and send the data to
the data port (I/O address 60h).

60h - Wite KOCB. The next byte witten to I/O address 60h is placed in
the KOCB. The bits of the KCCB are defined as foll ows:

bit 7- Reserved, should be a zero

bit 6- IBMindustrial conputer node.

bit 5- IBMindustrial conputer node.

bit 4- Disable keyboard.

bit 3- Inhibit override.

bit 2- Systemflag

bit 1- Reserved, shoul d be a zero.

bit 0- Enable output buffer full interrupt.

; AAh - Self test

; ABh - Interface test

; ACh - Diagnostic dunp

; ADh - Disabl e keyboard

; AEh - Enabl e keyboard

; Oh - Read Keyboard Controller input port (equip installed)
; DOh - Read Keyboard Control | er output port

; Dilh - Wite Keyboard Controller output port

; EOh - Read test inputs

; FOh - FFh - Pul se Qutput port.

The keyboard controller output port is defined as follows:

bit 7 - Keyboard data (output)
bit 6 - Keyboard cl ock (output)
bit 5 - Input buffer enpty

bit 4 - Qutput buffer full

bit 3 - undefined

bit 2 - undefined

bit 1 - Gate A20

bit 0 - Systemreset (O=reset)

The keyboard controller input port is defined as follows:

bit 7 - Keyboard inhibit switch (0=inhibited)

bit 6 - Dsplay switch (O=col or, 1= nono)

bit 5 - Mnufacturing junper

bit 4 - Systemboard RAM (0=di sabl e 2nd 256K RAM on syst em board).
bits 0-3 - undefi ned.

The keyboard controller status port (64h) is defined as follows:

bit 1 - Set if input data (60h) not avail abl e.
bit O - Set if output port (60h) cannot accept data.

Put | NATBuUf fer proc near
assume ds: not hi ng
pushf
push ax

Page 1193

Chapter 20

Page 1194

)

push bx
push CX
push dx
nmov d, al ; Save char to output.

Wait until the keyboard controller does not contain data before
proceeding wi th shoving stuff down its throat.

xor CX, CX
Vi t Wl Ful | : in al, 64h
t est al, 1

| oopnz Wai t Wl Ful |

First things first, let’'s mask the interrupt controller chip (8259) to
tell it toignore interrupts comng fromthe keyboard. However, turn the
interrupts on so we properly process interrupts fromother sources (this
is especially inportant because we're going to wind up sending a fal se
EQ to the interrupt controller inside the INT 9 BICS routine).

cli

in al, 21h ;Get current mask

push ax ;Save intr mask

or al, 2 ; Mask keyboard i nterrupt
out 21h, al

Transmt the desired scan code to the keyboard controller. Call this
byt e the new keyboard control |l er command (we’ve turned of f the keyboard,
so this won't affect anything).

The following code tells the keyboard controller to take the next byte
sent to it and use this byte as the KCCB:

cal | Wi t ToXm t
mv al, 60h ;Wite new KCCB command.
out 64h, al

Send the scan code as the new KCCB:

cal | Wi t ToXm t
nmv al, dl
out 60h, al

The following code instructs the systemto transnit the KCCB (i.e., the
scan code) to the system

call Wi t ToXm t
nov al, 20h ;" Send KOOB" command.
out 64h, al
xor CX, CX
Wait4QutFull: in al, 64h
t est al, 1
| oopz Wi t 4Qut Ful |

Ckay, Send a 45h back as the new KOOB to all ow the nornal keyboard to work
properly.

call Wi t ToXm t
nmov al, 60h
out 64h, al
cal | Wi t ToXm t
nmov al, 45h
out 60h, al

Ckay, execute an INT 9 routine so the BI G5 (or whoever) can read the key
we just stuffed into the keyboard controller. Since we've masked I NT 9

at the interrupt controller, there will be no interrupt comng al ong from
the key we shoved in the buffer.

The PC Keyboard

Dol nt 9: in al, 60h Prevents ints fromsone codes.
int 9 ;Simul ate hardware kbd int.

; Just to be safe, reenabl e the keyboard:

call Wi t ToXm t
nmov al, Oaeh
out 64h, al

; Ckay, restore the interrupt nask for the keyboard in the 8259a.

pop ax
out 21h, al
pop dx

pop cX

pop bx

pop ax

popf

ret

Put | NATBUf fer endp

; WaitToXmit- WAt until it’s okay to send a command byte to the keyboard
; control ler port.

Wi t ToXmi t proc near
push cX
push ax
xor CX, CX
TstOQmPortLp: in al, 64h
t est al, 2 ; Check cntrlr input buffer full flag.
| oopnz Tst QdPort Lp
pop ax
pop CX
ret

Wi t ToXmi t endp

B R R R R EEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEREERSEEEESERESEEESERSES]

Put | nPS2Buf fer- Li ke Putl nATBuffer, it uses the keyboard controller chip
to return the keycode. However, PS/ 2 conpatible controllers
have an actual command to return keycodes.

’
’
’
’
’

Put | nPS2Buf f er proc near
pushf
push ax
push bx
push cX
push dx
nmov dl, al ; Save char to output.

; Wit until the keyboard controller does not contain data before
; proceeding with shoving stuff down its throat.

xor CX, CX
Wi tWALFull: in al, 64h
test al, 1

| oopnz Vi t Wl Ful |

; The following code tells the keyboard controller to take the next byte
; sent toit and return it as a scan code.

cal | Vi t ToXm t
nov al, 0d2h ;Return scan code conmand.
out 64h, al

Page 1195

Chapter 20

; Send the scan code:

call Vi t ToXm t
nmov al, di

out 60h, al
pop dx

pop cX

pop bx

pop ax

popf

ret

Put | nPS2Buf f er endp

; Main program- Sinulates sonme keystrokes to deno the above code.

Mai n proc
nov ax, cseg
nmov ds, ax
print
byte “Simul ati ng keystrokes via Trace Flag”,cr,|f
byt e “This programplaces ‘DR in the keyboard buffer”
byt e cr,lf,0
nov al, 20h ;"D down scan code
call Put | NATBUf f er
nmov al, 0aOh ;"D up scan code
call Put | NATBUf f er
nmov al, 17h ;1" down scan code
call Put | NATBuUf f er
nmov al, 97h ;"1" up scan code
call Put | nATBuUf f er
nov al, 13h ;"R down scan code
call Put | NATBUf f er
nov al, 93h ;"R up scan code
call Put | nNATBUf f er
nmv al, 1th ; Enter down scan code
call Put | NATBuUf f er
nmov al, 9Ch ; Enter up scan code
call Put | NATBuUf f er
Exi t Pgm

Mai n endp

cseg ends

sseg segment para stack ‘stack’

stk byte 1024 dup (“stack “)

sseg ends

z777775€g segnent para public ‘zzzzzz’

Last Byt es db 16 dup (?)

zzzz775€g ends
end Mai n

20.8 Summary

This chapter might seem excessively long for such a mundane topic as keyboard 1/0. After all, the
Standard Library provides only one primitive routine for keyboard input, getc. However, the keyboard on
the PC is a complex beast, having no less than two specialized microprocessors controlling it. These
microprocessors accept commands from the PC and send commands and data to the PC. If you want to

Page 1196

The PC Keyboard

write some tricky keyboard handling code, you need to have a firm understanding of the keyboard’s
underlying hardware.

This chapter began by describing the actions the system takes when a user presses a key. As it turns
out, the system transmits two scan codes every time you press a key — one scan code when you press the
key and one scan code when you release the key. These are called down codes and up codes, accord-
ingly. The scan codes the keyboard transmits to the system have little relationship to the standard ASCII
character set. Instead, the keyboard uses its own character set and relies upon the keyboard interrupt ser-
vice routine to translate these scan codes to their appropriate ASCII codes. Some keys do not have ASCII
codes, for these keys the system passes along an extended key code to the application requesting key-
board input. While translating scan codes to ASCII codes, the keyboard interrupt service routine makes
use of certain BIOS flags that track the position of the modifier keys. These keys include the shift, ctrl, alt,
capslock, and numlock keys. These keys are known as modifiers because the modify the normal code
produced by keys on the keyboard. The keyboard interrupt service routine stuffs incoming characters in
the system type ahead buffer and updates other BIOS variables in segment 40h. An application program
or other system service can access this data prepared by the keyboard interrupt service routine. For more
information, see

e “Keyboard Basics” on page 1153

The PC interfaces to the keyboard using two separate microcontroller chips. These chips provide user
programming registers and a very flexible command set. If you want to program the keyboard beyond
simply reading the keystrokes produced by the keyboard (i.e., manipulate the LEDs on the keyboard), you
will need to become familiar with the registers and command sets of these microcontrollers. The discus-
sion of these topics appears in

e “The Keyboard Hardware Interface” on page 1159

Both DOS and BIOS provide facilities to read a key from the system’s type ahead buffer. As usual,
BIOS' functions provide the most flexibility in terms of getting at the hardware. Furthermore, the BIOS
int 16h routine lets you check shift key status, stuff scan/ASCII codes into the type ahead buffer, adjust the
autorepeat rate, and more. Given this flexibility, it is difficult to understand why someone would want to
talk directly to the keyboard hardware, especially considering the compatibility problems that seem to
plague such projects. To learn the proper way to read characters from the keyboard, and more, see

* “The Keyboard DOS Interface” on page 1167
* “The Keyboard BIOS Interface” on page 1168

Although accessing the keyboard hardware directly is a bad idea for most applications, there is a
small class of programs, like keyboard enhancers and pop-up programs, that really do need to access the
keyboard hardware directly. These programs must supply an interrupt service routine for the int9 (key-
board) interrupt. For all the details, see:

e “The Keyboard Interrupt Service Routine” on page 1174
* “Patching into the INT 9 Interrupt Service Routine” on page 1184

A keyboard macro program (keyboard enhancer) is a perfect example of a program that might need
to talk directly to the keyboard hardware. One problem with such programs is that they need to pass char-
acters along to some underlying application. Given the nature of applications present in the world, this
can be a difficult task if you want to be compatible with a large number of PC applications. The problems,
and some solutions, appear in

* “Simulating Keystrokes” on page 1186

e “Stuffing Characters in the Type Ahead Buffer” on page 1186

e “Using the 80x86 Trace Flag to Simulate IN AL, 60H Instructions” on page 1187
* “Using the 8042 Microcontroller to Simulate Keystrokes” on page 1192

Page 1197

Chapter 20

Page 1198

