
 

Page 1

 

Why Would Anyone Learn This Stuff? Forward

 

Amazing! You’re actually reading this. That puts you into one of three categories: a student who is
being forced to read this stuff for a class, someone who picked up this book by accident (probably
because you have yet to be indoctrinated by the world at large), or one of the few who actually have an
interest in learning assembly language. 

Egads. What kind of book begins this way? What kind of author would begin the book with a forward
like this one? Well, the truth is, 

 

I 

 

considered putting this stuff into the first chapter since most people never
bother reading the forward. A discussion of what’s right and what’s wrong with assembly language is very
important and sticking it into a chapter might encourage someone to read it. However, I quickly found
that university students can skip Chapter One as easily as they can skip a forward, so this stuff wound up
in a forward after all.

So why would anyone learn this stuff, anyway? Well, there are several reasons which come to mind:

• Your major requires a course in assembly language; i.e., you’re here against your will.
• A programmer where you work quit. Most of the source code left behind was written

in assembly language and you were elected to maintain it.
• Your boss has the audacity to insist that you write your code in assembly against your

strongest wishes.
• Your programs run just a little too slow, or are a little too large and you think assembly

language might help you get your project under control.
• You want to understand how computers actually work.
• You’re interested in learning how to write efficient code.
• You want to try something new.

Well, whatever the reason you’re here, welcome aboard. Let’s take a look at the subject you’re about
to study.

 

1 What’s Wrong With Assembly Language

 

Assembly language has a pretty bad reputation. The common impression about assembly language
programmers today is that they are all hackers or misguided individuals who need enlightenment. Here
are the reasons people give for 

 

not 

 

using assembly

 

1

 

:

• Assembly is hard to learn.
• Assembly is hard to read and understand.
• Assembly is hard to debug.
• Assembly is hard to maintain.
• Assembly is hard to write.
• Assembly language programming is time consuming.
• Improved compiler technology has eliminated the need for assembly language.
• Today, machines are so fast that we no longer need to use assembly.
• If you need more speed, you should use a better algorithm rather than switch to assem-

bly language.
• Machines have so much memory today, saving space using assembly is not important.
• Assembly language is not portable.

 

1. This text will use the terms “Assembly language” and “assembly” interchangeably. 

 

Thi d t t d ith F M k 4 0 2



 

Forward

Page 2

 

These are some strong statements indeed!

Given that this is a book which teaches assembly language programming, written for college level
students, written by someone who appears to know what he’s talking about, your natural tendency is to
believe something if it appears in print. Having just read the above, you’re starting to assume that assembly
must be pretty bad. And that, dear friend, is eighty percent of what’s wrong with assembly language. That
is, people develop some very strong misconceptions about assembly language based on what they’ve
heard from friends, instructors, articles, and books. Oh, assembly language is certainly not perfect. It does
have many real faults. Those faults, however, are blown completely out of proportion by those unfamiliar
with assembly language. The next time someone starts preaching about the evils of assembly language,
ask, “how many years of assembly language programming experience do you have?” Of course assembly
is hard to understand 

 

if you don’t know it.

 

 It is surprising how many people are willing to speak out
against assembly language based only on conversations they’ve had or articles they’ve read.

Assembly language users also use high level languages (HLLs); assembly’s most outspoken oppo-
nents rarely use anything but HLLs. Who would you believe, an expert well versed in both types of pro-
gramming languages or someone who has never taken the time to learn assembly language and develop
an honest opinion of its capabilities?

In a conversation with someone, I would go to great lengths to address each of the above issues.
Indeed, in a rough draft of this chapter I spent about ten pages explaining what is wrong with each of the
above statements. However, this book is long enough and I felt that very little was gained by going on and
on about these points. Nonetheless, a brief rebuttal to each of the above points is in order, if for no other
reason than to keep you from thinking there isn’t a decent defense for these statements.

 

Assembly is hard to learn.

 

 So is any language you don’t already know. Try learning (really learn-
ing) APL, Prolog, or Smalltalk sometime. Once you learn Pascal, learning another language like C, BASIC,
FORTRAN, Modula-2, or Ada is fairly easy because these languages are quite similar to Pascal. On the
other hand, learning a dissimilar language like Prolog is not so simple. Assembly language is also quite dif-
ferent from Pascal. It will be a little harder to learn than one of the other Pascal-like languages. However,
learning assembly isn’t much more difficult than learning your first programming language.

 

Assembly is hard to read and understand.

 

 It sure is, if you don’t know it. Most people who make
this statement simply don’t know assembly. Of course, it’s very easy to write impossible-to-read assembly
language programs. It’s also quite easy to write impossible-to-read C, Prolog, and APL programs. With
experience, you will find assembly as easy to read as other languages.

 

Assembly is hard to debug.

 

 Same argument as above. If you don’t have much experience debug-
ging assembly language programs, it’s going to be hard to debug them. Remember what it was like finding
bugs in your first Pascal (or other HLL) programs? Anytime you learn a new programming language you’ll
have problems debugging programs in that language until you gain experience.

 

Assembly is hard to maintain.

 

 C programs are hard to maintain. Indeed, 

 

programs

 

 are hard to
maintain period. Inexperienced assembly language programmers tend to write hard to maintain programs.
Writing maintainable programs isn’t a talent. It’s a skill you develop through experience.

 

Assembly language is hard.

 

 This statement actually has a ring of truth to it. For the longest time
assembly language programmers wrote their programs completely from scratch, often “re-inventing the
wheel.” HLL programmers, especially C, Ada, and Modula-2 programmers, have long enjoyed the benefits
of a 

 

standard library

 

 package which solves many common programming problems. Assembly language
programmers, on the other hand, have been known to rewrite an integer output routine every time they
need one. This book does 

 

not

 

 take that approach. Instead, it takes advantage of some work done at the
University of California, Riverside: the

 

 UCR Standard Library for 80x86 Assembly Language Programmers.

 

These subroutines simplify assembly language just as the C standard library aids C programmers. The
library source listings are available electronically via Internet and various other communication services as
well as on a companion diskette.

 

Assembly language programming is time consuming. 

 

Software engineers estimate that devel-
opers spend only about thirty percent of their time coding a solution to a problem. Even if it took twice as



 

Why Would Anyone Learn This Stuff?

Page 3

 

much time to write a program in assembly versus some HLL, there would only be a fifteen percent differ-
ence in the total project completion time. In fact, 

 

good

 

 assembly language programmers do not need twice
as much time to implement something in assembly language. It is true using a HLL will save 

 

some

 

 time;
however, the savings is insufficient to counter the benefits of using assembly language.

 

Improved compiler technology has eliminated the need for assembly language.

 

 This isn’t
true and probably never will be true. Optimizing compilers are getting better every day. However, assem-
bly language programmers get better performance by writing their code 

 

differently

 

 than they would if they
were using some HLL. If assembly language programmers wrote their programs in C and then translated
them manually into assembly, a good C compiler would produce equivalent, or even better, code. Those
who make this claim about compiler technology are comparing their 

 

hand-

 

compiled code against that
produced by a compiler. Compilers do a much better job of compiling than humans. Then again, you’ll
never catch an assembly language programmer writing “C code with MOV instructions.” After all, that’s
why you use C compilers.

 

Today, machines are so fast that we no longer need to use assembly.

 

 It is amazing that people
will spend lots of money to buy a machine slightly faster than the one they own, but they won’t spend any
extra time writing their code in assembly so it runs faster on the same hardware. There are many raging
debates about the speed of machines versus the speed of the software, but one fact remains: users always
want more speed. On any given machine, the fastest possible programs will be written in assembly lan-
guage

 

2

 

.

 

If you need more speed, you should use a better algorithm rather than switch to assembly
language. 

 

Why can’t you use this better algorithm in assembly language? What if you’re already using the
best algorithm you can find and it’s still too slow? This is a totally bogus argument against assembly lan-
guage. Any algorithm you can implement in a HLL you can implement in assembly. On the other hand,
there are many algorithms you can implement in assembly which you cannot implement in a HLL

 

3

 

.

 

Machines have so much memory today, saving space using assembly is not important. 

 

If
you give someone an inch, they’ll take a mile. Nowhere in programming does this saying have more appli-
cation than in program memory use. For the longest time, programmers were quite happy with 4 Kbytes.
Later, machines had 32 or even 64 Kilobytes. The programs filled up memory accordingly. Today, many
machines have 32 or 64 

 

megabytes 

 

of memory installed and some applications use it all. There are lots of
technical reasons why programmers should strive to write shorter programs, though now is not the time to
go into that. Let’s just say that space 

 

is

 

 important and programmers should strive to write programs as short
as possible regardless of how much main memory they have in their machine.

 

Assembly language is not portable. 

 

This is an undeniable fact. An 80x86 assembly language pro-
gram written for an IBM PC will not run on an Apple Macintosh

 

4

 

. Indeed, assembly language programs
written for the Apple Macintosh will not run on an Amiga, even though they share the same 680x0 micro-
processor. If you need to run your program on different machines, you’ll have to think long and hard
about using assembly language. Using C (or some other HLL) is no guarantee that your program will be
portable. C programs written for the IBM PC won’t compile and run on a Macintosh. And even if they did,
most Mac owners wouldn’t accept the result. 

Portability is probably the biggest complaint people have against assembly language. They refuse to
use assembly because it is not portable, and then they turn around and write equally non-portable pro-
grams in C.

Yes, there are lots of lies, misconceptions, myths, and half-truths concerning assembly language.
Whatever you do, make sure you learn assembly language before forming your own opinions

 

5

 

. Speaking

 

2. That is not to imply that assembly language programs are always faster than HLL programs. A poorly written assembly language program can run
much slower than an equivalent HLL program. On the other hand, if a program is written in an HLL it is certainly possible to write a faster one in
assembly.
3. We’ll see some of these algorithms later in the book. They deal with instruction sequencing and other tricks based on how the processor oper-
ates.
4. Strictly speaking, this is not true. There is a program called SoftPC which emulates an IBM PC using an 80286 

 

interpreter

 

. However, 80x86 assem-
bly language programs will not run in native mode on the Mac’s 680x0 microprocessor.



 

Forward

Page 4

 

out in ignorance may impress others who know less than you do, but it won’t impress those who know
the truth.

 

2 What’s Right With Assembly Language?

 

An old joke goes something like this: “There are three reasons for using assembly language: speed,
speed, and more speed.” Even those who absolutely hate assembly language will admit that if speed is
your primary concern, assembly language is the way to go. Assembly language has several benefits:

• Speed. Assembly language programs are generally the fastest programs around.
• Space. Assembly language programs are often the smallest.
• Capability. You can do things in assembly which are difficult or impossible in HLLs.
• Knowledge. Your knowledge of assembly language will help you write better pro-

grams, even when using HLLs.

Assembly language is the uncontested speed champion among programming languages. An expert
assembly language programmer will almost always produce a faster program than an expert C program-
mer

 

6

 

. While certain programs may not benefit much from implementation in assembly, you can speed up
many programs by a factor of five or ten over their HLL counterparts by careful coding in assembly lan-
guage; even greater improvement is possible if you’re not using an optimizing compiler. Alas, speedups
on the order of five to ten times are generally not achieved by beginning assembly language programmers.
However, if you spend the time to learn assembly language really well, you too can achieve these impres-
sive performance gains.

Despite some people’s claims that programmers no longer have to worry about memory constraints,
there are many programmers who need to write smaller programs. Assembly language programs are often
less than one-half the size of comparable HLL programs. This is especially impressive when you consider
the fact that data items generally consume the same amount of space in both types of programs, and that
data is responsible for a good amount of the space used by a typical application. Saving space saves
money. Pure and simple. If a program requires 1.5 megabytes, it will not fit on a 1.44 Mbyte floppy. Like-
wise, if an application requires 2 megabytes RAM, the user will have to install an extra megabyte if there is
only one available in the machine

 

7

 

. Even on big machines with 32 or more megabytes, writing gigantic
applications isn’t excusable. Most users put more than eight megabytes in their machines so they can run

 

multiple

 

 programs from memory at one time. The bigger a program is, the fewer applications will be able
to coexist in memory with it. Virtual memory isn’t a particularly attractive solution either. With virtual
memory, the bigger an application is, the slower the system will run as a result of that program’s size.

Capability is another reason people resort to assembly language. HLLs are an abstraction of a typical
machine architecture. They are designed to be independent of the particular machine architecture. As a
result, they rarely take into account any special features of the machine, features which are available to
assembly language programmers. If you want to use such features, you will need to use assembly lan-
guage. A really good example is the input/output instructions available on the 80x86 microprocessors.
These instructions let you directly access certain I/O devices on the computer. In general, such access is
not part of any high level language. Indeed, some languages like C pride themselves on not supporting

 

5. Alas, a typical ten-week course is rarely sufficient to learn assembly language well enough to develop an informed opinion on the subject. Prob-
ably three months of eight-hour days using the stuff would elevate you to the point where you could begin to make some informed statements on
the subject. Most people wouldn’t be able to consider themselves “good” at assembly language programs until they’ve been using the stuff for at
least a year.
6. There is absolutely no reason why an assembly language programmer would produce a 

 

slower

 

 program since that programmer could look at the
output of the C compiler and copy whatever code runs faster than the hand produced code. HLL programmers don’t have an equivalent option.
7. You can substitute any numbers here you like. One fact remains though, programmers are famous for assuming users have more memory than
they really do.



 

Why Would Anyone Learn This Stuff?

Page 5

 

any specific I/O operations

 

8

 

. In assembly language you have no such restrictions. Anything you can do on
the machine you can do in assembly language. This is definitely 

 

not 

 

the case with most HLLs.

Of course, another reason for learning assembly language is just for the knowledge. Now some of
you may be thinking, “Gee, that would be wonderful, but I’ve got lots to do. My time would be better
spent writing code than learning assembly language.” There are some practical reasons for learning assem-
bly, even if you never intend to write a single line of assembly code. If you know assembly language well,
you’ll have an appreciation for the compiler, and you’ll know exactly what the compiler is doing with all
those HLL statements. Once you see how compilers translate seemingly innocuous statements into a ton of
machine code, you’ll want to search for better ways to accomplish the same thing. Good assembly lan-
guage programmers make better HLL programmers because they understand the limitations of the com-
piler and they know what it’s doing with their code. Those who don’t know assembly language will accept
the poor performance their compiler produces and simply shrug it off.

Yes, assembly language is definitely worth the effort. The only scary thing is that once you learn it
really well, you’ll probably start using it far more than you ever dreamed you would. That is a common
malady among assembly language programmers. Seems they can’t stand what the compilers are doing
with their programs.

 

3 Organization of This Text and Pedagogical Concerns

 

This book is divided into seven main sections: a section on machine organization and architecture, a
section on basic assembly language, a section on intermediate assembly language, a section on interrupts
and resident programs, a section covering IBM PC hardware peculiarities, a section on optimization, and
various appendices. It is doubtful that any single (even year-long) college course could cover all this mate-
rial, the final chapters were included to support compiler design, microcomputer design, operating sys-
tems, and other courses often found in a typical CS program.

Developing a text such as this one is a very difficult task. First of all, different universities have differ-
ent ideas about how this course should be taught. Furthermore, different schools spend differing amounts
of time on this subject (one or two quarters, a semester, or even a year). Furthermore, different schools
cover different material in the course. For example, some schools teach a “Machine Organization” course
that emphasizes hardware concepts and presents the assembly language instruction set, but does not
expect students to write real assembly language programs (that’s the job of a compiler). Other schools
teach a “Machine Organization and Assembly Language” course that combines hardware and software
issues together into one course. Still others teach a “Machine Organization” or “Digital Logic” course as a
prerequisite to an “Assembly Language” course. Still others teach “Assembly Language Programming” as a
course and leave the hardware for a “Computer Architecture” course later in the curriculum. Finally, let us
not forget that some people will pick up this text and use it to learn machine organization or assembly lan-
guage programming on their own, without taking a formal course on the subject. A good 

 

textbook

 

 in this
subject area must be adaptable to the needs of the course, instructor, and student. These requirements
place enough demands on an author, but I wanted more for this text. Many textbooks teach a particular
subject well, but once you’ve read and understood them, they do not serve well as a reference guide.
Given the cost of textbooks today, it is a real shame that many textbooks’ value diminishes once the
course is complete. I sought to create a textbook that will explain many difficult concepts in as friendly a
manner as possible 

 

and

 

 will serve as a reference guide once you’ve mastered the topic. By moving
advanced material you probably won’t cover in a typical college course into later chapters and by organiz-
ing this text so you can continue using it once the course is over, I hope to provide you with an excellent
value in this text.

Since this volume attempts to satisfy the requirements of several different courses, as well as provide
an excellent reference, you will probably find that it contains far more material than any single course

 

8. Certain languages on the PC support extensions to access the I/O devices since this is such an obvious limitation of the language. However, such
extensions are not part of the actual language.



 

Forward

Page 6

 

would actually cover. For example, the first section of this text covers machine organization. If you’ve
already covered this material in a previous course, your instructor may elect to skip the first four chapters
or so. For those courses that teach only assembly language, the instructor may decide to skip chapters two
and three. Schools operating on a ten-week quarter system may cover the material in each chapter only
briefly (about one week per chapter). Other schools may cover the material in much greater depth
because they have more time. 

When writing this text, I choose to pick a subject and cover it in depth before proceeding to the next
topic. This pedagogy (teaching method) is unusual. Most assembly language texts jump around to differ-
ent topics, lightly touching on each one and returning to them as further explanation is necessary. Unfor-
tunately, such texts make poor references; trying to lookup information in such a book is difficult, at best,
because the information is spread throughout the book. Since I want this text to serve as a reasonable ref-
erence manual, such an organization was unappealing.

The problem with a straight reference manual is three-fold. First, reference manuals are often orga-
nized in a manner that makes it easy to look something up, not in a logical order that makes the material
easy to learn. For example, most assembly language reference manuals introduce the instruction set in
alphabetical order. However, you do not learn the instruction set in this manner. The second problem with
a (good) reference manual is that it presents the material in far greater depth than most beginners can han-
dle; this is why most texts keep returning to a subject, they add a little more depth on each return to the
subject. Finally, reference texts can present material in any order. The author need not ensure that a dis-
cussion only include material appearing earlier in the text. Material in the early chapters of a reference
manual can refer to later chapters; a typical college textbook should 

 

not

 

 do this.

To receive maximum benefit from this text, you need to read it understanding its organization. This is

 

not

 

 a text you read from front to back, making sure you understand each and every little detail before pro-
ceeding to the next. I’ve covered many topics in this text in considerable detail. Someone learning assem-
bly language for the first time will become overwhelmed with the material that appears in each chapter.
Typically, you will read over a chapter once to learn the basic essentials and then refer back to each chap-
ter learning additional material as you need it. Since it is unlikely that you will know which material is
basic or advanced, I’ve taken the liberty of describing which sections are basic, intermediate, or advanced
at the beginning of each chapter. A ten-week course, covering this entire text for example, might only deal
with the basic topics. In a semester course, there is time to cover the intermediate material as well.
Depending on prerequisites and length of course, the instructor can elect to teach this material at any level
of detail (or even jump around in the text).

In the past, if a student left an assembly language class and could actually implement an algorithm in
assembly language, the instructor probably considered the course a success. However, compiler technol-
ogy has progressed to the point that simply “getting something to work” in assembly language is pure
folly. If you don’t write your code efficiently in assembly language, you may as well stick with HLLs.
They’re easy to use, and the compiler will probably generate faster code than you if you’re careless in the
coding process.

This text spends a great deal of time on machine and data organization. There are two important rea-
sons for this. First of all, to write efficient code on modern day processors requires an intimate knowledge
of what’s going on in the hardware. Without this knowledge, your programs on the 80486 and later could
run at less than half their possible speed. To write the best possible assembly language programs you must
be familiar with how the hardware operates. Another reason this text emphasizes computer organization is
that most colleges and universities are more interested in teaching machine organization than they are a
particular assembly language. While the typical college student won’t have much need for assembly lan-
guage during the four years as an undergraduate, the machine organization portion of the class is useful in
several upper division classes. Classes like data structures and algorithms, computer architecture, operat-
ing systems, programming language design, and compilers all benefit from an introductory course in com-
puter organization. That’s why this text devotes an entire section to that subject. 



 

Why Would Anyone Learn This Stuff?

Page 7

 

4 Obtaining Program Source Listings and Other Materials in This Text

 

All of the software appearing in this text is available on the companion diskette. The material for this
text comes in two parts: source listings of various examples presented in this text and the code for the 

 

UCR
Standard Library for 80x86 Assembly Language Programmers

 

. The UCR Standard Library is also available
electronically from several different sources (including Internet, BIX, and other on-line services).

You may obtain the files electronically via ftp from the following Internet address:

ftp.cs.ucr.edu

Log onto ftp.cs.ucr.edu using the anonymous account name and any password. Switch to the “/pub/pc/
ibmpcdir” subdirectory (this is UNIX so make sure you use lowercase letters). You will find the appropri-
ate files by searching through this directory.

The exact filename(s) of this material may change with time, and different services use different
names for these files. Generally posting a message enquiring about the UCR Standard Library or this text
will generate appropriate responses.



 

Forward

Page 8


