

Advanced Arithmetic

ly well

f

erations.

 of the

not

Advanced Arithmetic Chapter Four

4.1 Chapter Overview

This chapter deals with those arithmetic operations for which assembly language is especial
suited and high level languages are, in general, poorly suited. It covers three main topics: extended precision
arithmetic, arithmetic on operands who sizes are different, and decimal arithmetic.

By far, the most extensive subject this chapter covers is multi-precision arithmetic. By the conclusion o
this chapter you will know how to apply arithmetic and logical operations to integer operands of any size. If
you need to work with integer values outside the range ±2 billion (or with unsigned values beyond four bil-
lion), no sweat; this chapter will show you how to get the job done.

Operands whose sizes are not the same also present some special problems in arithmetic op
For example, you may want to add a 128-bit unsigned integer to a 256-bit signed integer value. This chapter
discusses how to convert these two operands to a compatible format so the operation may proceed.

Finally, this chapter discusses decimal arithmetic using the BCD (binary coded decimal) features
80x86 instruction set and the FPU. This lets you use decimal arithmetic in those few applications that abso-
lutely require base 10 operations (rather than binary).

4.2 Multiprecision Operations

One big advantage of assembly language over high level languages is that assembly language does
limit the size of integer operations. For example, the C programming language defines a maximum of three
different integer sizes: short int, int, and long int1. On the PC, these are often 16 and 32 bit integers.
Although the 80x86 machine instructions limit you to processing eight, sixteen, or thirty-two bit integers
with a single instruction, you can always use more than one instruction to process integers of any size you
desire. If you want to add 256 bit integer values together, no problem, it’s relatively easy to accomplish this
in assembly language. The following sections describe how extended various arithmetic and logical opera-
tions from 16 or 32 bits to as many bits as you please.

4.2.1 Multiprecision Addition Operations

The 80x86 ADD instruction adds two eight, sixteen, or thirty-two bit numbers2. After the execution of
the add instruction, the 80x86 carry flag is set if there is an overflow out of the H.O. bit of the sum. You can
use this information to do multiprecision addition operations. Consider the way you manually perform a
multidigit (multiprecision) addition operation:

Step 1: Add the least significant digits together:

 289 289
+456 produces +456
---- ----

 5 with carry 1.

1. Newer C standards also provide for a "long long int" which is usually a 64-bit integer.
2. As usual, 32 bit arithmetic is available only on the 80386 and later processors.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 853

Chapter Four

Volume Four

le

er

r

Step 2: Add the next significant digits plus the carry:

 1 (previous carry)
 289 289
+456 produces +456
---- ----
 5 45 with carry 1.

Step 3: Add the most significant digits plus the carry:

 1 (previous carry)
 289 289
+456 produces +456
---- ----
 45 745

 The 80x86 handles extended precision arithmetic in an identical fashion, except instead of adding the
numbers a digit at a time, it adds them together a byte, word, or dword at a time. Consider the three doub
word (96 bit) addition operation in Figure 4.1.

Figure 4.1 Adding Two 96-bit Objects Together

As you can see from this figure, the idea is to break up a larger operation into a sequence of small
operations. Since the x86 processor family is capable of adding together, at most, 32 bits at a time, the ope-
ation must proceed in blocks of 32-bits or less. So the first step is to add the two L.O. double words together

Step 1: Add the least significant words together:

Step 2: Add the middle words together:

(plus carry, if any)

C

Step 3: Add the most significant words together:

(plus carry, if any)

C

Page 854 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

dds
he same
his is

. Once
double
e L.O.
er. At
t), a set

ro flag
 sum of

s:

of

nd it

ik
much as we would add the two L.O. digits of a decimal number together in the manual algorithm. There is
nothing special about this operation, you can use the ADD instruction to achieve this.

The second step involves adding together the second pair of double words in the two 96-bit values.
Note that in step two, the calculation must also add in the carry out of the previous addition (if any). If there
was a carry out of the L.O. addition, the ADD instruction sets the carry flag to one; conversely, if there was
no carry out of the L.O. addition, the earlier ADD instruction clears the carry flag. Therefore, in this second
addition, we really need to compute the sum of the two double words plus the carry out of the first instruc-
tion. Fortunately, the x86 CPUs provide an instruction that does exactly this: the ADC (add with carry)
instruction. The ADC instruction uses the same syntax as the ADD instruction and performs almost the
same operation:

adc(source, dest); // dest := dest + source + C

As you can see, the only difference between the ADD and ADC instruction is that the ADC instruction a
in the value of the carry flag along with the source and destination operands. It also sets the flags t
way the ADD instruction does (including setting the carry flag if there is an unsigned overflow). T
exactly what we need to add together the middle two double words of our 96-bit sum.

In step three of Figure 4.1, the algorithm adds together the H.O. double words of the 96-bit value
again, this addition operation also requires the addition of the carry out of the sum of the middle two
words; hence the ADC instruction is needed here, as well. To sum it up, the ADD instruction adds th
double words together. The ADC (add with carry) instruction adds all other double word pairs togeth
the end of the extended precision addition sequence, the carry flag indicates unsigned overflow (if se
overflow flag indicates signed overflow, and the sign flag indicates the sign of the result. The ze
doesn’t have any real meaning at the end of the extended precision addition (it simply means that the
the H.O. two double words is zero, this does not indicate that the whole result is zero).

For example, suppose that you have two 64-bit values you wish to add together, defined as follow

static
X: qword;
Y: qword;

Suppose, also, that you want to store the sum in a third variable, Z, that is likewise defined with the qword
type. The following x86 code will accomplish this task:

mov((type dword X), eax); // Add together the L.O. 32 bits
add((type dword Y), eax); // of the numbers and store the
mov(eax, (type dword Z)); // result into the L.O. dword of Z.

mov((type dword X[4]), eax); // Add together (with carry) the
adc((type dword Y[4]), eax); // H.O. 32 bits and store the result
mov(eax, (type dword Z[4])); // into the H.O. dword of Z.

Remember, these variables are qword objects. Therefore the compiler will not accept an instruction
the form "mov(X, eax);" because this instruction would attempt to load a 64 bit value into a 32 bit register.
This code uses the coercion operator to coerce symbols X, Y, and Z to 32 bits. The first three instructions add
the L.O. double words of X and Y together and store the result at the L.O. double word of Z. The last three
instructions add the H.O. double words of X and Y together, along with the carry out of the L.O. word, and
store the result in the H.O. double word of Z. Remember, address expressions of the form “X[4]” access the
H.O. double word of a 64 bit entity. This is due to the fact that the x86 address space addresses bytes a
takes four consecutive bytes to form a double word.

You can extend this to any number of bits by using the ADC instruction to add in the higher order words
in the values. For example, to add together two 128 bit values, you could use code that looks something le
the following:

type
tBig: dword[4]; // Storage for four dwords is 128 bits.

static
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 855

Chapter Four Volume Four

t

BigVal1: tBig;
BigVal2: tBig;
BigVal3: tBig;
 .
 .
 .
mov(BigVal1[0], eax); // Note there is no need for (type dword BigValx)
add(BigVal2[0], eax); // because the base type of BitValx is dword.
mov(eax, BigVal3[0]);

mov(BigVal1[4], eax);
adc(BigVal2[4], eax);
mov(eax, BigVal3[4]);

mov(BigVal1[8], eax);
adc(BigVal2[8], eax);
mov(eax, BigVal3[8]);

mov(BigVal1[12], eax);
adc(BigVal2[12], eax);
mov(eax, BigVal3[12]);

4.2.2 Multiprecision Subtraction Operations

Like addition, the 80x86 performs multi-byte subtraction the same way you would manually, except it
subtracts whole bytes, words, or double words at a time rather than decimal digits. The mechanism is similar
to that for the ADD operation, You use the SUB instruction on the L.O. byte/word/double word and the SBB
(subtract with borrow) instruction on the high order values. The following example demonstrates a 64 bi
subtraction using the 32 bit registers on the x86:

static
Left: qword;
Right: qword;
Diff: qword;

 .
 .
 .

mov((type dword Left), eax);
sub((type dword Right), eax);
mov(eax, (type dword Diff));

mov((type dword Left[4]), eax);
sbb((type dword Right[4]), eax);
mov((type dword Diff[4]), eax);

The following example demonstrates a 128-bit subtraction:

type
tBig: dword[4]; // Storage for four dwords is 128 bits.

static
BigVal1: tBig;
BigVal2: tBig;
BigVal3: tBig;
 .
 .
 .

// Compute BigVal3 := BigVal1 - BigVal2
Page 856 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

s f
e an
mov(BigVal1[0], eax); // Note there is no need for (type dword BigValx)
sub(BigVal2[0], eax); // because the base type of BitValx is dword.
mov(eax, BigVal3[0]);

mov(BigVal1[4], eax);
sbb(BigVal2[4], eax);
mov(eax, BigVal3[4]);

mov(BigVal1[8], eax);
sbb(BigVal2[8], eax);
mov(eax, BigVal3[8]);

mov(BigVal1[12], eax);
sbb(BigVal2[12], eax);
mov(eax, BigVal3[12]);

4.2.3 Extended Precision Comparisons

Unfortunately, there isn’t a “compare with borrow” instruction that you can use to perform extended
precision comparisons. Since the CMP and SUB instructions perform the same operation, at least aar as
the flags are concerned, you’d probably guess that you could use the SBB instruction to synthesiz
extended precision comparison; however, you’d only be partly right. There is, however, a better way.

Consider the two unsigned values $2157 and $1293. The L.O. bytes of these two values do not affect the
outcome of the comparison. Simply comparing $21 with $12 tells us that the first value is greater than the
second. In fact, the only time you ever need to look at both bytes of these values is if the H.O. bytes are
equal. In all other cases comparing the H.O. bytes tells you everything you need to know about the values.
Of course, this is true for any number of bytes, not just two. The following code compares two unsigned 64
bit integers:

// This sequence transfers control to location “IsGreater” if
// QwordValue > QwordValue2. It transfers control to “IsLess” if
// QwordValue < QwordValue2. It falls though to the instruction
// following this sequence if QwordValue = QwordValue2. To test for
// inequality, change the “IsGreater” and “IsLess” operands to “NotEqual”
// in this code.

mov((type dword QWordValue[4]), eax); // Get H.O. dword
cmp(eax, (type dword QWordValue2[4]));
jg IsGreater;
jl IsLess;

mov((type dword QWordValue[0]), eax); // If H.O. dwords were equal,
cmp(eax, (type dword QWordValue2[0])); // then we must compare the
ja IsGreater; // L.O. dwords.
jb IsLess;

// Fall through to this point if the two values were equal.

To compare signed values, simply use the JG and JL instructions in place of JA and JB for the H.O.
words (only). You must continue to use unsigned comparisons for all but the H.O. double words you’re
comparing.

You can easily synthesize any possible comparison from the sequence above, the following examples
show how to do this. These examples demonstrate signed comparisons, substitute JA, JAE, JB, and JBE for
JG, JGE, JL, and JLE (respectively) for the H.O. comparisons if you want unsigned comparisons.

static
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 857

Chapter Four Volume Four
QW1: qword;
QW2: qword;

const
QW1d: text := "(type dword QW1)";
QW2d: text := "(type dword QW2)";

// 64 bit test to see if QW1 < QW2 (signed).
// Control transfers to “IsLess” label if QW1 < QW2. Control falls
// through to the next statement (at "NotLess") if this is not true.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg NotLess; // Substitute ja here for unsigned comparison.
jl IsLess; // Substitute jb here for unsigned comparison.

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jb IsLess;

NotLess:

// 64 bit test to see if QW1 <= QW2 (signed). Jumps to "IsLessEq" if the
// condition is true.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg NotLessEQ; // Substitute ja here for unsigned comparison.
jl IsLessEQ; // Substitute jb here for unsigned comparison.

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jbe IsLessEQ;

NotLessEQ:

// 64 bit test to see if QW1 > QW2 (signed). Jumps to "IsGtr" if this condition
// is true.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg IsGtr; // Substitute ja here for unsigned comparison.
jl NotGtr; // Substitute jb here for unsigned comparison.

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
ja IsGtr;

NotGtr:

// 64 bit test to see if QW1 >= QW2 (signed). Jumps to "IsGtrEQ" if this
// is the case.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jg IsGtrEQ; // Substitute ja here for unsigned comparison.
jl NotGtrEQ; // Substitute jb here for unsigned comparison.

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jae IsGtrEQ;

NotGtrEQ:
Page 858 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
// 64 bit test to see if QW1 = QW2 (signed or unsigned). This code branches
// to the label “IsEqual” if QW1 = QW2. It falls through to the next instruction
// if they are not equal.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jne NotEqual;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
je IsEqual;

NotEqual:

// 64 bit test to see if QW1 <> QW2 (signed or unsigned). This code branches
// to the label “NotEqual” if QW1 <> QW2. It falls through to the next
// instruction if they are equal.

mov(QW1d[4], eax); // Get H.O. dword
cmp(eax, QW2d[4]);
jne NotEqual;

mov(QW1d[0], eax); // Fall through to here if the H.O. dwords are equal.
cmp(eax, QW2d[0]);
jne NotEqual;

// Fall through to this point if they are equal.

You cannot directly use the HLA high level control structures if you need to perform an extended preci-
sion comparison. However, you may use the HLA hybrid control structures and bury the appropriate com-
parison into this statements. Doing so will probably make your code easier to read. For example, the
following if..then..else..endif statement checks to see if QW1 > QW2 using a 64-bit extended precision
signed comparison:

if
(#{

mov(QW1d[4], eax);
cmp(eax, QW2d[4]);
jg true;

mov(QW1d[0], eax);
cmp(eax, QW2d[0]);
jna false;

}#) then

<< code to execute if QW1 > QW2 >>

else

<< code to execute if QW1 <= QW2 >>

endif;

If you need to compare objects that are larger than 64 bits, it is very easy to generalize the code above.
Always start the comparison with the H.O. double words of the objects and work you way down towards the
L.O. double words of the objects as long as the corresponding double words are equal The following exam-
ple compares two 128-bit values to see if the first is less than or equal (unsigned) to the second:

type
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 859

Chapter Four Volume Four

or
t128: dword[4];

static
Big1: t128;
Big2: t128;
 .
 .
 .
if
(#{

mov(Big1[12], eax);
cmp(eax, Big2[12]);
jb true;
mov(Big1[8], eax);
cmp(eax, Big2[8]);
jb true;
mov(Big1[4], eax);
cmp(eax, Big2[4]);
jb true;
mov(Big1[0], eax);
cmp(eax, Big2[0]);
jnbe false;

}#) then

<< Code to execute if Big1 <= Big2 >>

else

<< Code to execute if Big1 > Big2 >>

endif;

4.2.4 Extended Precision Multiplication

Although an 8x8, 16x16, or 32x32 multiply is usually sufficient, there are times when you may want to
multiply larger values together. You will use the x86 single operand MUL and IMUL instructions f
extended precision multiplication.

Not surprisingly (in view of how we achieved extended precision addition using ADC and SBB), you
use the same techniques to perform extended precision multiplication on the x86 that you employ when
manually multiplying two values. Consider a simplified form of the way you perform multi-digit multiplica-
tion by hand:

 1) Multiply the first two 2) Multiply 5*2:
 digits together (5*3):

 123 123
 45 45
 --- ---
 15 15
 10
Page 860 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
 3) Multiply 5*1: 4) Multiply 4*3:

 123 123
 45 45
 --- ---
 15 15
 10 10
 5 5
 12

 5) Multiply 4*2: 6) Multiply 4*1:

 123 123
 45 45
 --- ---
 15 15
 10 10
 5 5
 12 12
 8 8
 4

 7) Add all the partial products together:

 123
 45

 15
 10
 5
 12
 8
 4

 5535

 The 80x86 does extended precision multiplication in the same manner except that it works
with bytes, words, and double words rather than digits. Figure 4.2 shows how this works

A B
C D

D * B

1) Multiply the L.O. words 2) Multiply D * A

A B
C D

D * B
D * A
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 861

Chapter Four Volume Four

r

Figure 4.2 Extended Precision Multiplication

Probably the most important thing to remember when performing an extended precision multiplication
is that you must also perform a multiple precision addition at the same time. Adding up all the partial prod-
ucts requires several additions that will produce the result. The following listing demonstrates the prope
way to multiply two 64 bit values on a 32 bit processor:

Note: Multiplier and Multiplicand are 64 bit variables declared in the data segment via the qword type.
Product is a 128 bit variable declared in the data segment via the qword[2] type.

program testMUL64;
#include("stdlib.hhf")

type
 t128:dword[4];

procedure MUL64(Multiplier:qword; Multiplicand:qword; var Product:t128);
const
 mp: text := "(type dword Multiplier)";
 mc: text := "(type dword Multiplicand)";
 prd:text := "(type dword [edi])";

A B

D * B
D * A
C * B

3) Multiply C times B 4) Multiply C * A

C D
A B
C DC D

D * B
D * A
C * B

C * A

A B
C DC D

D * B
D * A
C * B

C * A

5) Compute sum of partial products

AB * CB
Page 862 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
begin MUL64;

 mov(Product, edi);

 // Multiply the L.O. dword of Multiplier times Multiplicand.

 mov(mp, eax);
 mul(mc, eax); // Multiply L.O. dwords.
 mov(eax, prd); // Save L.O. dword of product.
 mov(edx, ecx); // Save H.O. dword of partial product result.

 mov(mp, eax);
 mul(mc[4], eax); // Multiply mp(L.O.) * mc(H.O.)
 add(ecx, eax); // Add to the partial product.
 adc(0, edx); // Don't forget the carry!
 mov(eax, ebx); // Save partial product for now.
 mov(edx, ecx);

 // Multiply the H.O. word of Multiplier with Multiplicand.

 mov(mp[4], eax); // Get H.O. dword of Multiplier.
 mul(mc, eax); // Multiply by L.O. word of Multiplicand.
 add(ebx, eax); // Add to the partial product.
 mov(eax, prd[4]); // Save the partial product.
 adc(edx, ecx); // Add in the carry!
 pushfd(); // Save carry out here.

 mov(mp[4], eax); // Multiply the two H.O. dwords together.
 mul(mc[4], eax);
 popfd(); // Retrieve carry from above
 adc(ecx, eax); // Add in partial product from above.
 adc(0, edx); // Don't forget the carry!
 mov(eax, prd[8]); // Save the partial product.
 mov(edx, prd[12]);

end MUL64;

static
 op1: qword;
 op2: qword;
 rslt: t128;

begin testMUL64;

 // Initialize the qword values (note that static objects
 // are initialized with zero bits).

 mov(1234, (type dword op1));
 mov(5678, (type dword op2));
 MUL64(op1, op2, rslt);

 // The following only prints the L.O. qword, but
 // we know the H.O. qword is zero so this is okay.

 stdout.put("rslt=");
 stdout.putu64((type qword rslt));

end testMUL64;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 863

Chapter Four Volume Four

roduct

n

.

ed

r

h

fter

r a
Program 4.1 Extended Precision Multiplication

 One thing you must keep in mind concerning this code, it only works for unsigned operands. To multi-
ply two signed values you must note the signs of the operands before the multiplication, take the absolute
value of the two operands, do an unsigned multiplication, and then adjust the sign of the resulting p
based on the signs of the original operands. Multiplication of signed operands appears in the exercises.

This example was fairly straight-forward since it was possible to keep the partial products in various
registers. If you need to multiply larger values together, you will need to maintain the partial products i
temporary (memory) variables. Other than that, the algorithm that Program 4.1 uses generalizes to any num-
ber of double words.

4.2.5 Extended Precision Division

You cannot synthesize a general n-bit/m-bit division operation using the DIV and IDIV instructions
Such an operation must be performed using a sequence of shift and subtract instructions and is extremely
messy. However, a less general operation, dividing an n-bit quantity by a 32 bit quantity is easily synthesiz
using the DIV instruction. This section presents both methods for extended precision division.

Before describing how to perform a multi-precision division operation, you should note that some ope-
ations require an extended precision division even though they may look calculable with a single DIV or
IDIV instruction. Dividing a 64-bit quantity by a 32-bit quantity is easy, as long as the resulting quotient fits
into 32 bits. The DIV and IDIV instructions will handle this directly. However, if the quotient does not fit
into 32 bits then you have to handle this problem as an extended precision division. The trick here is to
divide the (zero or sign extended) H.O dword of the dividend by the divisor, and then repeat the process wit
the remainder and the L.O. dword of the dividend. The following sequence demonstrates this:

static
dividend: dword[2] := [$1234, 4]; // = $4_0000_1234.
divisor: dword := 2; // dividend/divisor = $2_0000_091A
quotient: dword[2];
remainder:dword;
 .
 .
 .
mov(divisor, ebx);
mov(dividend[4], eax);
xor(edx, edx); // Zero extend for unsigned division.
div(ebx, edx:eax);
mov(eax, quotient[4]); // Save H.O. dword of the quotient (2).
mov(dividend[0], eax); // Note that this code does *NOT* zero extend
div(ebx, edx:eax); // EAX into EDX before this DIV instr.
mov(eax, quotient[0]); // Save L.O. dword of the quotient ($91a).
mov(edx, remainder); // Save away the remainder.

Since it is perfectly legal to divide a value by one, it is certainly possible that the resulting quotient a
a division could require as many bits as the dividend. That is why the quotient variable in this example is the
same size (64 bits) as the dividend variable. Regardless of the size of the dividend and divisor operands, the
remainder is always no larger than the size of the division operation (32 bits in this case). Hence the remain-
der variable in this example is just a double word.

Before analyzing this code to see how it works, let’s take a brief look at why a single 64/32 division will
not work for this particular example even though the DIV instruction does indeed calculate the result fo
64/32 division. The naive approach, assuming that the x86 were capable of this operation, would look some-
thing like the following:

// This code does *NOT* work!
Page 864 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

aise

s

l

mov(dividend[0], eax); // Get dividend into edx:eax
mov(divident[4], edx);
div(divisor, edx:eax); // Divide edx:eax by divisor.

Although this code is syntactically correct and will compile, if you attempt to run this code it will r
an ex.DivideError3 exception. The reason, if you’ll remember how the DIV instruction works, is that the
quotient must fit into 32 bits; since the quotient turns out to be $2_0000_091A, it will not fit into the EAX
register, hence the resulting exception.

Now let’s take another look at the former code that correctly computes the 64/32 quotient. This code
begins by computing the 32/32 quotient of dividend[4]/divisor. The quotient from this division (2) becomes
the H.O. double word of the final quotient. The remainder from this division (0) becomes the extension in
EDX for the second half of the division operation. The second half divides edx:dividend[0] by divisor to
produce the L.O. double word of the quotient and the remainder from the division. Note that the code doe
not zero extend EAX into EDX prior to the second DIV instruction. EDX already contains valid bits and
this code must not disturb them.

The 64/32 division operation above is actually just a special case of the more general division operation
that lets you divide an arbitrary sized value by a 32-bit divisor. To achieve this, you begin by moving the
H.O. double word of the dividend into EAX and zero extending this into EDX. Next, you divide this value
by the divisor. Then, without modifying EDX along the way, you store away the partial quotients, load EAX
with the next lower double word in the dividend, and divide it by the divisor. You repeat this operation unti
you’ve processed all the double words in the dividend. At that time the EDX register will contain the
remainder. The following program demonstrates how to divide a 128 bit quantity by a 32 bit divisor, produc-
ing a 128 bit quotient and a 32 bit remainder:

program testDiv128;
#include("stdlib.hhf")

type
 t128:dword[4];

procedure div128
(
 Dividend: t128;
 Divisor: dword;
 var QuotAdrs: t128;
 var Remainder: dword
); @nodisplay;

const
 Quotient: text := "(type dword [edi])";

begin div128;

 push(eax);
 push(edx);
 push(edi);

 mov(QuotAdrs, edi); // Pointer to quotient storage.

 mov(Dividend[12], eax); // Begin division with the H.O. dword.
 xor(edx, edx); // Zero extend into EDX.
 div(Divisor, edx:eax); // Divide H.O. dword.
 mov(eax, Quotient[12]); // Store away H.O. dword of quotient.

3. Windows may translate this to an ex.IntoInstr exception.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 865

Chapter Four Volume Four

 mov(Dividend[8], eax); // Get dword #2 from the dividend
 div(Divisor, edx:eax); // Continue the division.
 mov(eax, Quotient[8]); // Store away dword #2 of the quotient.

 mov(Dividend[4], eax); // Get dword #1 from the dividend.
 div(Divisor, edx:eax); // Continue the division.
 mov(eax, Quotient[4]); // Store away dword #1 of the quotient.

 mov(Dividend[0], eax); // Get the L.O. dword of the dividend.
 div(Divisor, edx:eax); // Finish the division.
 mov(eax, Quotient[0]); // Store away the L.O. dword of the quotient.

 mov(Remainder, edi); // Get the pointer to the remainder's value.
 mov(edx, [edi]); // Store away the remainder value.

 pop(edi);
 pop(edx);
 pop(eax);

end div128;

static
 op1: t128 := [$2222_2221, $4444_4444, $6666_6666, $8888_8888];
 op2: dword := 2;
 quo: t128;
 rmndr: dword;

begin testDiv128;

 div128(op1, op2, quo, rmndr);

 stdout.put
 (
 nl
 nl
 "After the division: " nl
 nl
 "Quotient = $",
 quo[12], "_",
 quo[8], "_",
 quo[4], "_",
 quo[0], nl

 "Remainder = ", (type uns32 rmndr)
);

end testDiv128;

Program 4.2 Unsigned 128/32 Bit Extended Precision Division

You can extend this code to any number of bits by simply adding additional MOV / DIV / MOV
instructions to the sequence. Like the extended multiplication the previous section presents, this extended
precision division algorithm works only for unsigned operands. If you need to divide two signed quantities,
Page 866 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

e

e

you must note their signs, take their absolute values, do the unsigned division, and then set the sign of th
result based on the signs of the operands.

If you need to use a divisor larger than 32 bits you’re going to have to implement the division using a
shift and subtract strategy. Unfortunately, such algorithms are very slow. In this section we’ll develop two
division algorithms that operate on an arbitrary number of bits. The first is slow but easier to understand, the
second is quite a bit faster (in general).

As for multiplication, the best way to understand how the computer performs division is to study how
you were taught to perform long division by hand. Consider the operation 3456/12 and the steps you would
take to manually perform this operation:

Figure 4.3 Manual Digit-by-digit Division Operation

This algorithm is actually easier in binary since at each step you do not have to guess how
many times 12 goes into the remainder nor do you have to multiply 12 by your guess to obtain th
amount to subtract. At each step in the binary algorithm the divisor goes into the remainder exactly
zero or one times. As an example, consider the division of 27 (11011) by three (11):

 2
12 3456
 24
 105

(2) Subtract 24 from 35
and drop down the
105.

12 3456
 24

(1) 12 goes into 34 two times.

 28
12 3456
 24
 105
 96
 96

(4) Subtract 96 from 105
and drop down the 96.

(3) 12 goes into 105
 eight times.

 2
12 3456
 24
 105
 96

 288
12 3456
 24
 105
 96
 96
 96

(6) Therefore, 12
goes into 3456
exactly 288 times.

(5) 12 goes into 96
 exactly eight times.

 28
12 3456
 24
 105
 96
 96
 96

11 11011
 11

11 goes into 11 one time.

11 11011
 11
 00

Subtract out the 11 and bring down the zero.

1

11 11011
 11
 00
 00

11 goes into 00 zero times.

1

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 867

Chapter Four Volume Four

he
Figure 4.4 Longhand Division in Binary

There is a novel way to implement this binary division algorithm that computes the quotient and t
remainder at the same time. The algorithm is the following:

Quotient := Dividend;
Remainder := 0;
for i:= 1 to NumberBits do

11 11011
 11
 00
 00
 01

Subtract out the zero and bring down the one.

10

11 11011
 11
 00
 00
 01
 00

11 goes into 01 zero times.

10

11 11011
 11
 00
 00
 01
 00
 11

Subtract out the zero and bring down the one.

100

11 11011
 11
 00
 00
 01
 00
 11
 11

11 goes into 11 one time.

100

11 11011
 11
 00
 00
 01
 00
 11
 11
 00

This produces the final result
of 1001.

1001
Page 868 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
Remainder:Quotient := Remainder:Quotient SHL 1;
if Remainder >= Divisor then

Remainder := Remainder - Divisor;
Quotient := Quotient + 1;

endif
endfor

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and Dividend variables. Note that
the "Quotient := Quotient + 1;" statement sets the L.O. bit of Quotient to one since this algorithm previously
shifts Quotient one bit to the left. The following program implements this algorithm

program testDiv128b;
#include("stdlib.hhf")

type
 t128:dword[4];

// div128-
//
// This procedure does a general 128/128 division operation
// using the following algorithm:
// (all variables are assumed to be 128 bit objects)
//
// Quotient := Dividend;
// Remainder := 0;
// for i:= 1 to NumberBits do
//
// Remainder:Quotient := Remainder:Quotient SHL 1;
// if Remainder >= Divisor then
//
// Remainder := Remainder - Divisor;
// Quotient := Quotient + 1;
//
// endif
// endfor
//

procedure div128
(
 Dividend: t128;
 Divisor: t128;
 var QuotAdrs: t128;
 var RmndrAdrs: t128
); @nodisplay;

const
 Quotient: text := "Dividend"; // Use the Dividend as the Quotient.

var
 Remainder: t128;

begin div128;

 push(eax);
 push(ecx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 869

Chapter Four Volume Four
 push(edi);

 mov(0, eax); // Set the remainder to zero.
 mov(eax, Remainder[0]);
 mov(eax, Remainder[4]);
 mov(eax, Remainder[8]);
 mov(eax, Remainder[12]);

 mov(128, ecx); // Count off 128 bits in ECX.
 repeat

 // Compute Remainder:Quotient := Remainder:Quotient SHL 1:

 shl(1, Dividend[0]); // See the section on extended
 rcl(1, Dividend[4]); // precision shifts to see how
 rcl(1, Dividend[8]); // this code shifts 256 bits to
 rcl(1, Dividend[12]); // the left by one bit.
 rcl(1, Remainder[0]);
 rcl(1, Remainder[4]);
 rcl(1, Remainder[8]);
 rcl(1, Remainder[12]);

 // Do a 128-bit comparison to see if the remainder
 // is greater than or equal to the divisor.

 if
 (#{
 mov(Remainder[12], eax);
 cmp(eax, Divisor[12]);
 ja true;
 jb false;

 mov(Remainder[8], eax);
 cmp(eax, Divisor[8]);
 ja true;
 jb false;

 mov(Remainder[4], eax);
 cmp(eax, Divisor[4]);
 ja true;
 jb false;

 mov(Remainder[0], eax);
 cmp(eax, Divisor[0]);
 jb false;
 }#) then

 // Remainder := Remainder - Divisor

 mov(Divisor[0], eax);
 sub(eax, Remainder[0]);

 mov(Divisor[4], eax);
 sbb(eax, Remainder[4]);

 mov(Divisor[8], eax);
 sbb(eax, Remainder[8]);

 mov(Divisor[12], eax);
 sbb(eax, Remainder[12]);
Page 870 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
 // Quotient := Quotient + 1;

 add(1, Quotient[0]);
 adc(0, Quotient[4]);
 adc(0, Quotient[8]);
 adc(0, Quotient[12]);

 endif;
 dec(ecx);

 until(@z);

 // Okay, copy the quotient (left in the Dividend variable)
 // and the remainder to their return locations.

 mov(QuotAdrs, edi);
 mov(Quotient[0], eax);
 mov(eax, [edi]);
 mov(Quotient[4], eax);
 mov(eax, [edi+4]);
 mov(Quotient[8], eax);
 mov(eax, [edi+8]);
 mov(Quotient[12], eax);
 mov(eax, [edi+12]);

 mov(RmndrAdrs, edi);
 mov(Remainder[0], eax);
 mov(eax, [edi]);
 mov(Remainder[4], eax);
 mov(eax, [edi+4]);
 mov(Remainder[8], eax);
 mov(eax, [edi+8]);
 mov(Remainder[12], eax);
 mov(eax, [edi+12]);

 pop(edi);
 pop(ecx);
 pop(eax);

end div128;

// Some simple code to test out the division operation:

static
 op1: t128 := [$2222_2221, $4444_4444, $6666_6666, $8888_8888];
 op2: t128 := [2, 0, 0, 0];
 quo: t128;
 rmndr: t128;

begin testDiv128b;

 div128(op1, op2, quo, rmndr);

 stdout.put
 (
 nl
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 871

Chapter Four Volume Four

re
 nl
 "After the division: " nl
 nl
 "Quotient = $",
 quo[12], "_",
 quo[8], "_",
 quo[4], "_",
 quo[0], nl

 "Remainder = ", (type uns32 rmndr)
);

end testDiv128b;

Program 4.3 Extended Precision Division

This code looks simple but there are a few problems with it. First, it does not check for division by zero
(it will produce the value $FFFF_FFFF_FFFF_FFFF if you attempt to divide by zero), it only handles
unsigned values, and it is very slow. Handling division by zero is very simple, just check the divisor against
zero prior to running this code and return an appropriate error code if the divisor is zero (or RAISE the
ex.DivisionError exception). Dealing with signed values is the same as the earlier division algorithm, this
problem appears as a programming exercise. The performance of this algorithm, however, leaves a lot to be
desired. It’s around an order of magnitude or two worse than the DIV/IDIV instructions on the x86 and they
are among the slowest instructions on the CPU.

There is a technique you can use to boost the performance of this division by a fair amount: check to see
if the divisor variable uses only 32 bits. Often, even though the divisor is a 128 bit variable, the value itself
fits just fine into 32 bits (i.e., the H.O. double words of Divisor are zero). In this special case, that occurs f-
quently, you can use the DIV instruction which is much faster.

4.2.6 Extended Precision NEG Operations

Although there are several ways to negate an extended precision value, the shortest way for smaller val-
ues (96 bits or less) is to use a combination of NEG and SBB instructions. This technique uses the fact that
NEG subtracts its operand from zero. In particular, it sets the flags the same way the SUB instruction would
if you subtracted the destination value from zero. This code takes the following form (assuming you want to
negate the 64-bit value in EDX:EAX):

neg(edx);
neg(eax);
sbb(0, edx);

The SBB instruction decrements EDX if there is a borrow out of the L.O. word of the negation opera-
tion (which always occurs unless EAX is zero).

To extend this operation to additional bytes, words, or double words is easy; all you have to do is start
with the H.O. memory location of the object you want to negate and work towards the L.O. byte. The follow-
ing code computes a 128 bit negation:

static
Value: dword[4];
 .
Page 872 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

e
ts
 .
 .
neg(Value[12]); // Negate the H.O. double word.
neg(Value[8]); // Neg previous dword in memory.
sbb(0, Value[12]); // Adjust H.O. dword.

neg(Value[4]); // Negate the second dword in the object.
sbb(0, Value[8]); // Adjust third dword in object.
sbb(0, Value[12]); // Adjust the H.O. dword.

neg(Value); // Negate the L.O. dword.
sbb(0, Value[4]); // Adjust second dword in object.
sbb(0, Value[8]); // Adjust third dword in object.
sbb(0, Value[12]); // Adjust the H.O. dword.

Unfortunately, this code tends to get really large and slow since you need to propagate the carry through
all the H.O. words after each negate operation. A simpler way to negate larger values is to simply subtract
that value from zero:

static
Value: dword[5]; // 160-bit value.
 .
 .
 .
mov(0, eax);
sub(Value, eax);
mov(eax, Value);

mov(0, eax);
sbb(Value[4], eax);
mov(eax, Value[4]);

mov(0, eax);
sbb(Value[8], eax);
mov(eax, Value[8]);

mov(0, eax);
sbb(Value[12], eax);
mov(eax, Value[12]);

mov(0, eax);
sbb(Value[16], eax);
mov(eax, Value[16]);

4.2.7 Extended Precision AND Operations

Performing an n-byte AND operation is very easy – simply AND the corresponding bytes between th
two operands, saving the result. For example, to perform the AND operation where all operands are 64 bi
long, you could use the following code:

mov((type dword source1), eax);
and((type dword source2), eax);
mov(eax, (type dword dest));

mov((type dword source1[4]), eax);
and((type dword source2[4]), eax);
mov(eax, (type dword dest[4]));
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 873

Chapter Four Volume Four

eed to
r.

it

on
This technique easily extends to any number of words, all you need to is logically AND the correspond-
ing bytes, words, or double words together in the operands. Note that this sequence sets the flags according
to the value of the last AND operation. If you AND the H.O. double words last, this sets all but the zero flag
correctly. If you need to test the zero flag after this sequence, you will need to logically OR the two resulting
double words together (or otherwise compare them both against zero).

4.2.8 Extended Precision OR Operations

Multi-byte logical OR operations are performed in the same way as multi-byte AND operations. You
simply OR the corresponding bytes in the two operand together. For example, to logically OR two 96 bit val-
ues, use the following code:

mov((type dword source1), eax);
or((type dword source2), eax);
mov(eax, (type dword dest));

mov((type dword source1[4]), eax);
or((type dword source2[4]), eax);
mov(eax, (type dword dest[4]));

mov((type dword source1[8]), eax);
or((type dword source2[8]), eax);
mov(eax, (type dword dest[8]));

As for the previous example, this does not set the zero flag properly for the entire operation. If you n
test the zero flag after a multiprecision OR, you must logically OR the resulting double words togethe

4.2.9 Extended Precision XOR Operations

Extended precision XOR operations are performed in a manner identical to AND/OR – simply XOR the
corresponding bytes in the two operands to obtain the extended precision result. The following code
sequence operates on two 64 bit operands, computes their exclusive-or, and stores the result into a 64 b
variable.

mov((type dword source1), eax);
xor((type dword source2), eax);
mov(eax, (type dword dest));

mov((type dword source1[4]), eax);
xor((type dword source2[4]), eax);
mov(eax, (type dword dest[4]));

The comment about the zero flag in the previous two sections applies here.

4.2.10 Extended Precision NOT Operations

The NOT instruction inverts all the bits in the specified operand. An extended precision NOT is per-
formed by simply executing the NOT instruction on all the affected operands. For example, to perform a 64
bit NOT operation on the value in (edx:eax), all you need to do is execute the instructions:

not(eax);
not(edx);

Keep in mind that if you execute the NOT instruction twice, you wind up with the original value. Also
note that exclusive-ORing a value with all ones ($FF, $FFFF, or $FFFF_FFFF) performs the same operati
as the NOT instruction.
Page 874 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

happen

 an
o the

L
n

at them
4.2.11 Extended Precision Shift Operations

Extended precision shift operations require a shift and a rotate instruction. Consider what must
to implement a 64 bit SHL using 32 bit operations:

1) A zero must be shifted into bit zero.

2) Bits zero through 30 are shifted into the next higher bit.

3) Bit 31 is shifted into bit 32.

4) Bits 32 through 62 must be shifted into the next higher bit.

5) Bit 63 is shifted into the carry flag.

Figure 4.5 64-bit Shift Left Operation

The two instructions you can use to implement this 32 bit shift are SHL and RCL. For example, to shift
the 64 bit quantity in (EDX:EAX) one position to the left, you’d use the instructions:

shl(1, eax);
rcl(1, eax);

Note that you can only shift an extended precision value one bit at a time. You cannot shift an extended
precision operand several bits using the CL register. Nor can you specify a constant value greater than one
using this technique.

To understand how this instruction sequence works, consider the operation of these instructions on
individual basis. The SHL instruction shifts a zero into bit zero of the 64 bit operand and shifts bit 31 int
carry flag. The RCL instruction then shifts the carry flag into bit 32 and then shifts bit 63 into the carry flag.
The result is exactly what we want.

 To perform a shift left on an operand larger than 64 bits you simply add additional RCL instructions. An
extended precision shift left operation always starts with the least significant word and each succeeding RC
instruction operates on the next most significant word. For example, to perform a 96 bit shift left operatio
on a memory location you could use the following instructions:

shl(1, (type dword Operand[0]));
rcl(1, (type dword Operand[4]));
rcl(1, (type dword Operand[8]));

If you need to shift your data by two or more bits, you can either repeat the above sequence the desired
number of times (for a constant number of shifts) or you can place the instructions in a loop to repe
some number of times. For example, the following code shifts the 96 bit value Operand to the left the num-
ber of bits specified in ECX:

ShiftLoop:
shl(1, (type dword Operand[0]));
rcl(1, (type dword Operand[4]));
rcl(1, (type dword Operand[8]));

63 36 35 34 33 32

...C

31 4 3 2 1 0

...
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 875

Chapter Four Volume Four

 bit
s.

.,

 is

e

dec(ecx);
jnz ShiftLoop;

You implement SHR and SAR in a similar way, except you must start at the H.O. word of the operand
and work your way down to the L.O. word:

// Double precision SAR:

sar(1, (type dword Operand[8]));
rcr(1, (type dword Operand[4]));
rcr(1, (type dword Operand[0]));

// Double precision SHR:

shr(1, (type dword Operand[8]));
rcr(1, (type dword Operand[4]));
rcr(1, (type dword Operand[0]));

There is one major difference between the extended precision shifts described here and their 8/16/32
counterparts – the extended precision shifts set the flags differently than the single precision operation
This is because the rotate instructions affect the flags differently than the shift instructions. Fortunately, the
carry is the flag most often tested after a shift operation and the extended precision shift operations (i.e
rotate instructions) properly set this flag.

The SHLD and SHRD instructions let you efficiently implement multiprecision shifts of several bits.
These instructions have the following syntax:

shld(constant, Operand1, Operand2);

shld(cl, Operand1, Operand2);

shrd(constant, Operand1, Operand2);

shrd(cl, Operand1, Operand2);

The SHLD instruction does the following:

Figure 4.6 SHLD Operation

Operand1 must be a 16 or 32 bit register. Operand2 can be a register or a memory location. Both oper-
ands must be the same size. The immediate operand can be a value in the range zero through n-1, where n
the number of bits in the two operands; it specifies the number of bits to shift.

The SHLD instruction shifts bits in Operand2 to the left. The H.O. bits shift into the carry flag and the
H.O. bits of Operand1 shift into the L.O. bits of Operand2. Note that this instruction does not modify th
value of Operand1, it uses a temporary copy of Operand1 during the shift. The immediate operand specifies
the number of bits to shift. If the count is n, then SHLD shifts bit n-1 into the carry flag. It also shifts the
H.O. n bits of Operand1 into the L.O. n bits of Operand2. The SHLD instruction sets the flag bits as fol-
lows:

Operand2
H.O Bit 4 3 2 1 0

...C

Temporary copy of Operand1
H.O Bit 4 3 2 1 0

...
Page 876 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

o get

lly

e

• If the shift count is zero, the SHLD instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the H.O. bit of the Operand2.
• If the shift count is one, the overflow flag will contain one if the sign bit of Operand2 changes

during the shift. If the count is not one, the overflow flag is undefined.
• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.

The SHRD instruction is similar to SHLD except, of course, it shifts its bits right rather than left. T
a clear picture of the SHRD instruction, consider Figure 4.7

Figure 4.7 SHRD Operation

The SHRD instruction sets the flag bits as follows:

• If the shift count is zero, the SHRD instruction doesn’t affect any flags.
• The carry flag contains the last bit shifted out of the L.O. bit of the Operand2.
• If the shift count is one, the overflow flag will contain one if the H.O. bit of Operand2 changes.

If the count is not one, the overflow flag is undefined.
• The zero flag will be one if the shift produces a zero result.
• The sign flag will contain the H.O. bit of the result.

 Consider the following code sequence:

static
ShiftMe: dword[3] := [$1234, $5678, $9012];
 .
 .
 .
mov(ShiftMe[4], eax)
shld(6, eax, ShiftMe[8]);
mov(ShiftMe[0], eax);
shld(6, eax, ShiftMe[4]);
shl(6, ShiftMe[0]);

The first SHLD instruction above shifts the bits from ShiftMe+4 into ShiftMe+8 without affecting the
value in ShiftMe+4. The second SHLD instruction shifts the bits from SHIFTME into SHIFTME+4. Fina,
the SHL instruction shifts the L.O. double word the appropriate amount. There are two important things to
note about this code. First, unlike the other extended precision shift left operations, this sequence works
from the H.O. double word down to the L.O. double word. Second, the carry flag does not contain the carry
out of the H.O. shift operation. If you need to preserve the carry flag at that point, you will need to push th
flags after the first SHLD instruction and pop the flags after the SHL instruction.

...

Operand2
H.O Bit 5 4 3 2 1 0

...

Temporary Copy of Operand1
H.O Bit 5 4 3 2 1 0

C

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 877

Chapter Four Volume Four

e

nd

ou need

l
 than
it
You can do an extended precision shift right operation using the SHRD instruction. It works almost the
same way as the code sequence above except you work from the L.O. double word to the H.O. double word.
The solution is left as an exercise.

4.2.12 Extended Precision Rotate Operations

The RCL and RCR operations extend in a manner almost identical to that for SHL and SHR . For exam-
ple, to perform 96 bit RCL and RCR operations, use the following instructions:

rcl(1, (type dword Operand[0]));
rcl(1, (type dword Operand[4]));
rcl(1, (type dword Operand[8]));

rcr(1, (type dword Operand[8]));
rcr(1, (type dword Operand[4]));
rcr(1, (type dword Operand[0]));

The only difference between this code and the code for the extended precision shift operations is that th
first instruction is a RCL or RCR rather than a SHL or SHR instruction.

Performing an extended precision ROL or ROR instruction isn’t quite as simple an operation. You can
use the BT, SHLD, and SHRD instructions to implement an extended precision ROL or ROR instruction.
The following code shows how to use the SHLD instruction to do an extended precision ROL:

// Compute ROL(4, EDX:EAX);

mov(edx, ebx);
shld, 4, eax, edx);
shld(4, ebx, eax);
bt(0, eax); // Set carry flag, if desired.

An extended precision ROR instruction is similar; just keep in mind that you work on the L.O. end of
the object first and the H.O. end last.

4.2.13 Extended Precision I/O

Once you have the ability to compute using extended precision arithmetic, the next problem is how do
you get those extended precision values into your program and how do you display those extended precision
values to the user? HLA’s Standard Library provides routines for unsigned decimal, signed decimal, a
hexadecimal I/O for values that are eight, 16, 32, or 64 bits in length. So as long as you’re working with val-
ues whose size is less than or equal to 64 bits in length, you can use the Standard Library code. If y
to input or output values that are greater than 64 bits in length, you will need to write your own procedures to
handle the operation. This section discusses the strategies you will need to write such routines.

The examples in this section work specifically with 128-bit values. The algorithms are perfectly genera
and extend to any number of bits (indeed, the 128-bit algorithms in this section are really nothing more
an extension of the algorithms the HLA Standard Library uses for 64-bit values). If you need a set of 128-b
unsigned I/O routines, you will probably be able to use the following code as-is. If you need to handle larger
values, simple modifications to the following code is all that should be necessary.

The following examples all assume a common data type for 128-bit values. The HLA type declaration
for this data type is one of the following depending on the type of value

type
bits128: dword[4];
uns128: bits128;
Page 878 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

ry

 a

g

one

 to
int128: bits128;

4.2.13.1 Extended Precision Hexadecimal Output

Extended precision hexadecimal output is very easy. All you have to do is output each double word
component of the extended precision value from the H.O. double word to the L.O. double word using a call
to the stdout.putd routine. The following procedure does exactly this to output a bits128 value:

procedure putb128(b128: bits128); nodisplay;
begin putb128;

stdout.putd(b128[12]);
stdout.putd(b128[8]);
stdout.putd(b128[4]);
stdout.putd(b128[0]);

end putb128;

Since HLA provides the stdout.putq procedure, you can shorten the code above by calling stdout.putq
just twice:

procedure putb128(b128: bits128); nodisplay;
begin putb128;

stdout.putq((type qword b128[8]));
stdout.putq((type qword b128[0]));

end putb128;

Note that this code outputs the two quad words with the H.O. quad word output first and L.O. quad word
output second.

4.2.13.2 Extended Precision Unsigned Decimal Output

Decimal output is a little more complicated than hexadecimal output because the H.O. bits of a bina
number affect the L.O. digits of the decimal representation (this was not true for hexadecimal values which
is why hexadecimal output is so easy). Therefore, we will have to create the decimal representation for
binary number by extracting one decimal digit at a time from the number.

The most common solution for unsigned decimal output is to successively divide the value by ten until
the result becomes zero. The remainder after the first division is a value in the range 0..9 and this value cor-
responds to the L.O. digit of the decimal number. Successive divisions by ten (and their correspondin
remainder) extract successive digits in the number.

Iterative solutions to this problem generally allocate storage for a string of characters large enough to
hold the entire number. Then the code extracts the decimal digits in a loop and places them in the string
by one. At the end of the conversion process, the routine prints the characters in the string in reverse order
(remember, the divide algorithm extracts the L.O. digits first and the H.O. digits last, the opposite of the way
you need to print them).

In this section, we will employ a recursive solution because it is a little more elegant. The recursive
solution begins by dividing the value by 10 and saving the remainder in a local variable. If the quotient was
not zero, the routine recursively calls itself to print any leading digits first. On return from the recursive call
(which prints all the leading digits), the recursive algorithm prints the digit associated with the remainder
complete the operation. Here’s how the operation works when printing the decimal value "123":
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 879

Chapter Four Volume Four

t.

t.

e

e

n

l

is the
algo-
rd, we
n (see
utput
• (1) Divide 123 by 10. Quotient is 12, remainder is 3.
• (2) Save the remainder (3) in a local variable and recursively call the routine with the quotien
• (3) [Recursive Entry 1] Divide 12 by 10. Quotient is 1, remainder is 2.
• (4) Save the remainder (2) in a local variable and recursively call the routine with the quotien
• (5) [Recursive Entry 2] Divide 1 by 10. Quotient is 0, remainder is 1.
• (6) Save the remainder (1) in a local variable. Since the Quotient is zero, don’t call the routin

recursively.
• (7) Output the remainder value saved in the local variable (1). Return to the caller (Recursiv

Entry 1).
• (8) [Return to Recursive Entry 1] Output the remainder value saved in the local variable i

recursive entry 1 (2). Return to the caller (original invocation of the procedure).
• (9) [Original invocation] Output the remainder value saved in the local variable in the origina

call (3). Return to the original caller of the output routine.
The only operation that requires extended precision calculation through this entire algorithm

"divide by 10" requirement. Everything else is simple and straight-forward. We are in luck with this
rithm, since we are dividing an extended precision value by a value that easily fits into a double wo
can use the fast (and easy) extended precision division algorithm that uses the DIV instructio
“Extended Precision Division” on page 864). The following program implements a 128-bit decimal o
routine utilizing this technique.

program out128;

#include("stdlib.hhf");

// 128-bit unsigned integer data type:

type
 uns128: dword[4];

// DivideBy10-
//
// Divides "divisor" by 10 using fast
// extended precision division algorithm
// that employs the DIV instruction.
//
// Returns quotient in "quotient"
// Returns remainder in eax.
// Trashes EBX, EDX, and EDI.

procedure DivideBy10(dividend:uns128; var quotient:uns128); @nodisplay;
begin DivideBy10;

 mov(quotient, edi);
 xor(edx, edx);
 mov(dividend[12], eax);
 mov(10, ebx);
 div(ebx, edx:eax);
 mov(eax, [edi+12]);

 mov(dividend[8], eax);
 div(ebx, edx:eax);
 mov(eax, [edi+8]);

 mov(dividend[4], eax);
 div(ebx, edx:eax);
 mov(eax, [edi+4]);
Page 880 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

 mov(dividend[0], eax);
 div(ebx, edx:eax);
 mov(eax, [edi+0]);
 mov(edx, eax);

end DivideBy10;

// Recursive version of putu128.
// A separate "shell" procedure calls this so that
// this code does not have to preserve all the registers
// it uses (and DivideBy10 uses) on each recursive call.

procedure recursivePutu128(b128:uns128); @nodisplay;
var
 remainder: byte;

begin recursivePutu128;

 // Divide by ten and get the remainder (the char to print).

 DivideBy10(b128, b128);
 mov(al, remainder); // Save away the remainder (0..9).

 // If the quotient (left in b128) is not zero, recursively
 // call this routine to print the H.O. digits.

 mov(b128[0], eax); // If we logically OR all the dwords
 or(b128[4], eax); // together, the result is zero if and
 or(b128[8], eax); // only if the entire number is zero.
 or(b128[12], eax);
 if(@nz) then

 recursivePutu128(b128);

 endif;

 // Okay, now print the current digit.

 mov(remainder, al);
 or('0', al); // Converts 0..9 -> '0..'9'.
 stdout.putc(al);

end recursivePutu128;

// Non-recursive shell to the above routine so we don't bother
// saving all the registers on each recursive call.

procedure putu128(b128:uns128); @nodisplay;
begin putu128;

 push(eax);
 push(ebx);
 push(edx);
 push(edi);

 recursivePutu128(b128);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 881

Chapter Four Volume Four
 pop(edi);
 pop(edx);
 pop(ebx);
 pop(eax);

end putu128;

// Code to test the routines above:

static
 b0: uns128 := [0, 0, 0, 0]; // decimal = 0
 b1: uns128 := [1234567890, 0, 0, 0]; // decimal = 1234567890
 b2: uns128 := [$8000_0000, 0, 0, 0]; // decimal = 2147483648
 b3: uns128 := [0, 1, 0, 0]; // decimal = 4294967296

 // Largest uns128 value
 // (decimal=340,282,366,920,938,463,463,374,607,431,768,211,455):

 b4: uns128 := [$FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF];

begin out128;

 stdout.put("b0 = ");
 putu128(b0);
 stdout.newln();

 stdout.put("b1 = ");
 putu128(b1);
 stdout.newln();

 stdout.put("b2 = ");
 putu128(b2);
 stdout.newln();

 stdout.put("b3 = ");
 putu128(b3);
 stdout.newln();

 stdout.put("b4 = ");
 putu128(b4);
 stdout.newln();

end out128;

Program 4.4 128-bit Extended Precision Decimal Output Routine

4.2.13.3 Extended Precision Signed Decimal Output

Once you have an extended precision unsigned decimal output routine, writing an extended precision
signed decimal output routine is very easy. The basic algorithm takes the following form:

• Check the sign of the number. If it is positive, call the unsigned output routine to print it.
Page 882 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

ed

umber.
 version

r

ber of

e.g.,
recur

 the

v
ne
• If the number is negative, print a minus sign. Then negate the number and call the unsign
output routine to print it.

To check the sign of an extended precision integer, of course, you simply test the H.O. bit of the n
To negate a large value, the best solution is to probably subtract that value from zero. Here’s a quick
of puti128 that uses the putu128 routine from the previous section.

procedure puti128(i128: int128); nodisplay;
begin puti128;

if((type int32 i128[12]) < 0) then

stdout.put(’-’);

// Extended Precision Negation:

push(eax);
mov(0, eax);
sub(i128[0], eax);
mov(eax, i128[0]);

mov(0, eax);
sbb(i128[4], eax);
mov(eax, i128[4]);

mov(0, eax);
sbb(i128[8], eax);
mov(eax, i128[8]);

mov(0, eax);
sbb(i128[12], eax);
mov(eax, i128[12]);
pop(eax);

endif;
putu128((type uns128 i128));

end puti128;

4.2.13.4 Extended Precision Formatted I/O

The code in the previous two sections prints signed and unsigned integers using the minimum numbe
of necessary print positions. To create nicely formatted tables of values you will need the equivalent of a
puti128Size or putu128Size routine. Once you have the "unformatted" versions of these routines, imple-
menting the formatted versions is very easy.

The first step is to write an "i128Size" and a "u128Size" routine that computes the minimum num
digits needed to display the value. The algorithm to accomplish this is very similar to the numeric output
routines. In fact, the only difference is that you initialize a counter to zero upon entry into the routine (
the non-recursive shell routine) and you increment this counter rather than outputting a digit on each -
sive call. (Don’t forget to increment the counter inside "i128Size" if the number is negative; you must
allow for the output of the minus sign.) After the calculation is complete, these routines should return
size of the operand in the EAX register.

Once you have the "i128Size" and "u128Size" routines, writing the formatted output routines is ery
easy. Upon initial entry into puti128Size or putu128Size, these routines call the corresponding "size" routi
to determine the number of print positions for the number to display. If the value that the "size" routine
returns is greater than the absolute value of the minimum size parameter (passed into puti128Size or
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 883

Chapter Four Volume Four

e
rror

 dif

ine
e char

ep

 trans

he

meric

t

k
,

putu128Size) all you need to do is call the put routine to print the value, no other formatting is necessary. If
the absolute value of the parameter size is greater than the value i128Size or u128Size returns, then the pro-
gram must compute the difference between these two values and print that many spaces (or other filler char-
acter) before printing the number (if the parameter size value is positive) or after printing the number (if the
parameter size value is negative). The actual implementation of these two routines is left as an exercise at
the end of the volume. If you have any further questions about how to do this, you can take a look at the
HLA Standard Library code for routines like stdout.putu32Size.

4.2.13.5 Extended Precision Input Routines

There are a couple of fundamental differences between the extended precision output routines and th
extended precision input routines. First of all, numeric output generally occurs without possibility of e4;
numeric input, on the other hand, must handle the very real possibility of an input error such as illegal char-
acters and numeric overflow. Also, HLA’s Standard Library and run-time system encourages a slightly-
ferent approach to input conversion. This section discusses those issues that differentiate input conversion
from output conversion.

Perhaps the biggest difference between input and output conversion is the fact that output conversion is
unbracketed. That is, when converting a numeric value to a string of characters for output, the output rout
does not concern itself with characters preceding the output string nor does it concerning itself with th-
acters following the numeric value in the output stream. Numeric output routines convert their data to a
string and print that string without considering the context (i.e., the characters before and after the string r-
resentation of the numeric value). Numeric input routines cannot be so cavalier; the contextual information
surrounding the numeric string is very important.

A typical numeric input operation consists of reading a string of characters from the user and then-
lating this string of characters into an internal numeric representation. For example, a statement like
"stdin.get(i32);" typically reads a line of text from the user and converts a sequence of digits appearing at t
beginning of that line of text into a 32-bit signed integer (assuming i32 is an int32 object). Note, however,
that the stdin.get routine skips over certain characters in the string that may appear before the actual nu
characters. For example, stdin.get automatically skips any leading spaces in the string. Likewise, the input
string may contain additional data beyond the end of the numeric input (for example, it is possible to read
two integer values from the same input line), therefore the input conversion routine must somehow deter-
mine where the numeric data ends in the input stream. Fortunately, HLA provides a simple mechanism tha
lets you easily determine the start and end of the input data: the Delimiters character set.

The Delimiters character set is a variable, internal to HLA, that contains the set of legal characters that
may precede or follow a legal numeric value. By default, this character set includes the end of string marer
(a zero byte), a tab character, a line feed character, a carriage return character, a space, a comma, a colon
and a semicolon. Therefore, HLA’s numeric input routines will automatically ignore any characters in this
set that occur on input before a numeric string. Likewise, characters from this set may legally follow a
numeric string on input (conversely, if any non-delimiter character follows the numeric string, HLA will
raise an ex.ConversionError exception).

The Delimiters character set is a private variable inside the HLA Standard Library. Although you do not
have direct access to this object, the HLA Standard Library does provide two accessor functions, conv.setDe-
limiters and conv.getDelimiters that let you access and modify the value of this character set. These two
functions have the following prototypes (found in the "conv.hhf" header file):

procedure conv.setDelimiters(Delims:cset);
procedure conv.getDelimiters(var Delims:cset);

The conv.SetDelimiters procedure will copy the value of the Delims parameter into the internal Delimit-
ers character set. Therefore, you can use this procedure to change the character set if you want to use a dif-
ferent set of delimiters for numeric input. The conv.getDelimiters call returns a copy of the internal

4. Technically speaking, this isn’t entirely true. It is possible for a device error (e.g., disk full) to occur. The likelihood of this
is so low that we can effectively ignore this possibility.
Page 884 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

cters are

the
s

f the

n

e

o

g. F
e

 "4"
mers
racters.

me
Delimiters character set in the variable you pass as a parameter to the conv.getDelimiters procedure. We will
use the value returned by conv.getDelimiters to determine the end of numeric input when writing our own
extended precision numeric input routines.

When reading a numeric value from the user, the first step will be to get a copy of the Delimiters charac-
ter set. The second step is to read and discard input characters from the user as long as those chara
members of the Delimiters character set. Once a character is found that is not in the Delimiters set, the input
routine must check this character and verify that it is a legal numeric character. If not, the program should
raise an ex.IllegalChar exception if the character’s value is outside the range $00..$7f or it should raise
ex.ConversionError exception if the character is not a legal numeric character. Once the routine encounter
a numeric character, it should continue reading characters as long as they valid numeric characters; while
reading the characters the conversion routine should be translating them to the internal representation o
numeric data. If, during conversion, an overflow occurs, the procedure should raise the ex.ValueOutOfRange
exception.

Conversion to numeric representation should end when the procedure encounters the first delimiter
character at the end of the string of digits. However, it is very important that the procedure does not co-
sume the delimiter character that ends the string. That is, the following is incorrect:

static
Delimiters: cset;

 .
 .
 .

conv.getDelimiters(Delimiters);

// Skip over leading delimiters in the string:

while(stdin.getc() in Delimiters) do /* getc did the work */ endwhile;
while(al in {’0’..’9’}) do

// Convert character in AL to numeric representation and
// accumulate result...

stdin.getc();

endwhile;
if(al not in Delimiters) then

raise(ex.ConversionError);

endif;

The first WHILE loop reads a sequence of delimiter characters. When this first WHILE loop ends, the
character in AL is not a delimiter character. So far, so good. The second WHILE loop processes a sequenc
of decimal digits. First, it checks the character read in the previous WHILE loop to see if it is a decimal
digit; if so, it processes that digit and reads the next character. This process continues until the call t
stdin.getc (at the bottom of the loop) reads a non-digit character. After the second WHILE loop, the program
checks the last character read to ensure that it is a legal delimiter character for a numeric input value.

The problem with this algorithm is that it consumes the delimiter character after the numeric strinor
example, the colon symbol is a legal delimiter in the default Delimiters character set. If the user types th
input "123:456" and executes the code above, this code will properly convert "123" to the numeric value one
hundred twenty-three. However, the very next character read from the input stream will be the character
not the colon character (":"). While this may be acceptable in certain circumstances, Most program
expect numeric input routines to consume only leading delimiter characters and the numeric digit cha
They do not expect the input routine to consume any trailing delimiter characters (e.g., many programs will
read the next character and expect a colon as input if presented with the string "123:456"). Since stdin.getc
consumes an input character, and there is no way to "put the character back" onto the input stream, so
other way of reading input characters from the user, that doesn’t consume those characters, is needed5.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 885

Chapter Four Volume Four

 the

s
put

g. This
o do this,
The HLA Standard Library comes to the rescue by providing the stdin.peekc function. Like stdin.getc,
the stdin.peekc routine reads the next input character from HLA’s internal buffer. There are two major differ-
ences between stdin.peekc and stdin.getc. First, stdin.peekc will not force the input of a new line of text
from the user if the current input line is empty (or you’ve already read all the text from the input line).
Instead, stdin.peekc simply returns zero in the AL register to indicate that there are no more characters on
input line. Since #0 is (by default) a legal delimiter character for numeric values, and the end of line is cer-
tainly a legal way to terminate numeric input, this works out rather well. The second difference between
stdin.getc and stdin.peekc is that stdin.peekc does not consume the character read from the input buffer. If
you call stdin.peekc several times in a row, it will always return the same character; likewise, if you call
stdin.getc immediately after stdin.peekc, the call to stdin.getc will generally return the same character a
returned by stdin.peekc (the only exception being the end of line condition). So although we cannot
characters back onto the input stream after we’ve read them with stdin.getc, we can peek ahead at the next
character on the input stream and base our logic on that character’s value. A corrected version of the previ-
ous algorithm might be the following:

static
Delimiters: cset;

 .
 .
 .

conv.getDelimiters(Delimiters);

// Skip over leading delimiters in the string:

while(stdin.peekc() in Delimiters) do

// If at the end of the input buffer, we must explicitly read a
// new line of text from the user. stdin.peekc does not do this
// for us.

if(al = #0) then

stdin.ReadLn();

else

stdin.getc(); // Remove delimiter from the input stream.

endif;

endwhile;
while(stdin.peekc in {’0’..’9’}) do

stdin.getc(); // Remove the input character from the input stream.

// Convert character in AL to numeric representation and
// accumulate result...

endwhile;
if(al not in Delimiters) then

raise(ex.ConversionError);

endif;

5. The HLA Standard Library routines actually buffer up input lines in a string and process characters out of the strin
makes it easy to "peek" ahead one character when looking for a delimiter to end the input value. Your code can als
however, the code in this chapter will use a different approach.
Page 886 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

en

rd

ite.

.

it val-
Note that the call to stdin.peekc in the second WHILE does not consume the delimiter character wh
the expression evaluates false. Hence, the delimiter character will be the next character read after this algo-
rithm finishes.

The only remaining comment to make about numeric input is to point out that the HLA Standa
Library input routines allow arbitrary underscores to appear within a numeric string. The input routines
ignore these underscore characters. This allows the user to input strings like "FFFF_F012" and
"1_023_596" which are a little more readable than "FFFFF012" or "1023596". To allow underscores (or any
other symbol you choose) within a numeric input routine is quite simple; just modify the second WHILE
loop above as follows:

while(stdin.peekc in {’0’..’9’, ’_’}) do

stdin.getc(); // Read the character from the input stream.

// Ignore underscores while processing numeric input.

if(al <> ’_’) then

// Convert character in AL to numeric representation and
// accumulate result...

endif;

endwhile;

4.2.13.6 Extended Precision Hexadecimal Input

 As was the case for numeric output, hexadecimal input is the easiest numeric input routine to wr
The basic algorithm for hexadecimal string to numeric conversion is the following:

• Initialize the extended precision value to zero.
• For each input character that is a valid hexadecimal digit, do the following:
• Convert the hexadecimal character to a value in the range 0..15 ($0..$F).
• If the H.O. four bits of the extended precision value are non-zero, raise an exception
• Multiply the current extended precision value by 16 (i.e., shift left four bits).
• Add the converted hexadecimal digit value to the accumulator.
• Check the last input character to ensure it is a valid delimiter. Raise an exception if it is not.
The following program implements this extended precision hexadecimal input routine for 128-b

ues.

program Xin128;

#include("stdlib.hhf");

// 128-bit unsigned integer data type:

type
 b128: dword[4];

procedure getb128(var inValue:b128); @nodisplay;
const
 HexChars := {'0'..'9', 'a'..'f', 'A'..'F', '_'};
var
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 887

Chapter Four Volume Four
 Delimiters: cset;
 LocalValue: b128;

begin getb128;

 push(eax);
 push(ebx);

 // Get a copy of the HLA standard numeric input delimiters:

 conv.getDelimiters(Delimiters);

 // Initialize the numeric input value to zero:

 xor(eax, eax);
 mov(eax, LocalValue[0]);
 mov(eax, LocalValue[4]);
 mov(eax, LocalValue[8]);
 mov(eax, LocalValue[12]);

 // By default, #0 is a member of the HLA Delimiters
 // character set. However, someone may have called
 // conv.setDelimiters and removed this character
 // from the internal Delimiters character set. This
 // algorithm depends upon #0 being in the Delimiters
 // character set, so let's add that character in
 // at this point just to be sure.

 cs.unionChar(#0, Delimiters);

 // If we're at the end of the current input
 // line (or the program has yet to read any input),
 // for the input of an actual character.

 if(stdin.peekc() = #0) then

 stdin.readLn();

 endif;

 // Skip the delimiters found on input. This code is
 // somewhat convoluted because stdin.peekc does not
 // force the input of a new line of text if the current
 // input buffer is empty. We have to force that input
 // ourselves in the event the input buffer is empty.

 while(stdin.peekc() in Delimiters) do

 // If we're at the end of the line, read a new line
 // of text from the user; otherwise, remove the
 // delimiter character from the input stream.

 if(al = #0) then

 stdin.readLn(); // Force a new input line.

 else

Page 888 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
 stdin.getc(); // Remove the delimiter from the input buffer.

 endif;

 endwhile;

 // Read the hexadecimal input characters and convert
 // them to the internal representation:

 while(stdin.peekc() in HexChars) do

 // Actually read the character to remove it from the
 // input buffer.

 stdin.getc();

 // Ignore underscores, process everything else.

 if(al <> '_') then

 if(al in '0'..'9') then

 and($f, al); // '0'..'9' -> 0..9

 else

 and($f, al); // 'a'/'A'..'f'/'F' -> 1..6
 add(9, al); // 1..6 -> 10..15

 endif;

 // Conversion algorithm is the following:
 //
 // (1) LocalValue := LocalValue * 16.
 // (2) LocalValue := LocalValue + al
 //
 // Note that "* 16" is easily accomplished by
 // shifting LocalValue to the left four bits.
 //
 // Overflow occurs if the H.O. four bits of LocalValue
 // contain a non-zero value prior to this operation.

 // First, check for overflow:

 test($F0, (type byte LocalValue[15]));
 if(@nz) then

 raise(ex.ValueOutOfRange);

 endif;

 // Now multiply LocalValue by 16 and add in
 // the current hexadecimal digit (in EAX).

 mov(LocalValue[8], ebx);
 shld(4, ebx, LocalValue[12]);
 mov(LocalValue[4], ebx);
 shld(4, ebx, LocalValue[8]);
 mov(LocalValue[0], ebx);
 shld(4, ebx, LocalValue[4]);
 shl(4, ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 889

Chapter Four Volume Four
 add(eax, ebx);
 mov(ebx, LocalValue[0]);

 endif;

 endwhile;

 // Okay, we've encountered a non-hexadecimal character.
 // Let's make sure it's a valid delimiter character.
 // Raise the ex.ConversionError exception if it's invalid.

 if(al not in Delimiters) then

 raise(ex.ConversionError);

 endif;

 // Okay, this conversion has been a success. Let's store
 // away the converted value into the output parameter.

 mov(inValue, ebx);
 mov(LocalValue[0], eax);
 mov(eax, [ebx]);

 mov(LocalValue[4], eax);
 mov(eax, [ebx+4]);

 mov(LocalValue[8], eax);
 mov(eax, [ebx+8]);

 mov(LocalValue[12], eax);
 mov(eax, [ebx+12]);

 pop(ebx);
 pop(eax);

end getb128;

// Code to test the routines above:

static
 b1:b128;

begin Xin128;

 stdout.put("Input a 128-bit hexadecimal value: ");
 getb128(b1);
 stdout.put
 (
 "The value is: $",
 b1[12], '_',
 b1[8], '_',
 b1[4], '_',
 b1[0],
 nl
);

end Xin128;

Page 890 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

f

for an

Program 4.5 Extended Precision Hexadecimal Input

Extending this code to handle objects that are not 128 bits long is very easy. There are only three
changes necessary: you must zero out the whole object at the beginning of the getb128 routine; when check-
ing for overflow (the "test($F, (type byte LocalValue[15]));" instruction) you must test the H.O. four bits o
the new object you’re processing; and you must modify the code that multiplies LocalValue by 16 (via
SHLD) so that it multiplies your object by 16 (i.e., shifts it to the left four bits).

4.2.13.7 Extended Precision Unsigned Decimal Input

The algorithm for extended precision unsigned decimal input is nearly identical to that for hexadecimal
input. In fact, the only difference (beyond only accepting decimal digits) is that you multiply the extended
precision value by 10 rather than 16 for each input character (in general, the algorithm is the same y
base; just multiply the accumulating value by the input base). The following code demonstrates how to write
a 128-bit unsigned decimal input routine.

program Uin128;

#include("stdlib.hhf");

// 128-bit unsigned integer data type:

type
 u128: dword[4];

procedure getu128(var inValue:u128); @nodisplay;
var
 Delimiters: cset;
 LocalValue: u128;
 PartialSum: u128;

begin getu128;

 push(eax);
 push(ebx);
 push(ecx);
 push(edx);

 // Get a copy of the HLA standard numeric input delimiters:

 conv.getDelimiters(Delimiters);

 // Initialize the numeric input value to zero:

 xor(eax, eax);
 mov(eax, LocalValue[0]);
 mov(eax, LocalValue[4]);
 mov(eax, LocalValue[8]);
 mov(eax, LocalValue[12]);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 891

Chapter Four Volume Four
 // By default, #0 is a member of the HLA Delimiters
 // character set. However, someone may have called
 // conv.setDelimiters and removed this character
 // from the internal Delimiters character set. This
 // algorithm depends upon #0 being in the Delimiters
 // character set, so let's add that character in
 // at this point just to be sure.

 cs.unionChar(#0, Delimiters);

 // If we're at the end of the current input
 // line (or the program has yet to read any input),
 // for the input of an actual character.

 if(stdin.peekc() = #0) then

 stdin.readLn();

 endif;

 // Skip the delimiters found on input. This code is
 // somewhat convoluted because stdin.peekc does not
 // force the input of a new line of text if the current
 // input buffer is empty. We have to force that input
 // ourselves in the event the input buffer is empty.

 while(stdin.peekc() in Delimiters) do

 // If we're at the end of the line, read a new line
 // of text from the user; otherwise, remove the
 // delimiter character from the input stream.

 if(al = #0) then

 stdin.readLn(); // Force a new input line.

 else

 stdin.getc(); // Remove the delimiter from the input buffer.

 endif;

 endwhile;

 // Read the decimal input characters and convert
 // them to the internal representation:

 while(stdin.peekc() in '0'..'9') do

 // Actually read the character to remove it from the
 // input buffer.

 stdin.getc();

 // Ignore underscores, process everything else.

 if(al <> '_') then

Page 892 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
 and($f, al); // '0'..'9' -> 0..9
 mov(eax, PartialSum[0]); // Save to add in later.

 // Conversion algorithm is the following:
 //
 // (1) LocalValue := LocalValue * 10.
 // (2) LocalValue := LocalValue + al
 //
 // First, multiply LocalValue by 10:

 mov(10, eax);
 mul(LocalValue[0], eax);
 mov(eax, LocalValue[0]);
 mov(edx, PartialSum[4]);

 mov(10, eax);
 mul(LocalValue[4], eax);
 mov(eax, LocalValue[4]);
 mov(edx, PartialSum[8]);

 mov(10, eax);
 mul(LocalValue[8], eax);
 mov(eax, LocalValue[8]);
 mov(edx, PartialSum[12]);

 mov(10, eax);
 mul(LocalValue[12], eax);
 mov(eax, LocalValue[12]);

 // Check for overflow. This occurs if EDX
 // contains a none zero value.

 if(edx /* <> 0 */) then

 raise(ex.ValueOutOfRange);

 endif;

 // Add in the partial sums (including the
 // most recently converted character).

 mov(PartialSum[0], eax);
 add(eax, LocalValue[0]);

 mov(PartialSum[4], eax);
 adc(eax, LocalValue[4]);

 mov(PartialSum[8], eax);
 adc(eax, LocalValue[8]);

 mov(PartialSum[12], eax);
 adc(eax, LocalValue[12]);

 // Another check for overflow. If there
 // was a carry out of the extended precision
 // addition above, we've got overflow.

 if(@c) then

 raise(ex.ValueOutOfRange);

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 893

Chapter Four Volume Four
 endif;

 endif;

 endwhile;

 // Okay, we've encountered a non-decimal character.
 // Let's make sure it's a valid delimiter character.
 // Raise the ex.ConversionError exception if it's invalid.

 if(al not in Delimiters) then

 raise(ex.ConversionError);

 endif;

 // Okay, this conversion has been a success. Let's store
 // away the converted value into the output parameter.

 mov(inValue, ebx);
 mov(LocalValue[0], eax);
 mov(eax, [ebx]);

 mov(LocalValue[4], eax);
 mov(eax, [ebx+4]);

 mov(LocalValue[8], eax);
 mov(eax, [ebx+8]);

 mov(LocalValue[12], eax);
 mov(eax, [ebx+12]);

 pop(edx);
 pop(ecx);
 pop(ebx);
 pop(eax);

end getu128;

// Code to test the routines above:

static
 b1:u128;

begin Uin128;

 stdout.put("Input a 128-bit decimal value: ");
 getu128(b1);
 stdout.put
 (
 "The value is: $",
 b1[12], '_',
 b1[8], '_',
 b1[4], '_',
 b1[0],
 nl
);

end Uin128;
Page 894 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

s

the

 F

Program 4.6 Extended Precision Unsigned Decimal Input

As for hexadecimal input, extending this decimal input to some number of bits beyond 128 is fairly
easy. All you need do is modify the code that zeros out the LocalValue variable and the code that multiplie
LocalValue by ten (overflow checking is done in this same code, so there are only two spots in this code that
require modification).

4.2.13.8 Extended Precision Signed Decimal Input

Once you have an unsigned decimal input routine, writing a signed decimal input routine is easy. The
following algorithm describes how to accomplish this:

• Consume any delimiter characters at the beginning of the input stream.
• If the next input character is a minus sign, consume this character and set a flag noting that

number is negative.
• Call the unsigned decimal input routine to convert the rest of the string to an integer.
• Check the return result to make sure it’s H.O. bit is clear. Raise the ex.ValueOutOfRange

exception if the H.O. bit of the result is set.
• If the sign flag was set in step two above, negate the result.
The actual code is left as a programming exercise at the end of this volume.

4.3 Operating on Different Sized Operands

Occasionally you may need to compute some value on a pair of operands that are not the same size.or
example, you may need to add a word and a double word together or subtract a byte value from a word
value. The solution is simple: just extend the smaller operand to the size of the larger operand and then do
the operation on two similarly sized operands. For signed operands, you would sign extend the smaller oper-
and to the same size as the larger operand; for unsigned values, you zero extend the smaller operand. This
works for any operation, although the following examples demonstrate this for the addition operation.

To extend the smaller operand to the size of the larger operand, use a sign extension or zero extension
operation (depending upon whether you’re adding signed or unsigned values). Once you’ve extended the
smaller value to the size of the larger, the addition can proceed. Consider the following code that adds a byte
value to a word value:

static
var1: byte;
var2: word;

 .
 .
 .

// Unsigned addition:

movzx(var1, ax);
add(var2, ax);

// Signed addition:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 895

Chapter Four Volume Four

to
ding
 Per

ula

ro
movsx(var1, ax);
add(var2, ax);

 In both cases, the byte variable was loaded into the AL register, extended to 16 bits, and then added
the word operand. This code works out really well if you can choose the order of the operations (e.g., ad
the eight bit value to the sixteen bit value). Sometimes, you cannot specify the order of the operations.-
haps the sixteen bit value is already in the AX register and you want to add an eight bit value to it. For
unsigned addition, you could use the following code:

mov(var2, ax); // Load 16 bit value into AX
 . // Do some other operations leaving
 . // a 16-bit quantity in AX.
add(var1, al); // Add in the eight-bit value
adc(0, ah); // Add carry into the H.O. word.

 The first ADD instruction in this example adds the byte at var1 to the L.O. byte of the value in the accu-
mulator. The ADC instruction above adds the carry out of the L.O. byte into the H.O. byte of the accum-
tor. Care must be taken to ensure that this ADC instruction is present. If you leave it out, you may not get the
correct result.

Adding an eight bit signed operand to a sixteen bit signed value is a little more difficult. Unfortunately,
you cannot add an immediate value (as above) to the H.O. word of AX. This is because the H.O. extension
byte can be either $00 or $FF. If a register is available, the best thing to do is the following:

mov(ax, bx); // BX is the available register.
movsx(var1, ax);
add(bx, ax);

If an extra register is not available, you might try the following code:

push(ax); // Save word value.
movsx(var1, ax); // Sign extend 8-bit operand to 16 bits.
add([esp], ax); // Add in previous word value
add(2, esp); // Pop junk from stack

 Another alternative is to store the 16 bit value in the accumulator into a memory location and then p-
ceed as before:

mov(ax, temp);
movsx(var1, ax);
add(temp, ax);

All the examples above added a byte value to a word value. By zero or sign extending the smaller oper-
and to the size of the larger operand, you can easily add any two different sized variables together.

As a last example, consider adding an eight bit signed value to a quadword (64 bit) value:

static
QVal:qword;
BVal:int8;
 .
 .
 .
movsx(BVal, eax);
cdq();
add((type dword QVal), eax);
adc((type dword QVal[4]), edx);
Page 896 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

bering

one
h
e
y

t

r
a

d while
n for both
mpass so

ientific).
4.4 Decimal Arithmetic

The 80x86 CPUs use the binary numbering system for their native internal representation. The binary
numbering system is, by far, the most common numbering system in use in computer systems today. In days
long since past, however, there were computer systems that were based on the decimal (base 10) num
system rather than the binary numbering system. Consequently, their arithmetic system was decimal based
rather than binary. Such computer systems were very popular in systems targeted for business/commercial
systems6. Although systems designers have discovered that binary arithmetic is almost always better than
decimal arithmetic for general calculations, the myth still persists that decimal arithmetic is better for my
calculations than binary arithmetic. Therefore, many software systems still specify the use of decimal arit-
metic in their calculations (not to mention that there is lots of legacy code out there whose algorithms ar
only stable if they use decimal arithmetic). Therefore, despite the fact that decimal arithmetic is generall
inferior to binary arithmetic, the need for decimal arithmetic still persists.

Of course, the 80x86 is not a decimal computer; therefore we have to play tricks in order to represen
decimal numbers using the native binary format. The most common technique, even employed by most
so-called decimal computers, is to use the binary coded decimal, or BCD representation. The BCD repre-
sentation (see “Nibbles” on page 56) uses four bits to represent the 10 possible decimal digits. The binary
value of those four bits is equal to the corresponding decimal value in the range 0..9. Of course, with fou
bits we can actually represent 16 different values. The BCD format ignores the remaining six bit combin-
tions.

6. In fact, until the release of the IBM 360 in the middle 1960’s, most scientific computer systems were binary base
most commercial/business systems were decimal based. IBM pushed their system\360 as a single purpose solutio
business and scientific applications. Indeed, the model designation (360) was derived from the 360 degrees on a co
as to suggest that the system\360 was suitable for computations "at all points of the compass" (i.e., business and sc

Table 1: Binary Code Decimal (BCD) Representation

BCD
Representation

Decimal Equivalent

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 Illegal

1011 Illegal
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 897

Chapter Four Volume Four

e

sent

.

ecial
ts

CD

uires
Since each BCD digit requires four bits, we can represent a two-digit BCD value with a single byte.
This means that we can represent the decimal values in the range 0..99 using a single byte (versus 0..255 if
we treat the value as an unsigned binary number). Clearly it takes a bit more memory to represent the sam
value in BCD as it does to represent the same value in binary. For example, with a 32-bit value you can rep-
resent BCD values in the range 0..99,999,999 (eight significant digits) but you can represent values in the
range 0..4,294,967,295 (better than nine significant digits) using the binary representation.

Not only does the BCD format waste memory on a binary computer (since it uses more bits to repre
a given integer value), but decimal arithmetic is slower. For these reasons, you should avoid the use of dec-
imal arithmetic unless it is absolutely mandated for a given application.

Binary coded decimal representation does offer one big advantage over binary representation: it is fairly
trivial to convert between the string representation of a decimal number and the BCD representationThis
feature is particularly beneficial when working with fractional values since fixed and floating point binary
representations cannot exactly represent many commonly used values between zero and one (e.g., 1/10).
Therefore, BCD operations can be efficient when reading from a BCD device, doing a simple arithmetic
operation (e.g., a single addition) and then writing the BCD value to some other device.

4.4.1 Literal BCD Constants

HLA does not provide, nor do you need, a special literal BCD constant. Since BCD is just a sp
form of hexadecimal notation that does not allow the values $A..$F, you can easily create BCD constan
using HLA’s hexadecimal notation. Of course, you must take care not to include the symbols ’A’..’F’ in a
BCD constant since they are illegal BCD values. As an example, consider the following MOV instruction
that copies the BCD value ’99’ into the AL register:

mov($99, al);

The important thing to keep in mind is that you must not use HLA literal decimal constants for B
values. That is, "mov(95, al);" does not load the BCD representation for ninety-five into the AL register.
Instead, it loads $5F into AL and that’s an illegal BCD value. Any computations you attempt with illegal
BCD values will produce garbage results. Always remember that, even though it seems counter-intuitive,
you use hexadecimal literal constants to represent literal BCD values.

4.4.2 The 80x86 DAA and DAS Instructions

The integer unit on the 80x86 does not directly support BCD arithmetic. Instead, the 80x86 req
that you perform the computation using binary arithmetic and use some auxiliary instructions to convert the
binary result to BCD. To support packed BCD addition and subtraction with two digits per byte, the 80x86
provides two instructions: decimal adjust after addition (DAA) and decimal adjust after subtraction (DAS).
You would execute these two instructions immediately after an ADD/ADC or SUB/SBB instruction to cor-
rect the binary result in the AL register.

1100 Illegal

1101 Illegal

1110 Illegal

1111 Illegal

Table 1: Binary Code Decimal (BCD) Representation

BCD
Representation

Decimal Equivalent
Page 898 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

ci

r

is so

 SBB
Two add a pair of two-digit (i.e., single-byte) BCD values together, you would use the following
sequence:

mov(bcd_1, al); // Assume that bcd1 and bcd2 both contain
add(bcd_2, al); // value BCD values.
daa();

The first two instructions above add the two byte values together using standard binary arithmetic. This
may not produce a correct BCD result. For example, if bcd_1 contains $9 and bcd_2 contains $1, then the
first two instructions above will produce the binary sum $A instead of the correct BCD result $10. The DAA
instruction corrects this invalid result. It checks to see if there was a carry out of the low order BCD digit
and adjusts the value (by adding six to it) if there was an overflow. After adjusting for overflow out of the
L.O. digit, the DAA instruction repeats this process for the H.O. digit. DAA sets the carry flag if the was a
(decimal) carry out of the H.O. digit of the operation.

The DAA instruction only operates on the AL register. It will not adjust (properly) for a decimal addi-
tion if you attempt to add a value to AX, EAX, or any other register. Specifically note that DAA limits you
to adding two decimal digits (a single byte) at a time. This means that for the purposes of computing de-
mal sums, you have to treat the 80x86 as though it were an eight-bit processor, capable of adding only eight
bits at a time. If you wish to add more than two digits together, you must treat this as a multiprecision ope-
ation. For example, to add four decimal digits together (using DAA), you must execute a sequence like the
following:

// Assume "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

mov(bcd_1[0], al);
add(bcd_2[0], al);
daa();
mov(al, bcd_3[0]);
mov(bcd_1[1], al);
adc(bcd_2[1], al);
daa();
mov(al, bcd_3[1], al);

// Carry is set at this point if there was unsigned overflow.

Since a binary addition of a word requires only three instructions, you can see why decimal arithmetic
expensive7.

The DAS (decimal adjust after subtraction) adjusts the decimal result after a binary SUB or
instruction. You use it the same way you use the DAA instruction. Examples:

// Two-digit (one byte) decimal subtraction:

mov(bcd_1, al); // Assume that bcd1 and bcd2 both contain
sub(bcd_2, al); // value BCD values.
das();

// Four-digit (two-byte) decimal subtraction.
// Assume "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

mov(bcd_1[0], al);
sub(bcd_2[0], al);
das();
mov(al, bcd_3[0]);
mov(bcd_1[1], al);
sbb(bcd_2[1], al);
das();
mov(al, bcd_3[1], al);

7. You’ll also soon see that it’s rare to find decimal arithmetic done this way. So it hardly matters.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 899

Chapter Four Volume Four

ess

dig

usu

pter
imal

o
r

// Carry is set at this point if there was unsigned overflow.

Unfortunately, the 80x86 only provides support for addition and subtraction of packed BCD values
using the DAA and DAS instructions. It does not support multiplication, division, or any other arithmetic
operations. Because decimal arithmetic using these instructions is so limited, you’ll rarely see any programs
use these instructions.

4.4.3 The 80x86 AAA, AAS, AAM, and AAD Instructions

In addition to the packed decimal instructions (DAA and DAS), the 80x86 CPUs support four unpacked
decimal adjustment instructions. Unpacked decimal numbers store only one digit per eight-bit byte. As you
can imagine, this data representation scheme wastes a considerable amount of memory. However, the
unpacked decimal adjustment instructions support the multiplication and division operations, so they are
marginally more useful.

The instruction mnemonics AAA, AAS, AAM, and AAD stand for "ASCII adjust for Addition, Sub-
traction, Multiplication, and Division" (respectively). Despite their name, these instructions do not proc
ASCII characters. Instead, they support an unpacked decimal value in AL whose L.O. four bits contain the
decimal digit and the H.O. four bits contain zero. Note, though, that you can easily convert an ASCII deci-
mal digit character to an unpacked decimal number by simply ANDing AL with the value $0F.

The AAA instruction adjusts the result of a binary addition of two unpacked decimal numbers. If the
addition of those two values exceeds 10, then AAA will subtract 10 from AL and increment AH by one (as
well as set the carry flag). AAA assumes that the two values you add together were legal unpacked decimal
values. Other than the fact that AAA works with only one decimal digit at a time (rather than two), you use
it the same way you use the DAA instruction. Of course, if you need to add together a string of decimal -
its, using unpacked decimal arithmetic will require twice as many operations and, therefore, twice the execu-
tion time.

You use the AAS instruction the same way you use the DAS instruction except, of course, it operates on
unpacked decimal values rather than packed decimal values. As for AAA, AAS will require twice the num-
ber of operations to add the same number of decimal digits as the DAS instruction. If you’re wondering why
anyone would want to use the AAA or AAS instructions, keep in mind that the unpacked format supports
multiplication and division, while the packed format does not. Since packing and unpacking the data is -
ally more expensive than working on the data a digit at a time, the AAA and AAS instruction are more effi-
cient if you have to work with unpacked data (because of the need for multiplication and division).

The AAM instruction modifies the result in the AX register to produce a correct unpacked decimal result
after multiplying two unpacked decimal digits using the MUL instruction. Because the largest product you
may obtain is 81 (9*9 produces the largest possible product of two single digit values), the result will fit in
the AL register. AAM unpacks the binary result by dividing it by 10, leaving the quotient (H.O. digit) in AH
and the remainder (L.O. digit) in AL. Note that AAM leaves the quotient and remainder in different registers
than a standard eight-bit DIV operation.

Technically, you do not have to use the AAM instruction immediately after a multiply. AAM simply
divides AL by ten and leaves the quotient and remainder in AH and AL (respectively). If you have need of
this particular operation, you may use the AAM instruction for this purpose (indeed, that’s about the only
use for AAM in most programs these days).

If you need to multiply more than two unpacked decimal digits together using MUL and AAM, you will
need to devise a multiprecision multiplication that uses the manual algorithm from earlier in this cha.
Since that is a lot of work, this section will not present that algorithm. If you need a multiprecision dec
multiplication, see the next section; it presents a better solution.

The AAD instruction, as you might expect, adjusts a value for unpacked decimal division. The unusual
thing about this instruction is that you must execute it before a DIV operation. It assumes that AL contains
the least significant digit of a two-digit value and AH contains the most significant digit of a two-digit
unpacked decimal value. It converts these two numbers to binary so that a standard DIV instruction will pr-
duce the correct unpacked decimal result. Like AAM, this instruction is nearly useless for its intended pu-
Page 900 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

y

s into

.

pport

ds.

e

e
al

wever,
e rare.
pose as extended precision operations (e.g., division of more than one or two digits) are extremely
inefficient. However, this instruction is actually quite useful in its own right. It computes AX = AH*10+AL
(assuming that AH and AL contain single digit decimal values). You can use this instruction to easily con-
vert a two-character string containing the ASCII representation of a value in the range 0..99 to a binar
value. E.g.,

mov(’9’, al);
mov(’9’, ah); // "99" is in AH:AL.
and($0F0F, ax); // Convert from ASCII to unpacked decimal.
aad(); // After this, AX contains 99.

The decimal and ASCII adjust instructions provide an extremely poor implementation of decimal arith-
metic. To better support decimal arithmetic on 80x86 systems, Intel incorporated decimal operation
the FPU. The next section discusses how to use the FPU for this purpose. However, even with FPU support,
decimal arithmetic is inefficient and less precise than binary arithmetic. Therefore, you should carefully
consider whether you really need to use decimal arithmetic before incorporating it into your programs

4.4.4 Packed Decimal Arithmetic Using the FPU

To improve the performance of applications that rely on decimal arithmetic, Intel incorporated su
for decimal arithmetic directly into the FPU. Unlike the packed and unpacked decimal formats of the previ-
ous sections, the FPU easily supports values with up to 18 decimal digits of precision, all at FPU spee
Furthermore, all the arithmetic capabilities of the FPU (e.g., transcendental operations) are available in addi-
tion to addition, subtraction, multiplication, and division. Assuming you can live with only 18 digits of pre-
cision and a few other restrictions, decimal arithmetic on the FPU is the right way to go if you must use
decimal arithmetic in your programs.

The first fact you must note when using the FPU is that it doesn’t really support decimal arithmetic.
Instead, the FPU provides two instruction, FBLD and FBSTP, that convert between packed decimal and
binary floating point formats when moving data to and from the FPU. The FBLD (float/BCD load) instruc-
tion loads an 80-bit packed BCD value unto the top of the FPU stack after converting that BCD value to the
IEEE binary floating point format. Likewise, the FBSTP (float/BCD store and pop) instruction pops th
floating point value off the top of stack, converts it to a packed BCD value, and stores the BCD value into the
destination memory location.

Once you load a packed BCD value into the FPU, it is no longer BCD. It’s just a floating point value.
This presents the first restriction on the use of the FPU as a decimal integer processor: calculations are don
using binary arithmetic. If you have an algorithm that absolutely positively depends upon the use of decim
arithmetic, it may fail if you use the FPU to implement it8.

The second limitation is that the FPU supports only one BCD data type: a ten-byte 18-digit packed dec-
imal value. It will not support smaller values nor will it support larger values. Since 18 digits is usually suf-
ficient and memory is cheap, this isn’t a big restriction.

A third consideration is that the conversion between packed BCD and the floating point format is not a
cheap operation. The FBLD and FBSTP instructions can be quite slow (more than two orders of magnitude
slower than FLD and FSTP, for example). Therefore, these instructions can be costly if you’re doing simple
additions or subtractions; the cost of conversion far outweighs the time spent adding the values a byte at a
time using the DAA and DAS instructions (multiplication and division, however, are going to be faster on
the FPU).

You may be wondering why the FPU’s packed decimal format only supports 18 digits. After all, with
ten bytes it should be possible to represent 20 BCD digits. As it turns out, the FPU’s packed decimal format
uses the first nine bytes to hold the packed BCD value in a standard packed decimal format (the first byte
contains the two L.O. digits and the ninth byte holds the H.O. two digits). The H.O. bit of the tenth byte

8. An example of such an algorithm might by a multiplication by ten by shifting the number one digit to the left. Ho
such operations are not possible within the FPU itself, so algorithms that misbehave inside the FPU are actually quit
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 901

Chapter Four Volume Four

e

de. If
holds the sign bit and the FPU ignores the remaining bits in the tenth byte. If you’re wondering why Intel
didn’t squeeze in one more digit (i.e., use the L.O. four bits of the tenth byte to allow for 19 digits of preci-
sion), just keep in mind that doing so would create some possible BCD values that the FPU could not exactly
represent in the native floating point format. Hence the limitation to 18 digits.

The FPU uses a one’s complement notation for negative BCD values. That is, the sign bit contains a on
if the number is negative or zero and it contains a zero if the number is positive or zero (like the binary one’s
complement format, there are two distinct representations for zero).

HLA’s tbyte type is the standard data type you would use to define packed BCD variables. The FBLD
and FBSTP instructions require a tbyte operand. Unfortunately, the current version of HLA does not let you
(directly) provide an initializer for a tbyte variable. One solution is to use the @NOSTORAGE option and
initialize the data following the variable declaration. For example, consider the following code fragment:

static
tbyteObject: tbyte; @nostorage

byte $21, $43, $65, 0, 0, 0, 0, 0, 0, 0;

This tbyteObject declaration tells HLA that this is a tbyte object but does not explicitly set aside any
space for the variable (see “The Static Sections” on page 167). The following BYTE directive sets aside ten
bytes of storage and initializes these ten bytes with the value $654321 (remember that the 80x86 organizes
data from the L.O. byte to the H.O. byte in memory). While this scheme is inelegant, it will get the job done.
The chapters on Macros and the Compile-Time Language will discuss a better way to initialize tbyte and
qword data.

Because the FPU converts packed decimal values to the internal floating point format, you can mix
packed decimal, floating point, and (binary) integer formats in the same calculation. The following program
demonstrate how you might achieve this:

program MixedArithmetic;
#include("stdlib.hhf")

static
 tb: tbyte; @nostorage;
 byte $21,$43,$65,0,0,0,0,0,0,0;

begin MixedArithmetic;

 fbld(tb);
 fmul(2.0);
 fiadd(1);
 fbstp(tb);
 stdout.put("bcd value is ");
 stdout.puttb(tb);
 stdout.newln();

end MixedArithmetic;

Program 4.7 Mixed Mode FPU Arithmetic

The FPU treats packed decimal values as integer values. Therefore, if your calculations produce frac-
tional results, the FBSTP instruction will round the result according to the current FPU rounding mo
you need to work with fractional values, you need to stick with floating point results.
Page 902 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic
4.5 Sample Program

The following sample program demonstrates BCD I/O. The following program provides two proce-
dures, BCDin and BCDout. These two procedures read an 18-digit BCD value from the user (with possible
leading minus sign) and write a BCD value to the standard output device.

program bcdIO;
#include("stdlib.hhf")

// The following is equivalent to TBYTE except it
// lets us easily gain access to the individual
// components of a BCD value.

type
 bcd:record

 LO8: dword;
 MID8: dword;
 HO2: byte;
 Sign: byte;

 endrecord;

// BCDin-
//
// This function reads a BCD value from the standard input
// device. The number can be up to 18 decimal digits long
// and may contain a leading minus sign.
//
// This procedure stores the BCD value in the variable passed
// by reference as a parameter to this routine.

procedure BCDin(var input:tbyte); @nodisplay;
var
 bcdVal: bcd;
 delimiters: cset;

begin BCDin;

 push(eax);
 push(ebx);

 // Get a copy of the input delimiter characters and
 // make sure that #0 is a member of this set.

 conv.getDelimiters(delimiters);
 cs.unionChar(#0, delimiters);

 // Skip over any leading delimiter characters in the text:

 while(stdin.peekc() in delimiters) do

Beta Draft - Do not distribute © 2001, By Randall Hyde Page 903

Chapter Four Volume Four
 // If we're at the end of an input line, read a new
 // line of text from the user, otherwise remove the
 // delimiter character from the input stream.

 if(stdin.peekc() = #0) then

 stdin.readLn(); // Get a new line of input text.

 else

 stdin.getc(); // Remove the delimeter.

 endif;

 endwhile;

 // Initialize our input accumulator to zero:

 xor(eax, eax);
 mov(eax, bcdVal.LO8);
 mov(eax, bcdVal.MID8);
 mov(al, bcdVal.HO2);
 mov(al, bcdVal.Sign);

 // If the first character is a minus sign, then eat it and
 // set the sign bit to one.

 if(stdin.peekc() = '-') then

 stdin.getc(); // Eat the sign character.
 mov($80, bcdVal.Sign); // Make this number negative.

 endif;

 // We must have at least one decimal digit in this number:

 if(stdin.peekc() not in '0'..'9') then

 raise(ex.ConversionError);

 endif;

 // Okay, read in up to 18 decimal digits:

 while(stdin.peekc() in '0'..'9') do

 stdin.getc(); // Read this decimal digit.
 shl(4, al); // Move digit to H.O. bits of AL

 mov(4, ebx);
 repeat

 // Cheesy way to SHL bcdVal by four bits and
 // merge in the new character.

 shl(1, al);
 rcl(1, bcdVal.LO8);
 rcl(1, bcdVal.MID8);
 rcl(1, bcdVal.HO2);
Page 904 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

 // If the user has entered more than 18
 // decimal digits, the carry will be set
 // after the RCL above. Test that here.

 if(@c) then

 raise(ex.ValueOutOfRange);

 endif;
 dec(ebx);

 until(@z);

 endwhile;

 // Be sure that the number ends with a proper delimiter:

 if(stdin.peekc() not in delimiters) then

 raise(ex.ConversionError);

 endif;

 // Okay, store the ten-byte input result into
 // the location specified by the parameter.

 mov(input, ebx);
 mov(bcdVal.LO8, eax);
 mov(eax, [ebx]);
 mov(bcdVal.MID8, eax);
 mov(eax, [ebx+4]);
 mov((type word bcdVal.HO2), ax); // Grabs "Sign" too.
 mov(ax, [ebx+8]);

 pop(ebx);
 pop(eax);

end BCDin;

// BCDout-
//
// The converse of the above. Prints the string representation
// of the packed BCD value to the standard output device.

procedure BCDout(output:tbyte); @nodisplay;
var
 q:qword;

begin BCDout;

 // This code cheats *big time*.
 // It converts the BCD value to a 64-bit integer
 // and then calls the stdout.puti64 routine to
 // actually print the number. In theory, this is
 // a whole lot slower than converting the BCD value
 // to ASCII and printing the ASCII chars, however,
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 905

Chapter Four Volume Four

t’

w

.

 // I/O is so much slower than the conversion that
 // no one will notice the extra time.

 fbld(output);
 fistp(q);
 stdout.puti64(q);

end BCDout;

static
 tb1: tbyte;
 tb2: tbyte;
 tbRslt: tbyte;

begin bcdIO;

 stdout.put("Enter a BCD value: ");
 BCDin(tb1);
 stdout.put("Enter a second BCD value: ");
 BCDin(tb2);

 fbld(tb1);
 fbld(tb2);
 fadd();
 fbstp(tbRslt);

 stdout.put("The sum of ");
 BCDout(tb1);
 stdout.put(" + ");
 BCDout(tb2);
 stdout.put(" is ");
 BCDout(tbRslt);
 stdout.newln();

end bcdIO;

Program 4.8 BCD I/O Sample Program

4.6 Putting It All Together

Extended precision arithmetic is one of those activities where assembly language truly shines. Is
much easier to perform extended precision arithmetic in assembly language than in most high level lan-
guages; it’s far more efficient to do it in assembly language, as well. Extended precision arithmetic as,
perhaps, the most important subject that this chapter teaches.

Although extended precision arithmetic and logical calculations are important, what good are extended
precision calculations if you can’t get the extend precision values in and out of the machine? Therefore, this
chapter devotes a fair amount of space to describing how to write your own extended precision I/O routines
Between the calculations and the I/O this chapter describes, you’re set to perform those really hairy calcula-
tions you’ve always dreamed of!
Page 906 © 2001, By Randall Hyde Version: 9/9/02

Advanced Arithmetic

n the

Although decimal arithmetic is nowhere near as prominent as it once was, the need for decimal arith-

metic does arise on occasion. Therefore, this chapter spends some time discussing BCD arithmetic o
80x86.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 907

Chapter Four Volume Four
Page 908 © 2001, By Randall Hyde Version: 9/9/02

	Advanced Arithmetic Chapter Four
	4.1 Chapter Overview
	4.2 Multiprecision Operations
	4.2.1 Multiprecision Addition Operations
	4.2.2 Multiprecision Subtraction Operations
	4.2.3 Extended Precision Comparisons
	4.2.4 Extended Precision Multiplication
	4.2.5 Extended Precision Division
	4.2.6 Extended Precision NEG Operations
	4.2.7 Extended Precision AND Operations
	4.2.8 Extended Precision OR Operations
	4.2.9 Extended Precision XOR Operations
	4.2.10 Extended Precision NOT Operations
	4.2.11 Extended Precision Shift Operations
	4.2.12 Extended Precision Rotate Operations
	4.2.13 Extended Precision I/O
	4.2.13.1 Extended Precision Hexadecimal Output
	4.2.13.2 Extended Precision Unsigned Decimal Output
	4.2.13.3 Extended Precision Signed Decimal Output
	4.2.13.4 Extended Precision Formatted I/O
	4.2.13.5 Extended Precision Input Routines
	4.2.13.6 Extended Precision Hexadecimal Input
	4.2.13.7 Extended Precision Unsigned Decimal Input
	4.2.13.8 Extended Precision Signed Decimal Input

	4.3 Operating on Different Sized Operands
	4.4 Decimal Arithmetic
	4.4.1 Literal BCD Constants
	4.4.2 The 80x86 DAA and DAS Instructions
	4.4.3 The 80x86 AAA, AAS, AAM, and AAD Instructions
	4.4.4 Packed Decimal Arithmetic Using the FPU

	4.5 Sample Program
	4.6 Putting It All Together

