

The MMX Instruction Set

arate

hout

er

ns

, is

s

s

ogram

 MMX

al

o skip

 the

truc

e

a 68040
 Pentium.
 that the
The MMX Instruction Set Chapter Eleven

11.1 Chapter Overview

While working on the Pentium and Pentium Pro processors, Intel was also developing an instruction set
architecture extension for multimedia applications. By studying several existing multimedia applications,
developing lots of multimedia related algorithms, and through simulation, Intel developed 57 instructions
that would greatly accelerate the execution of multimedia applications. The end result was their multimedia
extensions to the Pentium processor that Intel calls the MMX Technology Instructions.

Prior to the invention of the MMX enhancements, good quality multimedia systems required sep
digital signal processors and special electronics to handle much of the multimedia workload1. The introduc-
tion of the MMX instruction set allowed later Pentium processors to handle these multimedia tasks wit
these expensive digital signal processors (DSPs), thus lowering the cost of multimedia systems. So lat
Pentiums, Pentium II, Pentium III, and Pentium IV processors all have the MMX instruction set. Earlier
Pentiums (and CPUs prior to the Pentium) and the Pentium Pro do not have these instructions available.
Since the instruction set has been available for quite some time, you can probably use the MMX instructio
without worrying about your software failing on many machines.

In this chapter we will discuss the MMX Technology instructions and how to use them in your assembly
language programs. The use of MMX instructions, while not completely limited to assembly language
one area where assembly language truly shines since most high level languages do not make good use of
MMX instructions except in library routines. Therefore, writing fast code that uses MMX instructions i
mainly the domain of the assembly language programmer. Hence, it’s a good idea to learn these instruction
if you’re going to write much assembly code.

11.2 Determining if a CPU Supports the MMX Instruction Set

While it’s almost a given that any modern CPU your software will run on will support the MMX
extended instruction set, there may be times when you want to write software that will run on a machine
even in the absence of MMX instructions. There are two ways to handle this problem – either provide two
versions of the program, one with MMX support and one without (and let the user choose which pr
they wish to run), or the program can dynamically determine whether a processor supports the
instruction set and skip the MMX instructions if they are not available.

The first situation, providing two different programs, is the easiest solution from a software develop-
ment point of view. You don’t actually create two source files, of course; what you do is use condition
compilation statements (i.e., #IF..#ELSE..#ENDIF) to selectively compile MMX or standard instructions
depending on the presence of an identifier or value of a boolean constant in your program. See “Conditional
Compilation (Compile-Time Decisions)” on page 962 for more details.

Another solution is to dynamically determine the CPU type at run-time and use program logic t
over the MMX instructions and execute equivalent standard code if the CPU doesn’t support the MMX
instruction set. If you’re expecting the software to run on an Intel Pentium or later CPU, you can use
CPUID instruction to determine whether the processor supports the MMX instruction set . If MMX ins-
tions are available, the CPUID instruction will return bit 23 as a one in the feature flags return result.

The following code illustrates how to use the CPUID instruction. This example does not demonstrat
the entire CPUID sequence, but shows the portion used for detection of MMX technology.

1. A good example was the Apple Quadra 660AV and 840AV computer systems; they were built around the Motorol
processor rather than a Pentium, but the 68040 was no more capable of handling multimedia applications than the
However, an on-board DSP (digital signal processor) CPU allowed the Quadras to easily handle audio applications
68040 could not.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1113

Chapter Eleven

Volume Four

r

pi

 out

s

// For a perfectly general routine, you should determine if this
// is a Pentium or later processor. We’ll assume at least a Pentium
// for now, since most OSes expect a Pentium or better processor.

mov(1, eax); // Request for CPUID feature flags.
CPUID(); // Get the feature flags into EDX.
test($80_0000, edx); // Is bit 23 set?
jnz HasMMX;

This code assumes at least the presence of a Pentium Processor. If your code needs to run on a 486 o
386 processor, you will have to detect that the system is using one of these processors. There is tons of code
on the net that detects different processors, but most of it will not run under 32-bit OSes since the code ty-
cally uses protected (non-user-mode) instructions. Some operating system provide a system call or environ-
ment variable that will specify the CPU. We’ll not go into the details here because 99% of the users
there that are running modern operating systems have a CPU that supports the MMX instruction set or, at
least, the CPUID instruction.

11.3 The MMX Programming Environment

The MMX architecture extends the Pentium architecture by adding the following:

• Eight MMX registers (MM0..MM7).
• Four MMX data types (packed bytes, packed words, packed double words, and quad word).
• 57 MMX Instructions.

11.3.1 The MMX Registers

The MMX architecture adds eight 64-bit registers to the Pentium. The MMX instructions refer to these
registers as MM0, MM1, MM2, MM3, MM4, MM5, MM6, and MM7. These are strictly data registers, you
cannot use them to hold addresses nor are they suitable for calculations involving addresses.

Although MM0..MM7 appear as separate registers in the Intel Architecture, the Pentium processor
alias these registers with the FPU’s registers (ST0..ST7). Each of the eight MMX 64-bit registers is physi-
cally equivalent to the L.O. 64-bits of each of the FPU’s registers (see Figure 11.1). The MMX registers
overlay the FPU registers in much the same way that the 16-bit general purpose registers overlay the 32-bit
general purpose registers.
Page 1114 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

n

y

nd

with

e

Figure 11.1 MMX and FPU Register Aliasing

Because the MMX registers overlay the FPU registers, you cannot mix FPU and MMX instructions i
the same computation sequence. You can begin executing an MMX instruction sequence at any time; how-
ever, once you execute an MMX instruction you cannot execute another FPU instruction until you execute a
special MMX instruction, EMMS (Exit MMX Machine State). This instruction resets the FPU so you ma
begin a new sequence of FPU calculations. The CPU does not save the FPU state across the execution of the
MMX instructions; executing EMMS clears all the FPU registers. Because saving FPU state is very expen-
sive, and the EMMS instruction is quite slow, it’s not a good idea to frequently switch between MMX a
FPU calculations. Instead, you should attempt to execute the MMX and FPU instructions at different times
during your program’s execution.

You’re probably wondering why Intel chose to alias the MMX registers with the FPU registers. Intel, in
their literature, brags constantly about what a great idea this was. You see, by aliasing the MMX registers
with the FPU registers, Microsoft and other multitasking OS vendors did not have to write special code to
save the MMX state when the CPU switched from one process to another. The fact that the OS automati-
cally saved the FPU state means that the CPU would automatically save the MMX state as well. This meant
that the new Pentium chips with MMX technology that Intel created were automatically compatible
Windows 95, Windows NT, and Linux without any changes to the operating system code.

Of course, those operating systems have long since been upgraded and Microsoft (and Linux develop-
ers) could have easily provided a “service pack” to handle the new registers (had Intel chosen not to alias th
FPU and MMX registers). So while aliasing MMX with the FPU provided a very short-lived and temporary
benefit, in retrospect Intel made a big mistake with this decision. They’ve obviously realized their mistake,
because as they’ve introduced new “streaming” instructions (the floating point equivalent of the MMX
instruction set) they’ve added new registers (XMM0..XMM7) without using this trick. It’s too bad they

ST0

ST1

ST2

ST3

ST4

ST5

ST6

ST7

79 63 0

MM7

MM6

MM5

MM4

MM3

MM2

MM1

MM0
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1115

Chapter Eleven Volume Four

r

don’t fix the problem in their current CPUs (there is no technical reason why they can’t create separate
MMX and FPU registers at this point). Oh well, you’ll just have to live with the fact that you can’t execute
interleaved FPU and MMX instructions.

11.3.2 The MMX Data Types

The MMX instruction set supports four different data types: an eight-byte array, a four-word array, a
two element double word array, and a quadword object. Each MMX register processes one of these fou
data types (see Figure 11.2).

63 0

MMi

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0

Eight Packed Bytes

63 0

MMi

Word 3 Word 2 Word 1 Word 0

Four Packed Words

63 0

MMi

DWord 1 DWord 0

Two Packed Double Words
Page 1116 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

 useful

.
t-,

bytes

arallel
up to

that

aphics

he

e

Figure 11.2 The MMX Data Types

Despite the presence of 64-bit registers, the MMX instruction set does not extend the 32-bit Pentium
processor to 64-bits. Instead, after careful study Intel added only those 64-bit instructions that were
for multimedia operations. For example, you cannot add or subtract two 64-bit integers with the MMX
instruction set. In fact, only the logical and shift operations directly manipulate 64 bits.

The MMX instruction set was not designed to provide general 64-bit capabilities to the Pentium
Instead, the MMX instruction set provides the Pentium with the capability of performing multiple eigh
sixteen-, or thirty-two bit operations simultaneously. In other words, the MMX instructions are generally
SIMD (Single Instruction Multiple Data) instructions (see “Parallel Processing” on page 268 for an explana-
tion of SIMD). For example, a single MMX instruction can add eight separate pairs of byte values together.
This is not the same as adding two 64-bit values since the overflow from the individual bytes does not carry
over into the higher order bytes. This can accelerate a program that needs to add a long string of
together since a single MMX instruction can do the work of eight regular Pentium instructions. This is how
the MMX instruction set speeds up multimedia applications – by processing multiple data objects in p
with a single instruction. Given the data types the MMX instruction set supports, you can process
eight byte objects in parallel, four word objects in parallel, or two double words in parallel.

11.4 The Purpose of the MMX Instruction Set

The Single Instruction Multiple Data model the MMX architecture supports may not look all
impressive when viewed with a SISD (Single Instruction, Single Data) bias. Once you’ve mastered the basic
integer instructions on the 80x86, it’s difficult to see the application of the MMX’s SIMD instruction set.
However, the MMX instructions directly address the needs of modern media, communications, and gr
applications, which often use sophisticated algorithms that perform the same operations on a large number
of small data types (bytes, words, and double words).

For example, most programs use a stream of bytes or words to represent audio and video data. The
MMX instructions can operate on eight bytes or four words with a single instruction, thus accelerating t
program by almost a factor of four or eight.

One drawback to the MMX instruction set is that it is not general purpose. Intel’s research that led to
the development of these new instructions specifically targeted audio, video, graphics, and another multim-
dia applications. Although some of the instructions are applicable in many general programs, you’ll fi nd that
many of the instructions have very little application outside their limited domain. Although, with a lot of
deep thought, you can probably dream up some novel uses of many of these instructions that have nothing
whatsoever at all to do with multimedia, you shouldn’t get too frustrated if you cannot figure out why you
would want to use a particular instruction; that instruction probably has a specific purpose and if you’re not
trying to code a solution for that problem, you may not be able to use the instruction. If you’re questioning
why Intel would put such limited instructions in their instruction set, just keep in mind that although you can
use the instruction(s) for lots of different purposes, they are invaluable for the few purposes they are
uniquely suited.

63 0

MMi

A Single Quad Word
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1117

Chapter Eleven Volume Four

to
ult
 $01.

e
.

 if a

uces

 as no
t

 the high
11.5 Saturation Arithmetic and Wraparound Mode

The MMX instruction set supports saturating arithmetic (see “Sign Extension, Zero Extension, Contrac-
tion, and Saturation” on page 73). When manipulating standard integer values and an overflow occurs, the
standard integer instructions maintain the correct L.O. bits of the value in the integer while truncating any
overflow2. This form of arithmetic is known as wraparound mode since the L.O. bits wrap back around
zero. For example, if you add the two eight-bit values $02 and $FF you wind up with a carry and the res
$01. The actual sum is $101, but the operation truncates the ninth bit and the L.O. byte wraps around to

In saturation mode, results of an operation that overflow or underflow are clipped (saturated) to som
maximum or minimum value depending on the size of the object and whether it is signed or unsignedThe
result of an operation that exceeds the range of a data-type saturates to the maximum value of the range. A
result that is less than the range of a data type saturates to the minimum value of the range.

For example, when the result exceeds the data range limit for signed bytes, it is saturated to $7f;
value is less than the data range limit, it is saturated to $80 for signed bytes. If a value exceeds the range for
unsigned bytes, it is saturated to $ff or $00.

This saturation effect is very useful for audio and video data. For example, if you are amplifying an
audio signal by multiplying the words in the CD-quality 44.1 kHz audio stream by 1.5, clipping the value at
+32767, while introducing distortion, sounds far better than allowing the waveform to wrap around to
-32768. Similarly, if you are mixing colors in a 24-bit graphic or video image, saturating to white prod
much more meaningful results than wrap-around.

Since Intel created the MMX architecture to support audio, graphics, and video, it should come
surprise that the MMX instruction set supports saturating arithmetic. For those applications that require sa-
urating arithmetic, having the CPU automatically handle this process (rather than having to explicitly check
after each calculation) is another way the MMX architecture speeds up multimedia applications.

11.6 MMX Instruction Operands

Most MMX instructions operate on two operands, a source and a destination operand. A few instruc-
tions have three operands with the third operand being a small immediate (constant) value. In this section
we’ll take a look at the common MMX instruction operands.

2. For some instructions the overflow may appear in another register or the carry flag, but in the destination register
order bits are lost.

Table 1:

Data Type
Decimal Hexadecimal

Lower Limit Upper Limit Lower Limit Upper Limit

Signed Byte -128 +127 $80 $7f

Unsigned
Byte

0 255 0 $ff

Signed Word -32768 +32767 $8000 $7fff

Unsigned
Word

0 65535 0 $ffff
Page 1118 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

e

ds

e
ch
The destination operand is almost always an MMX register. In fact, the only exceptions are those
instructions that store an MMX register into memory. The MMX instructions always leave the result of
MMX calculations in an MMX register.

The source operand can be an MMX register or a memory location. The memory location is usually a
quad word entity, but certain instructions operate on double word objects. Note that, in this context, “quad
word” and “double word” mean eight or four consecutive bytes in memory; they do not necessarily imply
that the MMX instruction is operating on a qword or dword object. For example, if you add eight bytes
together using the PADDB (packed add bytes) instruction, PADDB references a qword object in memory,
but actually adds together eight separate bytes.

For most MMX instructions, the generic HLA syntax is one of the following:

mmxInstr(source, dest);

The specific forms are

mmxInstr(mmi, mmi); // i=0..7
mmxInstr(mem, mmi); // i=0..7

MMX instructions access memory using the same addressing modes as the standard integer instruc-
tions. Therefore, any legal 80x86 addressing mode is usable in an MMX instruction. For those instructions
that reference a 64-bit memory location, HLA requires that you specify an anonymous memory object (e.g.,
“[ebx]” or “[ebp+esi*8+6]”) or a qword variable.

A few instructions require a small immediate value (or constant). For example, the shift instructions let
you specify a shift count as an immediate value in the range 0..63. Another instruction uses the immediat
value to specify a set of four different count values in the range 0..3 (i.e., four two-bit count values). These
instructions generally take the following form:

mmxInstr(imm8, source, dest);

Note that, in general, MMX instructions do not allow you to specify immediate constants as operan
except for a few special cases (such as shift counts). In particular, the source operand to an MMX instruc-
tion has to be a register or a quad word variable, it cannot be a 64-bit constant. To achieve the same effect as
specifying a constant as the source operand, you must initialize a quad word variable in the READONLY (or
STATIC) section of your program and specify this variable as the source operand. Unfortunately, HLA does
not support 64-bit constants, so initializing the value is going to be a bit of a problem. There are two solu-
tions to this problem: break the constant into smaller pieces (bytes, words, or double words) and emit the
constant in pieces that HLA can process; or you can write your own numeric conversion routine(s) using the
HLA compile-time language to allow the emission of a 64-bit constant. We’ll explore both of those
approaches here.

The first approach is the one you will most commonly use. Very few MMX instructions actually operate
on 64-bit data operands; instead, they typically operate on a (small) array of bytes, words, or double words.
Since HLA provides good support for byte, word, and double word constant expressions, specifying a 64-bit
MMX memory operand as a short array of objects is probably the best way to create this data. Since th
MMX instructions that fetch a source value from memory expect a 64-bit operand, you must declare su
objects as qword variables, e.g.,

static
mmxVar:qword;

The big problem with this declaration is that the qword type does not allow an initializer (since HLA
cannot handle 64-bit constant expressions). Since this declaration occurs in the STATIC segment, HLA will
initialize mmxVar with zero; probably not the value you’re interested in supplying here.

There are two ways to solve this problem. The first way is to attach the @NOSTORAGE option to the
MMX variable declarations in the STATIC segment. The data declarations that immediately follow the vari-
able definition provide the initial data for that variable. Here’s an example of such a declaration:

static
mmxDVar: qword; @nostorage;
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1119

Chapter Eleven Volume Four

tions.
ppear

he list
d to

u can
ast eight
 eight
other
dword $1234_5678, $90ab_cdef;

Note that the DWORD directive above stores the double word constants in successive memory loca
Therefore, $1234_5678 will appear in the L.O. double word of the 64-bit value and $90ab_cdef will a
in the H.O. double word of the 64-bit value. Always keep in mind that the L.O. objects come first in t
following the DWORD (or BYTE, or WORD, or ???) directive; this is opposite of the way you’re use
reading 64-bit values.

The example above used a DWORD directive to provide the initialization constant. However, yo
use any data declaration directive, or even a combination of directives, as long as you allocate at le
bytes (64-bits) for each qword constant. The following data declaration, for example, initializes
eight-bit constants for an MMX operand; this would be perfect for a PADDB instruction or some
instruction that operates on eight bytes in parallel:

static
eightBytes: qword; @nostorage;

byte 0, 1, 2, 3, 4, 5, 6, 7;

Although most MMX instructions operate on small arrays of bytes, words, or double words, a few actu-
ally do operate on 64-bit quantities. For such memory operands you would probably prefer to specify a
64-bit constant rather than break it up into its constituent double word values. This way, you don’t have to
remember to put the L.O. double word first and perform other mental adjustments.

Although HLA does not support 64-bit constants in the compile time language, HLA is flexible enough
to allow you to extend the language to handle such declarations. Program 11.1 demonstrates how to write a
macro to accept a 64-bit hexadecimal constant. This macro will automatically emit two DWORD declara-
tions containing the L.O. and H.O. components of the 64-bit value you specify as the qword16 (quadword
constant, base 16) macro parameter. You would typically use the qword16 macro as follows:

static
HOOnes: qword; @nostorage;

qword16($FFFF_FFFF_0000_0000);

The qword16 macro would emit the following:

dword 0;
dword $FFFF_FFFF;

Without further ado, here’s the macro (and a sample test program):

program qwordConstType;
#include(“stdlib.hhf”)

// The following macro accepts a 64-bit hexadecimal constant
// and emits two dword objects in place of the constant.

macro qword16(theHexVal):hs, len, dwval, mplier, curch, didLO;

 // Remove whitespace around the macro parameter (shouldn’t
 // be any, but just in case something weird is going on) and
 // convert all lower case characters to upper case.

 ?hs := @uppercase(@trim(@string:theHexVal, 0), 0);

 // If there is a leading “$” symbol, strip it from the string.

 #if(@substr(hs, 0, 1) = “$”)

 ?hs := @substr(hs, 1, 256);
Page 1120 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
 #endif

 // Process each character in the string from the L.O. digit
 // through to the H.O. digit. Add the digit, multiplied by
 // some successive power of 16, to the current sum we’re
 // accumulating in dwval. When we cross a dword boundary,
 // emit the L.O. dword and start over.

 ?len := @length(hs); // Number of characters to process.
 ?dwval:dword := 0; // Accumulate value here.
 ?mplier:dword := 1; // Power of 16 to multiply by.
 ?didLO:boolean := false; // Checks for overflow.
 #while(len > 0) // Repeat for each char in string.

 // For each character in the string, verify that it is
 // a legal hexadecimal character and merge it in with the
 // current accumulated value if it is. Print an error message
 // if we come across an illegal character.

 ?len := len - 1; // Next available char.
 ?curch := char(@substr(hs, len, 1)); // Get the character.
 #if(curch in {‘0’..’9’}) // See if valid decimal digit.

 // Accumulate result if decimal digit.

 ?dwval := dwval +
 (uns8(curch) - uns8(‘0’)) * mplier;

 #elseif(curch in {‘A’..’F’}) // See if valid hex digit.

 // Accumulate result if a hexadecimal digit.

 ?dwval := dwval +
 (uns8(curch) - uns8(‘A’) + 10) * mplier;

 // Ignore underscore characters and report an error for anything
 // else we find in the string.

 #elseif(curch <> ‘_’)

 #error(“Illegal character in 64-bit hexadecimal constant”)
 #print(“Character = ‘”, curch, “‘ Rest of string: ‘”, hs, “‘”)

 #endif

 // If it’s not an underscore character, adjust the multiplier value.
 // If we cross a dword boundary, emit the L.O. value as a dword
 // and reset everything for the H.O. dword.

 #if(curch <> ‘_’)

 // If the current value fits in 32 bits, process this
 // as though it were a dword object.

 #if(mplier < $1000_0000)

 ?mplier := mplier * 16;

 #elseif(len > 0)
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1121

Chapter Eleven Volume Four
 // Down here we’ve just processed the last hex
 // digit that will fit into 32 bits. So emit the
 // L.O. dword and reset the mplier and dwval constants.

 ?mplier := 1;
 dword dwval;
 ?dwval := 0;

 // If we’ve been this way before, we’ve got an
 // overflow.

 #if(didLO)

 #error(“64-bit overflow in constant”);

 #endif
 ?didLO := true;

 #endif

 #endif

 #endwhile

 // Emit the H.O. dword here.

 dword dwval;

 // If the constant only consumed 32 bits, we’ve got to emit a zero
 // for the H.O. dword at this point.

 #if(!didLO)

 dword 0;

 #endif

endmacro;

static
 x:qword; @nostorage;
 qword16($1234_5678_90ab_cdef);
 qword16(100);

begin qwordConstType;

 stdout.put(“64-bit value of x = $”);
 stdout.putq(x);
 stdout.newln();

end qwordConstType;

Program 11.1 qword16 Macro to Process 64-bit Hexadecimal Constants
Page 1122 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

l

Although it’s a little bit more difficult, you could also write a qword10 macro that lets you specify deci-
mal constants as the macro operand rather than hexadecimal constants. The implementation of qword10 is
left as a programming exercise at the end of this volume.

11.7 MMX Technology Instructions

The following subsections describe each of the MMX instructions in detail. The organization is as fol-
lows:

• Data Transfer Instructions,
• Conversion Instructions,
• Packed Arithmetic Instructions,
• Comparisons,
• Logical Instructions,
• Shift and Rotate Instructions,
• the EMMS Instruction.

These sections describe what these instructions do, not how you would use them. Later sections wil
provide examples of how you can use several of these instructions.

11.7.1 MMX Data Transfer Instructions

movd(reg32, mmi);

movd(mem32, mmi);

movd(mmi, reg32);

movd(mmi, mem32);

movq(mem64, mmi);

movq(mmi, mem64);

movq(mmi, mmi);

The MOVD (move double word) instruction copies data between a 32-bit integer register or double
word memory location and an MMX register. If the destination is an MMX register, this instruction
zero-extends the value while moving it. If the destination is a 32-bit register or memory location, this
instruction copies the L.O. 32-bits of the MMX register to the destination.

The MOVQ (move quadword) instruction copies data between two MMX registers or between an MMX
register and memory. If either the source or destination operand is a memory object, it must be a qword vari-
able or HLA will complain.

11.7.2 MMX Conversion Instructions

packssdw(mem64, mmi);

packssdw(mmi, mmi);

packsswb(mem64, mmi);

packsswb(mmi, mmi);

packusdw(mem64, mmi);

packusdw(mmi, mmi);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1123

Chapter Eleven Volume Four

r is
t is
o
s

am.
,

packuswb(mem64, mmi);

packuswb(mmi, mmi);

punpckhbw(mem64, mmi);

punpckhbw(mmi, mmi);

punpckhdq(mem64, mmi);

punpckhdq(mmi, mmi);

punpckhwd(mem64, mmi);

punpckhwd(mmi, mmi);

punpcklbw(mem64, mmi);

punpcklbw(mmi, mmi);

punpckldq(mem64, mmi);

punpckldq(mmi, mmi);

punpcklwd(mem64, mmi);

punpcklwd(mmi, mmi);

The PACKSSxx instructions pack and saturate signed values. They convert a sequence of larger values
to a sequence of smaller values via saturation. Those instructions with the dw suffix pack four double words
into four words; those with the wb suffix saturate and pack eight signed words into eight signed bytes.

The PACKSSDW instruction takes the two double words in the source operand and the two double
words in the destination operand and converts these to four signed words via saturation. The instruction
packs these four words together and stores the result in the destination MMX register. See Figure 11.3 for
details.

The PACKSSWB instruction takes the four words from the source operand and the four signed words
from the destination operand and converts, via signed saturation, these values to eight signed bytes. This
instruction leaves the eight bytes in the destination MMX register. See Figure 11.4 for details.

One application for these pack instructions is to convert UNICODE to ASCII (ANSI). You can convert
UNICODE (16-bit) character to ANSI (8-bit) character if the H.O. eight bits of each UNICODE characte
zero. The PACKUSWB instruction will take eight UNICODE characters and pack them into a string tha
eight bytes long with a single instruction. If the H.O. byte of any UNICODE character contains a non-zer
value, then the PACKUSWB instruction will store $FF in the respective byte; therefore, you can use $FF a
a conversion error indication.

Another use for the PACKSSWB instruction is to translate a 16-bit audio stream to an eight-bit stre
Assuming you’ve scaled your sixteen-bit values to produce a sequence of values in the range -128..+127
you can use the PACKSSWB instruction to convert that sequence of 16-bit values into a packed sequence of
eight bit values.
Page 1124 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.3 PACKSSDW Instruction

Figure 11.4 PACKSSWB Instruction

The unpack instructions (PUNPCKxxx) provide the converse operation to the pack instructions. The

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PACKSSDW Operation

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PACKSSWB Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1125

Chapter Eleven Volume Four

 32-bit

ouble

nd.

ositions
unpack instructions take a sequence of smaller, packed, values and translate them into larger values. There is
one problem with this conversion, however. Unlike the pack instructions, where it took two 64-bit operands
to generate a single 64-bit result, the unpack operations will produce a 64-bit result from a single
result. Therefore, these instructions cannot operate directly on full 64-bit source operands. To overcome
this limitation, there are two sets of unpack instructions: one set unpacks the data from the L.O. d
word of a 64-bit object, the other set of instructions unpacks the H.O. double word of a 64-bit object. By
executing one instruction from each set you can unpack a 64-bit object into a 128-bit object.

The PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ instructions merge (unpack) the L.O. double
words of their source and destination operands and store the 64-bit result into their destination opera

The PUNPCKLBW instruction unpacks and interleaves the low-order four bytes of the source (first)
and destination (second) operands. It places the L.O. four bytes of the destination operand at the even byte
positions in the destination and it places the L.O. four bytes of the source operand in the odd byte p
of the destination operand.(see Figure 11.5).

Figure 11.5 UNPCKLBW Instruction

The PUNPCKLWD instruction unpacks and interleaves the low-order two words of the source (first)
and destination (second) operands. It places the L.O. two words of the destination operand at the even word
positions in the destination and it places the L.O. words of the source operand in the odd word positions of
the destination operand (see Figure 11.6).

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PUNPCKLBW Operation

he
Page 1126 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.6 The PUNPCKLWD Instruction

The PUNPCKDQ instruction copies the L.O. dword of the source operand to the L.O. dword of the des-
tination operand and it copies the (original) L.O. dword of the destination operand to the L.O. dword of the
destination (i.e., it doesn’t change the L.O. dword of the destination, see Figure 11.7).

63 0

Source

63 0

DWord 1 DWord 0

Destination

63 0

Destination

PUNPCKLWD Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1127

Chapter Eleven Volume Four

 It
it
nd (see
Figure 11.7 PUNPCKLDQ Instruction

The PUNPCKHBW instruction is quite similar to the PUNPCKLBW instruction. The difference is that
it unpacks and interleaves the high-order four bytes of the source (first) and destination (second) operands.
places the H.O. four bytes of the destination operand at the even byte positions in the destination and
places the H.O. four bytes of the source operand in the odd byte positions of the destination opera
Figure 11.8).

63 0

Source

63 0

QWord

Destination

63 0

Destination

PUNPCKLDQ Operation
Page 1128 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Figure 11.8 PUNPCKHBW Instruction

The PUNPCKHWD instruction unpacks and interleaves the low-order two words of the source (first)
and destination (second) operands. It places the L.O. two words of the destination operand at the even word
positions in the destination and it places the L.O. words of the source operand in the odd word positions of
the destination operand (see Figure 11.9)

63 0

Source

63 0

Word 3 Word 2 Word 1 Word 0

Destination

63 0

Destination

PUNPCKHBW Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1129

Chapter Eleven Volume Four
Figure 11.9 PUNPCKHWD Instruction

The PUNPCKHDQ instruction copies the H.O. dword of the source operand to the H.O. dword of the
destination operand and it copies the (original) H.O. dword of the destination operand to the L.O. dword of
the destination (see Figure 11.10).

63 0

Source

63 0

DWord 1 DWord 0

Destination

63 0

Destination

PUNPCKHWD Operation
Page 1130 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

 as

ble

it is pos

mory to
Figure 11.10 PUNPCKDQ Instruction

Since the unpack instructions provide the converse operation of the pack instructions, it should come
no surprise that you can use these instructions to perform the inverse algorithms of the examples given ear-
lier for the pack instructions. For example, if you have a string of eight-bit ANSI characters, you can convert
them to their UNICODE equivalents by setting one MMX register (the source) to all zeros. You can convert
each four characters of the ANSI string to UNICODE by loading those four characters into the L.O. dou
word of an MMX register and executing the PUNPCKLBW instruction. This will interleave each of the
characters with a zero byte, thus converting them from ANSI to UNICODE.

Of course, the unpack instructions are quite valuable any time you need to interleave data. For example,
if you have three separate images containing the blue, red, and green components of a 24-bit image, -
sible to merge these three bytes together using the PUNPCKLBW instruction3.

11.7.3 MMX Packed Arithmetic Instructions

paddb(mem64, mmi);
paddb(mmi, mmi);

paddw(mem64, mmi);
paddw(mmi, mmi);

paddd(mem64, mmi);
paddd(mmi, mmi);

paddsb(mem64, mmi);
paddsb(mmi, mmi);

paddsw(mem64, mmi);
paddsw(mmi, mmi);

3. Typically you would merge in a fourth byte of zero and then store the resulting double word every three bytes in me
overwrite the zeros.

63 0

Source

63 0

QWord

Destination

63 0

Destination

PUNPCKHDQ Operation
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1131

Chapter Eleven Volume Four

g o

urce

metic.
s

paddusb(mem64, mmi);
paddusb(mmi, mmi);

paddusw(mem64, mmi);
paddusw(mmi, mmi);

psubb(mem64, mmi);
psubb(mmi, mmi);

psubw(mem64, mmi);
psubw(mmi, mmi);

psubd(mem64, mmi);
psubd(mmi, mmi);

psubsb(mem64, mmi);
psubsb(mmi, mmi);

psubsw(mem64, mmi);
psubsw(mmi, mmi);

psubusb(mem64, mmi);
psubusb(mmi, mmi);

psubusw(mem64, mmi);
psubusw(mmi, mmi);

pmulhuw(mem64, mmi);
pmulhuw(mmi, mmi);

pmulhw(mem64, mmi);
pmulhw(mmi, mmi);

pmullw(mem64, mmi);
pmullw(mmi, mmi);

pmaddwd(mem64, mmi);
pmaddwd(mmi, mmi);

The packed arithmetic instructions operate on a set of bytes, words, or double words within a 64-bit
block. For example, the PADDW instruction computes four 16-bit sums of two operand simultaneously.
None of these instructions affect the CPU’s FLAGs register. Therefore, there is no indication of overflow,
underflow, zero result, negative result, etc. If you need to test a result after a packed arithmetic computation,
you will need to use one of the packed compare instructions (see “MMX Comparison Instructions” on
page 1134).

The PADDB, PADDW, and PADDD instructions add the individual bytes, words, or double words in the
two 64-bit operands using a wrap-around (i.e., non-saturating) addition. Any carry out of a sum is lost; it is
your responsibility to ensure that overflow never occurs. As for the integer instructions, these packed add
instructions add the values in the source operand to the destination operand, leaving the sum in the destina-
tion operand. These instructions produce correct results for signed or unsigned operands (assuminver-
flow/underflow does not occur).

The PADDSB and PADDSW instructions add the eight eight-bit or four 16-bit operands in the so
and destination locations together using signed saturation arithmetic. The PADDUSB and PADDUSW
instructions add their eight eight-bit or four 16-bit operands together using unsigned saturation arith
Notice that you must use different instructions for signed and unsigned value since saturation arithmetic i
different depending upon whether you are manipulating signed or unsigned operands. Also note that the
instruction set does not support the saturated addition of double word values.
Page 1132 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

d.
the

n
L

it
f

r

The PSUBB, PSUBW, and PSUBD instructions work just like their addition counterparts, except of
course, they compute the wrap-around difference rather than the sum. These instructions compute
dest=dest-src. Likewise, the PSUBSB, PSUBSW, PSUBUSB, and PSUBUSW instruction compute the dif-
ference of the destination and source operands using saturation arithmetic.

While addition and subtraction can produce a one-bit carry or borrow, multiplication of two n-bit oper-
ands can produce as large as a 2*n bit result. Since overflow is far more likely in multiplication than in addi-
tion or subtraction, the MMX packed multiply instructions work a little differently than their addition and
subtraction counterparts. To successfully multiply two packed values requires two instructions - one to com-
pute the L.O. component of the result and one to produce the H.O. component of the result. The PMULLW,
PMULHW, and PMULHUW instructions handle this task.

The PMULLW instruction multiplies the four words of the source operand by the four words of the des-
tination operand and stores the four L.O. words of the four double word results into the destination operan
This instruction ignores the H.O. words of the results. Used by itself, this instruction computes
wrap-around product of an unsigned or signed set of operands; this is also the L.O. words of the four prod-
ucts.

The PMULHW and PMULHUW instructions complete the calculation. After computing the L.O.
words of the four products with the PMULLW instruction, you use either the PMULHW or PMULHUW
instruction to compute the H.O. words of the products. These two instruction multiply the four words in the
source by the four words in the destination and then store the H.O. words of the results in the destinatio
MMX register. The difference between the two is that you use PMULHW for signed operands and PMU-
HUW for unsigned operands. If you compute the full product by using a PMULLW and a PMULHW (or
PMULHUW) instruction pair, then there is no overflow possible, hence you don’t have to worry about
wrap-around or saturation arithmetic.

The PMADDWD instruction multiplies the four words in the source operand by the four words in the
destination operand to produce four double word products. Then it adds the two L.O. double words together
and stores the result in the L.O. double word of the destination MMX register; it also adds together the two
H.O. double words and stores their sum in the H.O. word of the destination MMX register.

11.7.4 MMX Logic Instructions

pand(mem64, mmi);
pand(mmi, mmi);

pandn(mem64, mmi);
pandn(mmi, mmi);

por(mem64, mmi);
por(mmi, mmi);

pxor(mem64, mmi);
pxor(mmi, mmi);

The packed logic instructions are some examples of MMX instructions that actually operate on 64-b
values. There are no packed byte, packed word, or packed double word versions of these instructions. O
course, there is no need for special byte, word, or double word versions of these instructions since they
would all be equivalent to the 64-bit logic instruction. Hence, if you want to logically AND eight bytes
together in parallel, you use the PAND instruction; likewise, if you want to logically AND four words or
two double words together, you just use the PAND instruction.

The PAND, POR, and PXOR instructions do the same thing as their 32-bit integer instruction counter-
parts (AND, OR, XOR) except, of course, they operate on two 64-bit MMX operands. Hence, no furthe
discussion of these instructions is really necessary here. The PANDN (AND NOT) instruction is a new logic
instruction, so it bears a little bit of a discussion. The PANDN instruction computes the following result:

dest := dest and (not source);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1133

Chapter Eleven Volume Four

l
useful
perand.
uence

ns,
r in this
As you may recall from the chapter on Introduction to Digital Design, this is the inhibition function. If the
destination operand is B and the source operand is A, this function computes B = BA’. (see “Boolean Func-
tions and Truth Tables” on page 205 for details of the inhibition function). If you’re wondering why Inte
chose to include such a weird function in the MMX instruction set, well, this instruction has one very
property: it forces bits to zero in the destination operand everywhere there is a one bit in the source o
This is an extremely useful function for merging to 64-bit quantities together. The following code seq
demonstrates this:

readonly
AlternateNibbles: qword; nostorage;

qword16($F0F0_F0F0_F0F0_F0F0); // Note: needs qword16 macro!
.
.
.

// Create a 64-bit value in MM0 containing the Odd nibbles from MM1 and
// the even nibbles from MM0:

pandn(AlternateNibbles, mm0); // Clear the odd numbered nibbles.
pand(AlternateNibbles, mm1); // Clear the even numbered nibbles.
por(mm1, mm0); // Merge the two.

The PANDN operation is also useful for compute the set difference of two character sets. You could
implement the cs.difference function using only six MMX instructions:

// Compute csdest := csdest - cssrc;

movq((type qword csdest), mm0);
pandn((type qword cssrc), mm0);
movq(mm0, (type qword csdest));
movq((type qword csdest[8]), mm0);
pandn((type qword cssrc[8]), mm0);
movq(mm0, (type qword csdest[8]));

Of course, if you want to improve the performance of the HLA Standard Library character set functio
you can use the MMX logic instructions throughout that module. Examples of such code appear late
chapter.

11.7.5 MMX Comparison Instructions

pcmpeqb(mem64, mmi);
pcmpeqb(mmi, mmi);

pcmpeqw(mem64, mmi);
pcmpeqw(mmi, mmi);

pcmpeqd(mem64, mmi);
pcmpeqd(mmi, mmi);

pcmpgtb(mem64, mmi);
pcmpgtb(mmi, mmi);

pcmpgtw(mem64, mmi);
pcmpgtw(mmi, mmi);

pcmpgtd(mem64, mmi);
pcmpgtd(mmi, mmi);
Page 1134 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

B,

res

ari

n
w
o
ts,

f

1
0

The packed comparison instructions compare the destination (second) operand to the source (first) oper-
and to test for equality or greater than. These instructions compare eight pairs of bytes (PCMPEQ
PCMPGTB), four pairs of words (PCMPEQW, PCMPGTW), or two pairs of double words (PCMPEQD,
PCMPGTD).

The first big difference to notice about these packed comparison instructions is that they compare the
second operand to the first operand. This is exactly opposite of the standard CMP instruction (that compa
the first operand to the second operand). The reason for this will become clear in a moment; however, you
do have to keep in mind when using these instructions that the operands are opposite what you would nor-
mally expect. If this ordering bothers you, you can create macros to reverse the operands; we will explore
this possibility a little later in this section.

The second big difference between the packed comparisons and the standard integer comparison is that
these instructions test for a specific condition (equality or greater than) rather than doing a generic comp-
son. This is because these instructions, like the other MMX instructions, do not affect any condition code
bits in the FLAGs register. This may seem contradictory, after all the whole purpose of the CMP instructio
is to set the condition code bits. However, keep in mind that these instructions simultaneously compare to,
four, or eight operands; that implies that you would need two, four, or eight sets of condition code bits t
hold the results of the comparisons. Since the FLAGs register maintains only one set of condition code bi
it is not possible to reflect the comparison status in the FLAGs. This is why the packed comparison instruc-
tions test a specific condition - so they can return true or false to indicate the result of their comparison.

Okay, so where do these instructions return their true or false values? In the destination operand, o
course. This is the third big difference between the packed comparisons and the standard integer CMP
instruction – the packed comparisons modify their destination operand. Specifically, the PCMPEQB and
PCMPGTB instruction compare each pair of bytes in the two operands and write false ($00) or true ($FF) to
the corresponding byte in the destination operand, depending on the result of the comparison. For example,
the instruction “pcmpgtb(MM1, MM0);” compares the L.O. byte of MM0 (A) with the L.O. byte of MM
(B) and writes $00 to the L.O. byte of MM0 if A is not greater than B. It writes $FF to the L.O. byte of MM
if A is greater than B (see Figure 11.11).

Figure 11.11 PCMPEQB and PCMPGTB Instructions

The PCMPEQW, PCMPGTW, PCMPEQD, and PCMPGTD instructions work in an analogous fashion
except, of course, they compare words and double words rather than bytes (see Figure 11.12 and Figure
11.13).

63 0

Source

63 0

Destination

63 0

Destination

PCMPEQB/PCMPGTB Operation

$00 / FF00 / FF00 / FF00 / FF00 / FF00 / FF00 / FF00 / $FF
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1135

Chapter Eleven Volume Four

le

stina

 or

d

Figure 11.12 PCMPEQW and PCMPGTW Instructions

Figure 11.13 PCMPEQD and PCMPGTD Instructions

You’ve probably already noticed that there isn’t a set of PCMPLTx instructions. Intel chose not to pro-
vide these instructions because you can simulate them with the PCMPGTx instructions by reversing the
operands. That is, A>B implies B<A. Therefore, if you want to do a concurrent comparison of multip
operands for less than, you can use the PCMPGTx instructions to do this by simply reversing the operands.
The only time this isn’t directly possible is if your source operand is a memory operand; since the de-
tion operand of the packed comparison instructions has to be an MMX register, you would have to move the
memory operand into an MMX register before comparing them.

In addition to the lack of a packed less than comparison, you’re also missing the not equals, less than
equal, and greater than or equal comparisons. You can easily synthesize these comparisons by executing a
PXOR or POR instruction after the packed comparison.

To simulate a PCMPNEx instruction, all you’ve got to do is invert all the bits in the destination operan
after executing a PCMPEQx instruction, e.g.,

63 0

Source

63 0

Destination

63 0

Destination

PCMPEQW/PCMPGTW Operation

$0000 / $FFFF$0000 / $FFFF$0000 / $FFFF$0000 / $FFFF

63 0

Source

63 0

Destination

63 0

Destination

PCMPEQD/PCMPGTD Operation

$0000_0000 / $FFFF_FFFF$0000_0000 / $FFFF_FFFF
Page 1136 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

 than
.

uality
omputes

e

n.
pcmpeqb(mm1, mm0);
pxor(AllOnes, mm0); // Assumption: AllOnes is a qword variable
 // containing $FFFF_FFFF_FFFF_FFFF.

Of course, you can save the PXOR instruction by testing for zeros in the destination operand rather
ones (that is, use your program’s logic to invert the result rather than actually computing the inverse)

To simulate the PCMPGEx and PCMPLEx instructions, you must do two comparisons, one for eq
and one for greater than or less than, and then logically OR the results. Here’s an example that c
MM0 <= MM1:

movq(mm1, mm2); // Need a copy of destination operand.
pcmpgtb(mm0, mm1); // Remember: A<B is equal to B>A, so we’re
pcmpeqb(mm0, mm2); // MM0<MM1 and MM0=MM1 here.
por(mm2, mm1); // Leaves boolean results in MM1.

If it really bothers you to have to reverse the operands, you can create macros to create your own PCM-
PLTx instructions. The following example demonstrates how to create the PCMPLTB macro:

#macro pcmpltb(mmOp1, mmOp2);

pcmpgtb(mmOp2, mmOp1);

#endmacro

Of course, you must keep in mind that there are two very big differences between this PCMPLTB
“instruction” and a true PCMPLTB instruction. First, this form leaves the result in the first operand, not the
second operand, hence the semantics of this “instruction” are different than the other packed comparisons.
Second, the first operand has to be an MMX register while the second operand can be an MMX register or a
quad word variable; again, just the opposite of the other packed instructions. The fact that this instruction’s
operands behave differently than the PCMPGTB instruction may create some problems. So you will have to
carefully consider whether you really want to use this scheme to create a PCMPLTB “instruction” for use in
your programs. If you decide to do this, it would help tremendously if you always commented each invoca-
tion of the macro to point out that the first operand is the destination operand, e.g.,

pcmpltb(mm0, mm1); // Computes mm0 := mm1<mm0!

If the fact that the packed comparison instruction’s operands are reversed bothers you, you can also us
macros to swap those operands. The following example demonstrates how to write such macros for the
PEQB (PCMPEQB), PGTB (PCMPGTB), and PLTB (packed less than, byte) instructions.

#macro peqb(leftOp, rightOp);

pcmpeqb(rightOp, leftOp);

#endmacro

#macro pgtb(leftOp, rightOp);

pcmpgtb(rightOp, leftOp);

#endmacro

#macro pltb(leftOp, rightOp);

pcmpgtb(leftOp, rightOp);

#endmacro

Note that these macros don’t solve the PLTB problem of having the wrong operand as the destinatio
However, these macros do compare the first operand to the second operand, just like the standard CMP
instruction.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1137

Chapter Eleven Volume Four

 w

s

ot
Of course, once you obtain a boolean result in an MMX register, you’ll probably want to test the results
at one point or another. Unfortunately, the MMX instructions only provide a couple of ways to move com-
parison information in and out of the MMX processor – you can store an MMX register value into memory
or you can copy 32-bits of an MMX register to a general-purpose integer register. Since the comparison
instructions produce a 64-bit result, writing the destination of a comparison to memory is the easiestay to
gain access to the comparison results in your program. Typically, you’d use an instruction sequence like the
following:

pcmpeqb(mm1, mm0); // Compare 8 bytes in mm1 to mm0.
movq(mm0, qwordVar); // Write comparison results to memory.
if((type boolean qwordVar)) then

<< do this if byte #0 contained true ($FF, which is non-zero). >>

endif;
if((type boolean qwordVar[1])) then

<< do this if byte #1 contained true. >>

endif;
etc.

11.7.6 MMX Shift Instructions

psllw(mmi, mmi);
psllw(imm8, mmi);

pslld(mmi, mmi);
pslld(imm8, mmi);

psllq(mmi, mmi);
psllq(imm8, mmi);

pslrw(mmi, mmi);
pslrw(imm8, mmi);

psrld(mmi, mmi);
psrld(imm8, mmi);

pslrq(mmi, mmi);
pslrq(imm8, mmi);

psraw(mmi, mmi);
psraw(imm8, mmi);

psrad(mmi, mmi);
psrad(imm8, mmi);

The MMX shift, like the arithmetic instructions, allow you to simultaneously shift several different val-
ues in parallel. The PSLLx instructions perform a packed shift left logical operation, the PSLRx instruction
do a packed logical shift right operation, and the PSRAx instruction do a packed arithmetic shift right opera-
tion. These instructions operate on word, double word, and quad word operands. Note that Intel does n
provide a version of these instructions that operate on bytes.

The first operand to these instructions specifies a shift count. This should be an unsigned integer value
in the range 0..15 for word shifts, 0..31 for double word operands, and 0..63 for quadword operands. If the
Page 1138 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

s. If the

f

n

ul

LL

 bits

a
u

 it can
shift count is outside these ranges, then these instructions set their destination operands to all zero
count (first) operand is not an immediate constant, then it must be an MMX register.

The PSLLW instruction simultaneously shifts the four words in the destination MMX register to the left
the number of bit positions specified by the source operand. The instruction shifts zero into the L.O. bit o
each word and the bit shifted out of the H.O. bit of each word is lost. There is no carry from one word to the
other (since that would imply a larger shift operation). This instruction, like all the other MMX instructions,
does not affect the FLAGs register (including the carry flag).

The PSLLD instruction simultaneously shifts the two double words in the destination MMX register to
the left one bit position. Like the PSLLW instruction, this instruction shifts zeros into the L.O. bits and ay
bits shifted out of the H.O. positions are lost.

The PSLLQ is one of the few MMX instructions that operates on 64-bit quantities. This instruction
shifts the entire 64-bit destination register to the left the number of bits specified by the count (source) oper-
and. In addition to allowing you to manipulate 64-bit integer quantities, this instruction is especially usef
for moving data around in MMX registers so you can pack or unpack data as needed.

Although there is no PSLLB instruction to shift bits, you can simulate this instruction using a PSW
and a PANDN instruction. After shifting the word values to the left the specified number of bits, all you’ve
got to do is clear the L.O. n bits of each byte, where n is the shift count. For example, to shift the bytes in
MM0 to the left three positions you could use the following two instructions:

static
ThreeBitsZero: byte; @nostorage;

byte $F8, $F8, $F8, $F8, $F8, $F8, $F8, $F8;
.
.
.

psllw(3, mm0);
pandn(ThreeBitsZero, mm0);

The PSLRW, PSLRD, and PSLRQ instructions work just like their left shift counterparts except that
these instructions shift their operands to the right rather than to the left. They shift zeros into the vacated
H.O. positions of the destination values and bits they shift out of the L.O. bits are lost. As with the shift left
instructions, there is no PSLRB instruction but you can easily simulate this with a PSLRW and a PANDN
instruction.

The PSRAW and PSRAD instructions do an arithmetic shift right operation on the words or double
words in the destination MMX register. Note that there isn’t a PSRAQ instruction. While shifting data to
the right, these instructions replicate the H.O. bit of each word, double word, or quad word rather than shift-
ing in zeros. As for the logical shift right instructions, bits that these instructions shift out of the L.O.
are lost forever.

The PSLLQ and PSLRQ instructions provide a convenient way to shift a quad word to the left or right.
However, the MMX shift instructions are not generally useful for extended precision shifts since all dat
shifted out of the operands is lost. If you need to do an extended precision shift other than 64 bits, yo
should stick with the SHLD and SHRD instructions. The MMX shift instructions are mainly useful for
shifting several values in parallel or (PSLLQ and PSLRQ) repositioning data in an MMX register.

11.8 The EMMS Instruction

emms();

The EMMS (Empty MMX Machine State) instruction restores the FPU status on the CPU so that
begin processing FPU instructions again after an MMX instruction sequence. You should always execute the
EMMS instruction once you complete some MMX sequence. Failure to do so may cause any following
floating point instructions to fail.
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1139

Chapter Eleven Volume Four

 if

he

wing

t

r

l that
oing to
nstruc-

e that

ch you

ill
When an MMX instruction executes, the floating point tag word is marked valid (00s). Subsequent float-
ing-point instructions that will be executed may produce unexpected results because the floating-point stack
seems to contain valid data. The EMMS instruction marks the floating point tag word as empty. This must
occur before the execution of any following floating point instructions.

Of course, you don’t have to execute the EMMS instruction immediately after an MMX sequence
you’re going to execute some additional MMX instructions prior to executing any FPU instructions, but you
must take care to execute this instruction if

• You call any library routines or OS APIs (that might possibly use the FPU).
• You switch tasks in a cooperative fashion (for example, see the chapter on Coroutines in t

Volume on Advanced Procedures).
• You execute any FPU instructions.
If the EMMS instruction is not used when trying to execute a floating-point instruction, the follo

may occur:

• Depending on the exception mask bits of the floating-point control word, a floating poin
exception event may be generated.

• A “soft exception” may occur. In this case floating-point code continues to execute, but gene-
ates incorrect results.

The EMMS instruction is rather slow, so you don’t want to unnecessarily execute it, but it is critica
you execute it at the appropriate times. Of course, better safe that sorry; if you’re not sure you’re g
execute more MMX instructions before any FPU instructions, then go ahead and execute the EMMS i
tion to clear the state.

11.9 The MMX Programming Paradigm

In general, you don’t learn scalar (non-MMX) 80x86 assembly language programming and then us
same mindset when writing programs using the MMX instruction set. While it is possible to directly use
various MMX instructions the same way you would the general purpose integer instructions, one phrase
comes to mind when working with MMX: think parallel. This text has spent many hundreds of pages up to
this point attempting to get you to think in assembly language; to think that this small section can tea
how to design optimal MMX sequence would be ludicrous. Nonetheless, a few simple examples are useful
to help start you thinking about how to use the MMX instructions to your benefit in your programs. This
section will begin by presenting some fairly obvious uses for the MMX instruction set, and then it w
attempt to present some examples that exploit the inherent parallelism of the MMX instructions.

Since the MMX registers are 64-bits wide, you can double the speed of certain data movement opera-
tions by using MMX registers rather than the 32-bit general purpose registers. For example, consider the
following code from the HLA Standard Library that copies one character set object to another:

procedure cs.cpy(src:cset; var dest:cset); nodisplay;
begin cpy;

 push(eax);
 push(ebx);
 mov(dest, ebx);
 mov((type dword src), eax);
 mov(eax, [ebx]);
 mov((type dword src[4]), eax);
 mov(eax, [ebx+4]);
 mov((type dword src[8]), eax);
 mov(eax, [ebx+8]);
Page 1140 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
 mov((type dword src[12]), eax);
 mov(eax, [ebx+12]);
 pop(ebx);
 pop(eax);

end cpy;

Program 11.2 HLA Standard Library cs.cpy Routine

This is a relatively simple code sequence. Indeed, a fair amount of the execution time is spent copying
the parameters (20 bytes) onto the stack, calling the routine, and returning from the routine. This entire
sequence can be reduced to the following four MMX instructions:

movq((type qword src), mm0);
movq((type qword src[8]), mm1);
movq(mm0, (type qword dest));
movq(mm1, (type qword dest[8]));

Of course, this sequence assumes two things: (1) it’s okay to wipe out the values in MM0 and MM1, and
(2) you’ll execute the EMMS instruction a little later on after the execution of some other MMX instruc-
tions. If either, or both, of these assumptions is incorrect, the performance of this sequence won’t be quite as
good (though probably still better than the cs.cpy routine). However, if these two assumptions do hold, then
it’s relatively easy to implement the cs.cpy routine as an in-line function (i.e., a macro) and have it run much
faster. If you really need this operation to occur inside a procedure and you need to preserve the MMX reg-
isters, and you don’t know if any MMX instructions will execute shortly thereafter (i.e., you’ll need to exe-
cute EMMS), then it’s doubtful that using the MMX instructions will help here. However, in those cases
when you can put the code in-line, using the MMX instructions will be faster.

Warning: don’t get too carried away with the MMX MOVQ instruction. Several programmers have
gone to great extremes to use this instruction as part of a high performance MOVSD replacement. However,
except in very special cases on very well designed systems, the limiting factor for a block move is the speed
of memory. Since Intel has optimized the operation of the MOVSD instruction, you’re best off using the
MOVSD instructions when moving blocks of memory around.

Earlier, this chapter used the cs.difference function as an example when discussing the PANDN instruc-
tion. Here’s the original HLA Standard Library implementation of this function:

procedure cs.difference(src:cset; var dest:cset); nodisplay;
begin difference;

 push(eax);
 push(ebx);
 mov(dest, ebx);
 mov((type dword src), eax);
 not(eax);
 and(eax, [ebx]);
 mov((type dword src[4]), eax);
 not(eax);
 and(eax, [ebx+4]);
 mov((type dword src[8]), eax);
 not(eax);
 and(eax, [ebx+8]);
 mov((type dword src[12]), eax);
 not(eax);
 and(eax, [ebx+12]);
 pop(ebx);
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1141

Chapter Eleven Volume Four

 the

et

p

le
struc

ng.
 time.
of
 pop(eax);

end difference;

Program 11.3 HLA Standard Library cs.difference Routine

Once again, the high-level nature of HLA is hiding the fact that calling this function is somewhat expen-
sive. A typical call to cs.difference emits five or more instructions just to push the parameters (it takes four
32-bit PUSH instructions to pass the src character set because it is a value parameter). If you’re willing to
wipe out the values in MM0 and MM1, and you don’t need to execute an EMMS instruction right away, it’s
possible to compute the set difference with only six instructions – that’s about the same number of instruc-
tions (and often fewer) than are needed to call this routine, much less do the actual work. Here are those six
instructions:

movq(dest, mm0);
movq(dest[8], mm1);
pandn(src, mm0);
pandn(src[8], mm1);
movq(mm0, dest);
movq(mm1, dest[8]);

These six instructions replace 12 of the instructions in the body of the function. The sequence is suffi-
ciently short that it’s reasonable to code it in-line rather than in a function. However, were you to bury this
code in the cs.difference routine, you needed to preserve MM0 and MM14, and you needed to execute
EMMS afterwards, this would cost more than it’s worth. As an in-line macro, however, it is going to be sig-
nificantly faster since it avoids passing parameters and the call/return sequence.

If you want to compute the intersection of two character sets, the instruction sequence is identical to
above except you substitute PAND for PANDN. Similarly, if you want to compute the union of two charac-
ter sets, use the code sequence above substituting POR for PANDN. Again, both approaches pay off hand-
somely if you insert the code in-line rather than burying it in a procedure and you don’t need to preserve
MMX registers or execute EMMS afterwards.

We can continue with this exercise of working our way through the HLA Standard Library character s
(and other) routines substituting MMX instructions in place of standard integer instructions. As long as we
don’t need to preserve the MMX machine state (i.e., registers) and we don’t have to execute EMMS, most of
the character set operations will be short enough to code in-line. Unfortunately, we’re not buying that much
over code the standard implementations of these functions in-line from a performance point of view (though
the code would be quite a bit shorter). The problem here is that we’re not “thinking in MMX.” We’re still
thinking in scalar (non-parallel mode) and the fact that the MMX instruction set requires a lot of set-u
(well, “tear-down” actually) negates many of the advantages of using MMX instructions in our programs.

The MMX instructions are most appropriate when you compute multiple results in parallel The prob-
lem with the character set examples above is that we’re not even processing a whole data object with a sing
instruction; we’re actually only processing a half of a character set with a sequence of three MMX in-
tions (i.e., it requires six instructions to compute the intersection, union, or difference of two character sets).
At best, we can only expect the code to run about twice as fast since we’re processing 64 bits at a time
instead of 32 bits. Executing EMMS (and, God help us, having to preserve MMX registers) negates much of
what we might gain by using the MMX instructions. Again, we’re only going to see a speed improvement if
we process multiple objects with a single MMX instruction. We’re not going to do that manipulating large
objects like character sets.

One data type that will let us easily manipulate up to eight objects at one time is a character striWe
can speed up many character string operations by operating on eight characters in the string at one
Consider the HLA Standard Library str.uppercase procedure. This function steps through each character

4. Actually, the code could be rewritten easily enough to use only one MMX register.
Page 1142 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

”

d Jcc
he con
e drops
20 from
ting $20

anch-
rating
version
gn if the
o upper
of con-
r we
lculation

e

a string, tests to see if it’s a lower case character, and if so, converts the lower case character to upper case. A
good question to ask is “can we process eight characters at a time using the MMX instructions?The
answer turns out to be yes and the MMX implementation of this function provides an interesting perspective
on writing MMX code.

At first glance it might seem impractical to use the MMX instructions to test for lower case characters
and convert them to upper case. Consider the typical scalar approach that tests and converts a single charac-
ter at a time:

<< Get character to convert into the AL register >>

cmp(al, ‘a’);
jb noConversion;
cmp(al, ‘z’);
ja noConversion;
sub($20, al); // Could also use AND($5f, al); here.

noConversion:

This code first checks the value in AL to see if it’s actually a lower case character (that’s the CMP an
instructions in the code above). If the character is outside the range ‘a’..’z’ then this code skips over t-
version (the SUB instruction); however, if the code is in the specified range, then the sequence abov
through to the SUB instruction and converts the lower case character to upper case by subtracting $
the lower case character’s ASCII code (since lower case characters always have bit #5 set, subtrac
always clears this bit).

Any attempt to convert this code directly to an MMX sequence is going to fail. Comparing and br
ing around the conversion instruction only works if you’re converting one value at a time. When ope
on eight characters simultaneously, any mixture of the eight characters may or may not require con
from lower case to upper case. Hence, we need to be able to perform some calculation that is beni
character is not lower case (i.e., doesn’t affect the character’s value) while converting the character t
case if it was lower case to begin with. Worse, we have to do this with pure computation since flow
trol isn’t going to be particularly effective here (if we test each individual result in our MMX registe
won’t really save anything over the scalar approach). To save you some suspense, yes, such a ca
does exist.

Consider the following algorithm that converts lower case characters to upper case:

<< Get character to test into AL >>
cmp(al, ‘a’);
setae(bl); // bl := al >= ‘a’
cmp(al, ‘z’);
setbe(bh); // bh := al <= ‘z’
and(bh, bl); // bl := (al >= ‘a’) && (al <= ‘z’);
dec(bl); // bl := $FF/$00 if false/true.
not(bl); // bl := $FF/$00 if true/false.
and($20, bl); // bl := $20/$00 if true/false.
sub(bl, al); // subtract $20 if al was lowercase.

This code sequence is fairly straight-forward up until the DEC instruction above. It computes true/false
in BL depending on whether AL is in the range ‘a’..’z’. At the point of the DEC instruction, BL contains on
if AL is a lower case character, it contains zero if AL’s value is not lower case. After the DEC instruction,
BL contains $FF for false (AL is not lower case) and $00 for true (AL is lowercase). The code is going to
use this as a mask a little later, but it really needs true to be $FF and false $00, hence the NOT instruction
that follows. The (second) AND instruction above converts true to $20 and false to $00 and the final SUB
instruction subtracts $20 if AL contained lower case, it subtracts $00 from AL if AL did not contain a lower
case character (subtracting $20 from a lower case character will convert it to upper case).

Whew! This sequence probably isn’t very efficient when compared to the simpler code given previ-
ously. Certainly there are more instructions in this version (nearly twice as many). Whether this code with-
out any branches runs faster or slower than the earlier code with two branches is a good question. The
important thing to note here, though, is that we converted the lower case characters to upper case (leaving
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1143

Chapter Eleven Volume Four

in

 ha
uctions).
ctions

orithm
for each
instruc

ltiple of
 that are
cters. In
d

you’
ers

e

other characters unchanged) using only a calculation; no program flow logic is necessary. This means that
the code sequence above is a good candidate for conversion to MMX. Even if the code sequence above is
slower than the previous algorithm when converting one character at a time to upper case, it’s positively
going to scream when it converts eight characters at a shot (since you’ll only need to execute the sequence
one-eighth as many times).

The following is the code sequence that will convert the eight characters starting at location [EDI]
memory to upper case:

static
A:qword; @nostorage;

byte $60, $60, $60, $60, $60, $60, $60, $60; // Note: $60 = ‘a’-1.
Z:qword; @nostorage;

byte $7B, $7B, $7B, $7B, $7B, $7B, $7B, $7B; // Note: $7B = ‘z’ + 1.
ConvFactor:qword; @nostorage;

byte $20, $20, $20, $20, $20, $20, $20, $20; // Magic value for lc->UC.
.
.
.

 movq(ConvFactor, mm4); // Eight copies of conversion value.
 movq(A, mm2); // Put eight “a” characters in mm2.
 movq(Z, mm3); // Put eight “z” characters in mm3.
 movq([edi], mm0); // Get next eight characters of our string.
 movq(mm0, mm1); // We need two copies.
 pcmpgtb(mm2, mm1); // Generate 1's in MM1 everywhere chars >= 'a'
 pcmpgtb(mm0, mm3); // Generate 1's in MM3 everywhere chars <= 'z'
 pand(mm3, mm1); // Generate 1's in MM1 when 'a'<=chars<='z'
 pand(mm4, mm1); // Generates $20 in each spot we have a l.c. char
 psubb(mm1, mm0); // Convert l.c. chars to U.C. by adding $20.
 movq(mm0, [edi]);

Note that this code compares the characters that [EDI] points at to ‘a’-1 and ‘z’+1 because we onlyve a
greater than comparison rather than a greater or equal comparison (this saves a few extra instr
Other than setting up the MMX registers and taking advantage of the fact that the PCMPGTB instru
automatically produce $FF for true and $00 for false, this is a faithful reproduction of the previous alg
except it operates on eight bytes simultaneously. So if we put this code in a loop and execute it once
eight characters in the string, there will be one-eighth the iterations of a similar loop using the scalar -
tions.

Of course, there is one problem with this code. Not all strings have lengths that are an even mu
eight bytes. Therefore, we’ve got to put some special case code into our algorithm to handle strings
less than eight characters long and handle strings whose length is not an even multiple of eight chara
the following program, the mmxupper function simply borrows the scalar code from the HLA Standar
Library’s str.upper procedure to handle the leftover characters. The following example program provides
both an MMX and a scalar solution with a main program that compares the running time of both. If re
wondering, the MMX version is about three times faster (on a Pentium III) for strings around 35 charact
long, containing mostly lower case (mostly lower case favors the scalar algorithm since fewer branches are
taken with lower case characters; longer strings favor the MMX algorithm since it spends more time in th
MMX code compared to the scalar code at the end).

program UpperCase;
#include(“stdlib.hhf”)

// The following code was stolen from the
// HLA Standard Library’s str.upper function.
// It is not optimized, but then none of this
// code is optimized other than to use the MMX
// instruction set (later).
Page 1144 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
procedure strupper(dest: string); @nodisplay;
begin strupper;

 push(edi);
 push(eax);

 mov(dest, edi);
 if(edi = 0) then

 raise(ex.AttemptToDerefNULL);

 endif;

 // Until we encounter a zero byte, convert any lower
 // case characters to upper case.

 forever

 mov([edi], al);
 breakif(al = 0); // Quit when we find a zero byte.

 // If a lower case character, convert it to upper case
 // and store the result back into the destination string.

 if
 (#{
 cmp(al, ‘a’);
 jb false;
 cmp(al, ‘z’);
 ja false;
 }#) then

 and($5f, al); // Magic lc->UC translation.
 mov(al, [edi]); // Save result.

 endif;

 // Move on to the next character.

 inc(edi);

 endfor;

 pop(edi);
 pop(eax);

end strupper;

procedure mmxupper(dest: string); @nodisplay;
const
 zCh:char := char(uns8(‘z’) + 1);
 aCh:char := char(uns8(‘a’) - 1);

static

 // Create eight copies of the A-1 and Z+1 characters
 // so we can compare eight characters at once:
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1145

Chapter Eleven Volume Four

 A:qword; @nostorage;
 byte aCh, aCh, aCh, aCh, aCh, aCh, aCh, aCh;

 Z:qword; @nostorage;
 byte zCh, zCh, zCh, zCh, zCh, zCh, zCh, zCh;

 // Conversion factor: UC := LC - $20.

 ConvFactor: qword; @nostorage;
 byte $20, $20, $20, $20, $20, $20, $20, $20;

begin mmxupper;

 push(edi);
 push(eax);

 mov(dest, edi);
 if(edi = 0) then

 raise(ex.AttemptToDerefNULL);

 endif;

 // Some invariant operations (things that don’t
 // change on each iteration of the loop):

 movq(A, mm2);
 movq(ConvFactor, mm4);

 // Get the string length from the length field:

 mov((type str.strRec [edi]).length, eax);

 // Process the string in blocks of eight characters:

 while((type int32 eax) >= 8) do

 movq([edi], mm0); // Get next eight characters of our string.
 movq(mm0, mm1); // We need two copies.
 movq(Z, mm3); // Need to refresh on each loop.
 pcmpgtb(mm2, mm1); // Generate 1’s in MM1 everywhere chars >= ‘a’
 pcmpgtb(mm0, mm3); // Generate 1’s in MM3 everywhere chars <= ‘z’
 pand(mm3, mm1); // Generate 1’s in MM1 when ‘a’<=chars<=’z’
 pand(mm4, mm1); // Generates $20 in each spot we have a l.c. char
 psubb(mm1, mm0); // Convert l.c. chars to U.C. by adding $20.
 movq(mm0, (type qword [edi]));

 // Move on to the next eight characters in the string.

 sub(8, eax);
 add(8, edi);

 endwhile;

 // If we’re processing less than eight characters, do it the old-fashioned
 // way (one character at a time). This also handles the last 1..7 chars
 // if the number of characters is not an even multiple of eight. This
 // code was swiped directly from the HLA str.upper function (above).

 if(eax != 0) then
Page 1146 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set

 forever

 mov([edi], al);
 breakif(al = 0); // Quit when we find a zero byte.

 // If a lower case character, convert it to upper case
 // and store the result back into the destination string.

 if
 (#{
 cmp(al, ‘a’);
 jb false;
 cmp(al, ‘z’);
 ja false;
 }#) then

 and($5f, al); // Magic lc->UC translation.
 mov(al, [edi]); // Save result.

 endif;

 // Move on to the next character.

 inc(edi);

 endfor;

 endif;
 emms(); // Clean up MMX state.

 pop(edi);
 pop(eax);

end mmxupper;

static
 MyStr: string := “Hello There, MMX Uppercase Routine!”;
 destStr:string;
 mmxCycles:qword;
 strCycles:qword;

begin UpperCase;

 // Charge up the cache (prefetch the code and data
 // to avoid cache misses later).

 mov(str.a_cpy(MyStr), destStr);
 mmxupper(destStr);
 strupper(destStr);

 // Okay, time the execution of the MMX version:

 mov(str.a_cpy(MyStr), destStr);

 rdtsc();
 mov(eax, (type dword mmxCycles));
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1147

Chapter Eleven Volume Four

e

t of
ns.
then
 mov(edx, (type dword mmxCycles[4]));
 mmxupper(destStr);
 rdtsc();
 sub((type dword mmxCycles), eax);
 sbb((type dword mmxCycles[4]), edx);
 mov(eax, (type dword mmxCycles));
 mov(edx, (type dword mmxCycles[4]));

 stdout.put(“Dest String = ‘”, destStr, “‘”, nl);

 // Okay, time the execution of the HLA version:

 mov(str.a_cpy(MyStr), destStr);

 rdtsc();
 mov(eax, (type dword strCycles));
 mov(edx, (type dword strCycles[4]));
 strupper(destStr);
 rdtsc();
 sub((type dword strCycles), eax);
 sbb((type dword strCycles[4]), edx);
 mov(eax, (type dword strCycles));
 mov(edx, (type dword strCycles[4]));

 stdout.put(“Dest String(2) = ‘”, destStr, “‘”, nl);

 stdout.put(“MMX cycles:”);
 stdout.puti64(mmxCycles);
 stdout.put(nl “HLA cycles: “);
 stdout.puti64(strCycles);
 stdout.newln();

end UpperCase;

Program 11.4 MMX Implementation of the HLA Standard Library str.upper Procedure

Other string functions, like a case insensitive string comparison, can greatly benefit from the use of par-
allel computation via the MMX instruction set. Implementation of other string functions is left as an xer-
cise to the reader; interested readers should consider converting string functions that involve calculations
and tests on each individual characters in a string as candidates for optimization via MMX.

11.10 Putting It All Together

Intel’s MMX enhancements to the basic Pentium instruction set allow the acceleration of certain algo-
rithms. Unfortunately, the MMX instruction set isn’t generally applicable to a wide range of problems. The
MMX instructions, with their SIMD orientation, are generally useful for manipulating a large amount of
data organized as byte, word, or double word arrays where the MMX instructions can calculate several val-
ues in parallel. Learning to effectively use the MMX instruction set requires a paradigm shift on the par
the programmer. You don’t apply the same rules for scalar 80x86 instructions to the MMX instructio
However, if you take the time to master parallel programming techniques with the MMX instructions,
you will be able to accelerate many of your applications.
Page 1148 © 2001, By Randall Hyde Beta Draft - Do not distribute

The MMX Instruction Set
Beta Draft - Do not distribute © 2001, By Randall Hyde Page 1149

Chapter Eleven Volume Four
Page 1150 © 2001, By Randall Hyde Beta Draft - Do not distribute

	The MMX Instruction Set Chapter Eleven
	11.1 Chapter Overview
	11.2 Determining if a CPU Supports the MMX Instruction Set
	11.3 The MMX Programming Environment
	11.3.1 The MMX Registers
	11.3.2 The MMX Data Types

	11.4 The Purpose of the MMX Instruction Set
	11.5 Saturation Arithmetic and Wraparound Mode
	11.6 MMX Instruction Operands
	11.7 MMX Technology Instructions
	11.7.1 MMX Data Transfer Instructions
	11.7.2 MMX Conversion Instructions
	11.7.3 MMX Packed Arithmetic Instructions
	11.7.4 MMX Logic Instructions
	11.7.5 MMX Comparison Instructions
	11.7.6 MMX Shift Instructions

	11.8 The EMMS Instruction
	11.9 The MMX Programming Paradigm
	11.10 Putting It All Together

